
1

Statistics: New Foundations, Toolbox,
and Machine Learning Recipes

By Vincent Granville, Ph.D.

www.DataScienceCentral.com

July 2019.

This book is intended for busy professionals working with data of any kind: engineers,
BI analysts, statisticians, operations research, AI and machine learning professionals,
economists, data scientists, biologists, and quants, ranging from beginners to
executives. In about 300 pages, it covers many new topics, offering a fresh perspective
on the subject, including rules of thumb and recipes that are easy to automate or
integrate in black-box systems, as well as new model-free, data-driven foundations to
statistical science and predictive analytics. The approach focuses on robust techniques;
it is bottom-up (from applications to theory), in contrast to the traditional top-down
approach. The material is accessible to practitioners with a one-year college-level
exposure to statistics and probability. The compact and tutorial style, featuring many
applications with numerous illustrations, is aimed at practitioners, researchers, and
executives in various quantitative fields.

New ideas, advanced topics and state-of-the-art research are discussed in simple
English, without using jargon or arcane theory. It unifies topics that are usually part of
different fields (machine learning, statistics, computer science), broadening the
knowledge and interest of the reader in ways that are not found in any other book. This
short book contains a large amount of condensed material that would typically be
covered in 1,000 pages in traditional publications, including data sets, source code, and
Excel spreadsheets. Thanks to cross-references and redundancy, the chapters can be
read independently, in random order.

This book is based on several core articles and many tutorials that I have written over
the last few years. Chapters are organized and grouped by themes: natural language
processing (NLP), resampling, time series, central limit theorem, statistical tests,
boosted models (ensemble methods), tricks and special topics, appendices, and so on.
It is available for Data Science Central members exclusively. The text in blue consists of
clickable links to provide the reader with additional references. Source code and Excel
spreadsheets summarizing computations, are also accessible as hyperlinks for easy
copy-and-paste or replication purposes. The most recent version of this book is
available from this link, accessible to DSC members only.

About the author

Vincent Granville is a start-up entrepreneur, patent owner, author, investor, pioneering
data scientist with 30 years of corporate experience in companies small and large
(eBay, Microsoft, NBC, Wells Fargo, Visa, CNET) and a former VC-funded executive,
with a strong academic and research background including Cambridge University.

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/new-books-and-resources-for-dsc-members

2

Content

Part 1 - Machine Learning Fundamentals and NLP

We introduce a simple ensemble technique (or boosted algorithm) known as Hidden
Decision Trees, combining robust regression with unusual decision trees, useful in the
context of transaction scoring. We then describe other original and related machine
learning techniques for clustering large data sets, structuring unstructured data via
indexation (a natural language processing or NLP technique), and perform feature
selection, with Python code and even an Excel implementation.

1. Multi-use, Robust, Pseudo Linear Regression -- page 12

 Introduction
 Example: Simulated Data with Correlated Features
 Clustering the Variables
 Clustering the Observations

2. A Simple Ensemble Method, with Case Study (NLP) -- page 15

 The Problem
 Feature Selection and Best Practices
 Methodology and Solution
 Case Study: Results
 Source Code

o Perl, R, Python, Julia

3. Excel Implementation -- page 24

 Excel template for general machine learning
 Who should use the spreadsheet?
 Description of the techniques used
 Spreadsheet versus Python version
 Why a brand new set of machine learning tools?
 The Spreadsheet
 Confidence intervals for the response

4. Fast Feature Selection -- page 31

 Predictive Power of a Feature, Cross-Validation
 Data structure, computations

3

5. Fast Unsupervised Clustering for Big Data (NLP) -- page 36

 Building a Keyword Taxonomy
 Fast Clustering Algorithm
 Computational Complexity

6. Structuring Unstructured Data -- page 40

 Indexation algorithm
 Potential improvement

Part 2 - Applied Probability and Statistical Science

We discuss traditional statistical tests to detect departure from randomness (the null
hypothesis) with applications to sequences (the observations) that behave like
stochastic processes. The central limit theorem (CLT) is revisited and generalized with
applications to time series (both univariate and multivariate) and Brownian motions. We
discuss how weighted sums of random variables and stable distributions are related to
the CLT, and then explore mixture models -- a better framework to represent a rich
class of phenomena. Applications are numerous, including optimum binning for
instance. The last chapter summarizes many of the statistical tests used earlier.

7. Testing for Randomness -- page 42

 Context
 Methodology

o Algorithm to compute the observed gap distribution
o Statistical testing

 Application to Number Theory Problem
o A counter-example
o Potential use in cryptography

 Conclusion

8. The Central Limit Theorem Revisited -- page 48

 A special case of the Central Limit Theorem
 Simulations, testing, and conclusions

o The Lyapunov connection
 Generalizations

o Correlated observations
o Non-random (deterministic) observations
o Other generalizations

 Source code

4

9. More Tests of Randomness -- page 55

 Central Limit Theorem for Non-Random Variables
 Testing Randomness: Max Gap, Auto-Correlations and More

o Convergence to a non-degenerate distribution
 Excel Spreadsheet with Computations
 Potential Research Areas

o Generalization to higher dimensions

10. Random Weighted Sums and Stable Distributions -- page 63

 Central Limit Theorem: New Approach
o Theorem

 Stable and Attractor Distributions
o Using decaying weights
o Exact distribution
o More about stable distributions and their applications

 Non CLT-compliant Weighted Sums, and their Attractors
o Testing for normality
o Testing for symmetry and dependence on kernel
o Testing for uni-modality and other peculiarities
o Testing for semi-stability

 Conclusions

11. Mixture Models, Optimum Binning and Deep Learning -- page 73

 Introduction and Context
 Approximations Using Mixture Models

o The error term
o Kernels and model parameters
o Algorithms to find the optimum parameters
o Convergence and uniqueness of solution
o Find near-optimum with fast, black-box step-wise algorithm

 Example
o Data and source code
o Results

 Applications
o Optimal binning
o Predictive analytics
o Test of hypothesis and confidence intervals
o Deep learning: Bayesian decision trees
o Clustering

 Interesting problems
o Gaussian mixtures uniquely characterize a broad class of distributions
o Weighted sums fail to achieve what mixture models do
o Stable mixtures

5

o Nested mixtures and Hierarchical Bayesian Systems
o Correlations

12. Long Range Correlations in Time Series -- page 87

 Introduction and time series deconstruction
o Example
o Deconstructing time series
o Correlations, Fractional Brownian motions

 Smoothness, Hurst exponent, and Brownian test
o Our Brownian tests of hypothesis
o Data

 Results and conclusions
o Charts and interpretation
o Conclusions

13. Stochastic Number Theory and Multivariate Time Series -- page 95

 Some Definitions
 Digits Distribution in b-processes
 Strange Facts and Conjectures about the Rabbit Constant
 Gaming Application

o De-correlating Time Series Using Mapping and Thinning Techniques
o Dissolving the Auto-correlation Structure Using Multivariate b-processes

14. Statistical Tests: Summary -- page 101

 General Methodology
 Off-the-beaten-path Statistical Tests

Part 3 - New Foundations of Statistical Science

We set the foundations for a new type of statistical methodology fit for modern machine
learning problems, based on generalized resampling. Applications are numerous,
ranging from optimizing cross-validation to computing confidence intervals, without
using classic statistical theory, p-values, or probability distributions. Yet we introduce a
few new fundamental theorems, including one regarding the asymptotic properties of
generic, model-free confidence intervals.

15. Modern Resampling Techniques for Machine Learning -- page 107

 Re-sampling and Statistical Inference
o Main Result
o Sampling with or without Replacement

6

o Illustration
o Optimum Sample Size
o Optimum K in K-fold Cross-Validation
o Confidence Intervals, Tests of Hypotheses

 Generic, All-purposes Algorithm
o Re-sampling Algorithm with Source Code
o Alternative Algorithm
o Using a Good Random Number Generator

 Applications
o A Challenging Data Set
o Results and Excel Spreadsheet
o A New Fundamental Statistics Theorem
o Some Statistical Magic
o How does this work?
o Does this contradict entropy principles?

 Conclusions

16. Model-free, Assumption-free Confidence Intervals -- page 121

 Principle
 2. Examples

o Estimator used in nearest neighbors clustering
o Weighted averages when dealing with outliers
o Correlation coefficient estimated via re-sampling
o Auto-correlated time series, U-statistics

 Counterexamples
 Estimating A
 Estimating B

o Getting more accurate values
o Getting even more accurate values

 Theoretical Background
o Connection with the re-scaled range and the Hurst exponent
o General case
o Another approach to building confidence intervals

 Conclusions

17. The Distribution of the Range: A Beautiful Probability Theorem -- page 133

 Theorem and proof
 Connection with order statistics and the Renyi Representation

7

Part 4 - Case Studies, Business Applications

These chapters deal with real life business applications. Chapter 18 is peculiar in the
sense that it features a very original business application (in gaming) described in
details with all its components, based on the material from the previous chapters. Then
we move to more traditional machine learning use cases. Emphasis is on providing
sound business advice to data science managers and executives, by showing how data
science can be successfully leveraged to solve problems. The presentation style is
compact, focusing on strategy rather than technicalities.

18. Gaming Platform Rooted in Machine Learning and Deep Math -- page 136

 Description, Main Features and Advantages
 How it Works: the Secret Sauce

o Public Algorithm
o The Winning Numbers
o Using Seeds to Find the Winning Numbers
o ROI Tables

 Business Model and Applications
o Managing the Money Flow
o Virtual Currency

 Challenge and Statistical Results
o Data Science / Math Competition
o Controlling the Variance of the Portfolio
o Probability of Cracking the System

 Designing 16-bit and 32-bit Systems
o Layered ROI Tables
o Smooth ROI Tables
o Systems with Winning Numbers in [0, 1]

19. Digital Media: Decay-adjusted Rankings -- page 148

 Introduction
 Top DSC blogs
 Interesting Insights
 New Scoring Engine
 Good versus perfect model
 Next steps

20. Building a Website Taxonomy -- page 153

 Seed Keywords
 General Methodology
 Top 2,500 Data Science Websites

8

 Data and Source Code
 Detailed Methodology
 Possible Improvements

21. Predicting Home Values -- page 158

 The data
 Leveraging available data, getting additional data
 Potential metrics to consider
 Model selection and performance

22. Growth Hacking -- page 161

 Growth Hacking: Part I
o Strategy
o Methodology
o Scoring algorithm
o Data Sets, Excel spreadsheet
o Python Source Code
o Next steps

 Growth Hacking: Part II
 Growth Hacking: Part III

o Algorithm: categorizing / clustering articles
 Conclusions

23. Time Series and Growth Modeling -- page 169

 Case Study: The Problem
o Business questions

 Deep Analytical Thinking
o Answering hidden questions

 Data Science Wizardry
o Generic algorithm
o Illustration with three different models
o Results

 A few data science hacks

24. Improving Facebook and Google Algorithms -- page 179

 Five Case Studies
o More about the Facebook ad processing system

 Why so many Machine Learning Implementations Fail?
o The fake news issue
o When machine learning is used as a scapegoat

 Twenty four tips for better data science

9

Part 5 - Additional Topics

Here we cover a large number of topics, including sample size problems, automated
exploratory data analysis, extreme events, outliers, detecting the number of clusters, p-
values, random walks, scale-invariant methods, feature selection, growth models,
visualizations, density estimation, Markov chains, A/B testing, polynomial regression,
strong correlation and causation, stochastic geometry, K nearest neighbors, and even
the exact value of an intriguing integral computed using statistical science, just to name
a few.

25. Solving Common Machine Learning Challenges -- page 187

 Eliminating sample size effects
 Sample size determination
 Automatically detecting the number of clusters
 Fixing issues in regression models
 Performing joins on mismatched data
 Scale invariant techniques
 Blending data sets with non-compatible fields
 Automated exploratory data analysis
 Simple solution to feature selection problems
 Coefficient of Correlation for Non-Linear Relationships
 Choosing a regression model
 Growth modeling with Excel
 Interesting charts
 Simplified logistic regression

26. Outlier-resistant Techniques, Cluster Simulation, Contour Plots -- page 214

 General Framework
o Finding a robust centroid
o Generalization to linear regression problems
o General outlier detection techniques
o A related physics problem

 Algorithm to find centroid when p > 1
o Source code to generate points and compute centroid
o Generating point clouds with Monte Carlo simulation

 Examples and results
 Convergence of the algorithm
 Interesting Contour Maps

27. Strong Correlation Metric -- page 225

 Definition of strong correlation

10

 Comparison with traditional (weak) correlation
 Excel spreadsheet with computations and examples
 When to use strong versus weak correlation?
 Generalization

28. Special Topics -- page 229

 Comparing ML, Data Science, AI, Deep Learning, and Statistics
o Different Types of Data Scientists
o Machine Learning versus Deep Learning
o Machine Learning versus Statistics
o Data Science versus Machine Learning

 Distribution of Arrival Times for Extreme Events
o Simulations
o Theoretical Distribution of Records over Time
o Useful Results

 How to Lie with p Values?
 Off-the-beaten-path Machine Learning Topics

o Random walks in one, two and three dimensions
o Estimation of the convex hull of a set of points
o Constrained linear regression on unusual domains
o Robust and scale-invariant variances
o The Tweedie distributions
o The arithmetic-geometric mean
o Weighted version of the K-NN clustering algorithm
o Multivariate exponential distribution and storm modeling

 Variance, Clustering, and Density Estimation Revisited
o Working on the Grid, not on the Original Space
o Density Estimation
o Supervised Clustering
o Scale-Invariant Variance
o Historical Notes

 New K-NN Clustering Algorithm and Data Reduction
 Spatial Patterns Found in Random Points
 Stochastic Geometry: Spatial Coverage Problem
 Markov Chains and the Collatz Conjecture
 Special Integral Solved Using Statistical Concepts
 From A/B Testing to Discrete Choice Analysis
 Deep Dive into Polynomial Regression and Overfitting
 Lifecycle of Data Science Projects

Appendix A. Linear Algebra Revisited -- page 266

 Power of a Matrix

11

 Examples, Generalization, and Matrix Inversion
o Example with a non-invertible matrix
o Fast computations

 Application to Machine Learning Problems
o Markov chains
o Time series
o Linear regression

 Appendix

Appendix B. Stochastic Processes and Organized Chaos -- page 272

 General framework, notations and terminology
o Finding the equilibrium distribution
o Auto-correlation and spectral analysis
o Ergodicity, convergence, and attractors
o Space state, time state, and Markov chain approximations
o Examples

 Case study
 Applications
 Additional topics

o Perfect stochastic processes and Brownian motions
o Characterization of equilibrium distributions (the attractors)
o Probabilistic calculus, number theory, special integrals

 Appendix
o Computing the auto-correlation at equilibrium
o Proof of the first fundamental theorem
o How to find the exact equilibrium distribution
o Perfect process with no auto-correlation

Appendix C. Machine Learning and Data Science Cheat Sheet -- page 297

 Hardware
 Linux environment on Windows laptop
 Basic UNIX commands
 Scripting languages
 Python, R, Hadoop, SQL, DataViz
 Machine Learning

o Algorithms
o Getting started
o Applications
Data sets and sample projects

12

1. Multi-use, Robust Pseudo-regression

We discuss a simple technique, first developed around 2002 when I was working for
Visa, to blend different models to produce better predictions. It was developed
independently from Stanford University’s boosted trees and similar techniques. It blends
pseudo linear regression with a large number of simple decision trees, without explicitly
building decision trees. Among its advantages is ease of implementation, robustness
(no risk of over-fitting), interpretability, and low number of hyper-parameters, making it
suitable for black box machine learning applications. It is known as hidden decision
trees (HDT).

This chapter focuses on the pseudo linear regression, one of the two components of
HDT’s. It is a constrained regression, similar to ridge or Lasso regression, or to methods
based on penalized likelihood. We also show how it can be used to cluster either the
variables (features) or the observations.

.

1. Introduction

Without loss of generality, we focus on linear regression with centered variables (with
zero mean), and no intercept. Generalization to logistic or non-centered variables is
straightforward. Let

Y = a1X1 + ... + anXn + e

Here e is the noise or error term. A solution, if you want the regression coefficients ak
and the correlations Cor(Y, Xk) with the response Y to have the same sign, is:

 ak = M bk, with bk = Cov(Y, Xk) / Var(Xk), k = 1, ..., n and

 M (a real number) is chosen to minimize Var(e).

Let W = b1X1 + ... + bnXn. You must find M that minimizes Var(Y - MW). The solution
is M = Cov(Y, W) / Var(W). If the independent variables (features) are non-correlated,
then this regression and the classical regression produce the same results, and M = 1.
You can add an intercept parameter c to the model; the final estimate becomes W* = c
+ W, where c = Mean(Y - W).

Terminology: S = a1X1 + ... + anXn is the estimated or predicted response; the Xk's are
the independent variables or features.

2. Example: simulated data with correlated features

I tested this methodology on a data set with 10,000 observations and 4 features. The
data, source code to generate the data, graphs and results, are found in this
spreadsheet. By construction, the correlation between the first two features is 0.99.

http://storage.ning.com/topology/rest/1.0/file/get/2656751664?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2656751664?profile=original

13

Whether you use an exact linear regression, or the approximated method described
here, the goodness of fit (measured using R-squared) is similar. However the
approximated method is far more robust. Robustness was tested by adding extra noise
in the data. The exact regression coefficients are very sensitive to noise, and their
values are very volatile. To the contrary, the regression coefficients obtained with this
method are stable despite the high internal correlations.

3. Clustering the variables: solution based on two M's

We can improve the estimates by considering a model with two M's, namely M and M',
where M applies to a subset of variables, and M' to the remaining variables. Now the
estimated response is

where I and J constitute a partition of {1, ... , n}. In short we are clustering the variables
into two clusters. Again, the goal is to minimize Var(Z) = Var(Y - S), this time with
respect to M, M', I and J. There are 2n possible partitions (I, J), so we can loop over all
these partitions, and for each partition, find the M, M' that minimizes Var(Y - S). Then
identify the partition with absolute minimum for Var(Y - S).

The optimum partition will put highly correlated variables into a same cluster. In my
example, since the first two features are highly correlated by construction, one would
hope that the optimum partition will be {X1, X2} forming one cluster of variables, that is I
= {1, 2}, and {X3, X4} forming the second cluster, that is J = {3, 4}. So I manually picked
up this particular partition ({X1, X2}, {X3, X4}) as good enough for our test. I then tried a
few values of M, M' for this particular partition, and settled with M = 0.1 and M'= 1.0.
Clearly, there is no overfitting here. The parameters M and M' are located in cells P19
and R19 respectively, in the “data & results” tab in the spreadsheet.

Computations

Of course if you have many variables (n is large) then you might need more than two M
and M'. Do not use more than 4 M's for robustness. Note that 4 M's require visiting 4n
partitions to identify the optimum one. In practice, I recommend to visit only 1,000
partitions out of 4n, and choose the best one among these 1,000. To make the algorithm
run much faster, you can do your computations using just 1% of the data set (but no
less than 100 observations). Now you have a robust algorithm with a computational
complexity that does not depend on the number of observations (if your computations
are based on a sample of 100 observations), nor on the number of variables. Pretty
amazing!

Note that in the case where we use two Ms, namely M and M', given a partition (I, J), it
is straightforward to compute the optimum M, M' depending on (I, J). Let's use the
following notation:

14

Then the optimum is obtained by differentiating Var(Y - S) = Var(Y - MSI - M'SJ) with
respect to M and M'. This leads to a straightforward system of 2 linear equations with 2
unknowns M and M'. You need to solve that system to find M and M'. If you work with
three M's, you would have to solve a similar system, but this time with 3 unknowns M,
M', and M''.

4. Clustering the observations

Just like we can cluster variables, we can apply the same methodology to cluster
observations into two (or more) groups, using a different M for each group. Or you can
cluster both variables and observations simultaneously.

However, in practice, if observations are too disparate for regression to make sense, I
suggest using other techniques to cluster the observations. Adding one or two carefully
crafted new variables can help solve the problem. Another approach is to apply hidden
decision tree technology (see chapter 2) to bin the observations in hundreds or
thousands of data buckets (each with at least 100 observations if possible), and apply a
specific regression (that is, specifics M, M') to each bucket. This works well with big
data.

15

2. A Simple Ensemble Method

The technique presented here, known as hidden decision trees, blends non-standard,
robust versions of decision trees and regression. It has been successfully used in black-
box ML implementations. Here we describe a case study to optimize website content. It
is NLP-intensive. Source code in Perl, R, Julia and Python is provided.

We discuss a general machine learning technique to make predictions or score
transactional data, applicable to very big, streaming data. This hybrid technique
combines different algorithms to boost accuracy, outperforming each algorithm taken
separately, yet it is simple enough to be reliably automated. It is illustrated in the context
of predicting the performance of articles published in media outlets or blogs, and has
been used by the author to build an AI (artificial intelligence) system to detect articles
worth curating, as well as to automatically schedule tweets and other postings in social
networks, with a goal of eventually fully automating digital publishing. This application is
broad enough that the methodology can be applied to most NLP (natural language
processing) contexts with large amounts of unstructured data.

Figure 1: HDT 1.0. Here we will describe HDT 2.0.

The algorithmic framework described here applies to any data set, text or not, with
quantitative, non-quantitative (gender, race) or a mix of variables. It consists of several
components; we discuss in details those that are new and original. No deep technical
expertise and no mathematical knowledge is required to understand the concepts and
methodology described here. The methodology, though state-of-the-art, is simple
enough that it can even be implemented in Excel, for small data sets (one million
observations.).

16

1. The Problem

Rather than first presenting a general, abstract framework and then showing how it
applies to a specific problem (case study), we proceed the other way around, as we
believe that it will help the reader understand better our methodology. We then
generalize to any kind of data set.

In its simplest form, our particular problem consists of analyzing historical data about
articles and blog posts, to identify features (also called metrics or variables) that are
good predictors of blog popularity when combined together, to build a system that can
predict the popularity of an article before it gets published. The goal is to select the right
mix of relevant articles to publish, to increase web traffic, and thus advertising dollars,
for a niche digital publisher.

As in any similar problem, the historical data is called training set, and it is split into test
data and control data for cross-validation purposes to avoid over-fitting. The features
are selected to maximize some measure of predictive power, as described in chapter 4.
All of this is (so far) standard practice; the reader not familiar with this can Google the
keywords introduced in this paragraph. In our particular case, we use our domain
expertise to identify great features. These features are pretty generic and apply to
numerous NLP contexts, so you can re-use them for your own data sets.

Feature Selection and Best Practices

One caveat is that some metrics are very sensitive to manipulation. In our case,
the response (that is, what we are trying to predict, also called dependent variable by
statisticians) is the traffic volume. It can be measured in page views, unique page views,
or number of users who read the article. Page views can easily be manipulated and the
number is inflated by web robots, especially for articles that have little traffic. So instead,
we chose "unique page views", a more robust metric available through Google
Analytics. Also, older articles have accumulated more page views over time, so we
need to correct for this effect. Correcting for time is explained in chapter 19. Here we
used a very simple approach instead: focusing on articles from the most recent, main
channel instead (the time window is about two years), and taking the logarithm of
unique page views (denoted as pv in the source code in the last section).

Taking the logarithm not only smooths out the effect of time and web robots, but also it
makes perfect sense as the page view distribution is highly skewed -- well modeled
using a Zipf distribution -- with a few incredibly popular (viral) articles and a large
number of articles with average traffic: it is a bit like the income distribution.
As for selecting the features, we have two kinds of metrics that we can choose as
predictors:

Metrics based on the article title, easy to compute:

 Keywords found in the title
 Article category (blog, event, forum question)
 Channel

https://www.datasciencecentral.com/profiles/blogs/zipf-s-distribution-example-of-a-great-application

17

 Creation date
 Title contains numbers?
 Title is a question?
 Title contains special characters?
 Length of title

Metrics based on the article body, more difficult to compute:

 Size of article
 Does it contain pictures?
 Keywords found in body
 Author (and author popularity)
 First few words

Despite focusing only on a subset of features associated with the article title, we were
able to get very interesting, actionable insights; we only used title keywords, and
whether the posting is a blog, or not. The methodology used here takes into account all
potential key-value combinations, where a key is a subset of features, and value, the
respective values: for instance key = (keyword1, keyword2, article category) and value =
("Python", "tutorial", "Blog"). So it is important to appropriately bin the variables (see
section 4 in chapter 16) when turning them into features, to prevent the number of key-
value pairs from exploding. Another mechanism described later in this chapter is also
used to keep the key-value database, stored as an hash table or associate array,
manageable. Finally, it can easily be implemented in a distributed environment
(Hadoop.)

Due to the analogy with decision trees, a key-value is also called a node, and plays the
same role as a node in a decision tree.

2. Methodology and Solution

As we have seen in the previous section, the problem consists of predicting pv, the
logarithm of unique page views for an article (over some time period), as a function of
keywords found in the title, and whether the article in question is a blog or not.
In order to do so, we created lists of all one-token and two-token keywords found in all
the titles, as well as blog status, after cleaning the titles and eliminating some stop word
such as "that", "and" or "the", that don't have impacts on the predictions. We were also
careful about not eliminating all keywords made up of one or two letters: the one-letter
keyword "R", corresponding to the programming language R, has a high predictive
power.

For each element in our lists, we recorded the frequency and traffic popularity. More
precisely, for each key-value pair, we recorder the number of articles (titles, actually)
that are associated with it, as well as the average, minimum and maximum pv across
these articles.

18

Example

For instance, the element or key-value (keyword1 = "R", keyword2 = "Python", article =
"Blog") is associated with 6 articles, and has the following statistics: average pv = 8.52,
minimum pv = 7.41, and maximum pv = 10.45.

Since the average pv across all articles is equal to 6.83, this specific key-value pair
(also called node) generates exp(8.52 - 6.83) = 5.42 times more traffic than an average
article. It is thus a great node. Even the worst article, among the 6 articles belonging to
this node, with a pv of 7.41, outperforms the average article across all nodes. So not
only this is a great node, but also a stable one. Some nodes have a far larger volatility,
for instance when one of the keywords has different meanings, such as the word
"training", in "training deep learning" (training set) versus "deep learning training"
(courses.)

Hidden decision trees

Note that here, the nodes are overlapping, allowing considerable flexibility. In particular,
nodes with two keywords are sub-nodes of nodes with one keyword. A previous version
of this technique, described here, did not consider overlapping nodes. Also, with highly
granular features, the number of nodes explodes exponentially. A solution to this
problem consists of

 Shuffling the observations
 Working with nodes built on no more than 4 or 5 features
 Proper binning
 Visiting the observations sequentially (after the shuffle) and every one million

observations, deleting nodes that contain only one observation

The general idea behind this technique is to group articles into buckets that are large
enough to provide predictions that are sound, without explicitly building decision trees.
Not only the nodes are simple and easy to interpret, but unstable nodes are easy to
detect and discard. There is no splitting/pruning involved as with classical decision
trees, making this methodology simple and robust, and thus fit for artificial intelligence
(automated processing.)

General framework

Whether you are dealing with predicting the popularity of an article, or the risk for a
client to default on a loan, the basic methodology is identical. It involves training sets,
cross-validation, feature selection, binning, and populating hash tables of key-value
pairs (referred to here as the nodes).

When you process a new observation, you check which node(s) it belongs to. If the best
node it belongs to is stable and not too small, you use it to predict the future
performance or value of your observation, or to score the transaction if you are dealing

https://www.datasciencecentral.com/profiles/blogs/hidden-decision-trees-revisited

19

with transactional data such as credit card transactions. In our example, if the
performance metric (the average pv in the node in question) is significantly above the
global average, and other constraints are met (the node is not too small, and the
minimum pv in the node in question not too low to guarantee stability), then we classify
the observation as good, just like the node it belongs to. In our case, the observation is
a potential article.

Also, you need to update your training set and the node table (including automatically
discovered new nodes) every six months or so.

Parameters must be calibrated to guarantee that

 Error rate (classifying a good observation as bad or the other way around) is
small enough; it is measured using a confusion matrix

 The system is robust: we have a reasonable number of stable nodes that are big
enough; it is great if less than 3,000 stable, not too small nodes cover 80% of the
observations (by stable, we mean nodes with low variance) with an average of at
least 10 observations per node

 The binning and feature selection mechanism offer real predictive power: the
average response (our pv) measured in a node classified as good, is much
above the general average, and the other way around for nodes classified as
bad; in addition, the response shows little volatility within each node (in our
case, pv is relatively stable across all observations within a same usable node)

 We have enough usable nodes (that is, after excluding the small ones) to cover
at least 50% of all observations, and if possible up to 95% of all observations
(100% would be ideal but never exists in practice)

We discuss the parameters of our technique, and how to fine-tune them, in the next
section. Fine-tuning can be automated or made more robust by testing (say) 2,000 sets
of parameters and identify regions of stability that meet our criteria (in terms of error rate
and so on) in the parameter space.

A big question is what to do with observations not belonging to any usable node: they
cannot be classified. In our example it does not matter if 30% of the observations
cannot be classified, but in many applications, it does matter. One way to address this
issue is to use super-nodes: in our case, a node for all posts that are blogs, and another
one for all posts that are not blogs (these two nodes cover 100% of observations, both
past and future.) The problem is that usually, these super-nodes don't have much
predictive power. A better solution consists of using two algorithms: the one described
here based on usable nodes (let's call it algorithm A) and another one called algorithm B
that classifies all observations. Observations that can't be classified or scored with
algorithm A are classified/scored with algorithm B. You can read the details about how
to blend the results of two algorithms, in one of my patents. In practice, we have used
the technique described in chapter 1 for algorithm B, a technique easy to implement,
easy to understand, leading to simple interpretations, and robust. These features are
important for systems that are designed to run automatically.

http://patents.justia.com/patent/8775257

20

The resulting hybrid algorithm is called Hidden Decision Trees - hidden because you
don't even realize that you have created a bunch of mini decision trees: it was all
implicit. The version described here is version 2, with new features to prevent the node
table from exploding, and allowing nodes to overlap, making it more suitable for data
sets with a larger number of variables.

3. Case Study: Results

Our application about predicting page views for an article has been explained in detail in
the previous sections. So here we focus on the results obtained.

Output from the algorithm

If you run the script listed in the next section, besides producing the table of key-value
pairs (the nodes) as a text file for further automated processing, it displays summary
statistics that look like the following:

Average pv: 6.81
Number of articles marked as good: 865 (real number is 1079)
Number of articles marked as bad: 1752 (real number is 1538)
Avg pv: articles marked as good: 8.23
Avg pv: articles marked as bad: 6.13
Number of false positive: 50 (bad marked as good)
Number of false negative: 264 (good marked as bad)
Number of articles: 2617
Error Rate: 0.12
Number of feature values: 16712 (marked as good: 3409)
Aggregation factor: 1.62

The number of “feature values” is the total number of key-value pairs found, including
the small unstable ones, regardless as to whether they are classified as good or bad.
Any article with a pv above the arbitrary value pv_threshold = 7.1 (see source code) is
considered as good. This corresponds to articles having about 1.3 times more traffic
than average, since we use a log scale and the average pv is 6.81. The traffic for
articles classified as good by the algorithm (pv = 8.23) is about 4.2 times above the
traffic that an average article receives.

Two important metrics are:

 Aggregation factor: it is an indicator of the average size of a node. The minimum
is 1, corresponding to nodes that only have one observation. A value above 5 is
highly desirable, but here, because we are dealing with a small data set and with
niche articles, even a small value is OK.

 The error rate is the number of articles wrongly classified. Here we care much
more about bad articles classified as good.

21

Also note that we correctly identify the vast majority of good articles, but this is because
we work with small nodes. Finally an article is marked as good if it triggers at least one
node marked as good (that is, satisfying the criterion defined in the next sub-section.)

Parameters

Besides pv_threshold, the algorithm uses 12 parameters to identify a usable, stable
node classified as good. These parameters are illustrated in the following piece of code
(see source code):

 if ((($n > 3)&&($n < 8)&&($min > 6.9)&&($avg > 7.6)) ||
 (($n >= 8)&&($n < 16)&&($min > 6.7)&&($avg > 7.4)) ||

 (($n >= 16)&&($n < 200)&&($min > 6.1)&&($avg > 7.2))) {

Here, n represents the number of observations in a node, while, avg and min are the
average and minimum pv for the node in question. We tested many combinations of
values for these parameters. Increasing the required size (denoted as n) of a usable
node will do the following:

 Decrease the number of good articles correctly identified as good
 Increase the error rate
 Increase the stability of the system
 Decrease the predictive power
 Increase the aggregation factor (see previous sub-section)

Improving the methodology

Here we share some caveats and possible improvements to our technique.

You need to use a table of one-token keywords that look like two tokens, for increased
efficiency, and consider these keywords as being one-token. For instance “San
Francisco” is a one-token keyword, despite its appearance. Such tables are easy to
build as you always see the two parts together.

Also, we looked at nodes containing (keyword1, keyword2) where the two keywords are
adjacent. If you allow the two keywords not to be adjacent, the number of key-value
pairs (the nodes) increases significantly, but you don't get much additional predictive
power in return: there is even a risk of over-fitting.

Another improvement consists of having/favoring nodes containing observations spread
over a long time period, to avoid any kind of concentration (which could otherwise result
in over-fitting.)

Finally, in our case, we cannot exclusively focus on articles with great potential. It is
important to have many, less popular articles as well: they constitute the long tail.
Without these articles, we face problems such as excessive content concentration,
which have negative impacts in the long term. The obvious negative impact is that we

22

might miss nascent topics, and thus getting stuck into a non-adaptive mix of articles at
some point, thus slowing growth.

Interesting findings

Titles with the following features work well:

 Contains a number (10, 15 and so on) as we have many popular articles such as
“10 great deep learning articles”

 Contains the current year
 Is a question (how to)
 Not a blog, but a book category
 A blog

Titles containing the following keywords work well:

 everyone (as in “10 regression techniques everyone should know”)
 libraries
 infographic
 explained
 algorithms
 languages
 amazing
 must read
 r python
 job interview questions
 should know (as in "10 regression techniques everyone should know")
 nosql databases
 versus
 decision trees
 logistic regression
 correlations
 tutorials
 code
 free

4. Source Code

The source code is easy to read and has deliberately made longer than needed to
provide enough details, avoid complicated iterations, and facilitate maintenance and

translation into Python or R. The output file hdt-out2.txt stores the key-value pairs (or
nodes) that are usable, corresponding to popular articles. Here is the input data

set: HDT-data3.txt.

The code has been written in Perl, R and Python. Perl and Python run faster than R.
Click on the relevant link below to access the source code, available as a text file. The

http://storage.ning.com/topology/rest/1.0/file/get/2808323526?profile=original

23

code was originally written in Perl, and translated to Python and R by Naveenkumar
Ramaraju.

 Python version
 Perl version
 R version
 Improved R version

For those learning Python or R, this is a great opportunity. HDT (a light version) has
been implemented in Excel too, see chapter 3.

Note regarding the R implementation

Required library: hash (R doesn't have inbuilt hash or dictionary without imports.)

 Standard version is the literal translation of the Perl code with same variable
names to the maximum extent possible.

 Improved version uses functions, more data frames and more R-like approach to
reduce code running time (~30 % faster) and less lines of code. Variable names
would vary from Perl. Output file would have comma(,) as delimiter between IDs.

Instructions to run: Place the R file and HDT-data3.txt (input file) in root folder of R
environment. Execute the “.R” file in R studio or using command line script:

> Rscript HDT_improved.R

R is known to be slow in text parsing. We can optimize further if all inputs are within
double quotes or no quotes at all by using data frames.

Julia version

This was added later by Andre Bieler. A few remarks about:

 This code is absolutely not tuned for performance since everything is done in
global scope. (In Julia it would be good practice to put everything in small
functions)

 Generally for run times of only a few 0.1 s Python will be faster due to the
compilation times of Julia.

Julia really starts paying off for longer execution times. Contact the author to get the
Julia code.

https://www.linkedin.com/in/naveenkumar-ramaraju-007284124/
https://www.linkedin.com/in/naveenkumar-ramaraju-007284124/
http://storage.ning.com/topology/rest/1.0/file/get/2808326768?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808326979?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808328353?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808328296?profile=original
https://www.datasciencecentral.com/profile/AndreBieler

24

3. Excel Implementation

The technique described in the previous chapter is adapted here to Excel. While it
obviously shows the limitations of Excel, more surprisingly, it shows how far you can go,
and how much you can do with Excel, on the same case study and data set. Essentially,
it leads to the same business insights.

Here we focus on an Excel version that does not even require any Excel macros,
coding, plug-ins, or anything other than the most basic version of Excel. It is actually
easily implemented in standard, basic SQL too, and we invite readers to work on an
SQL version.

1. Excel template for general machine learning

In short, we offer here an Excel template for machine learning and statistical computing,
and it is quite powerful for an Excel spreadsheet. The techniques have been used by
the author in automated data science (AI to automate content production, selection and
scheduling articles for digital publishers) but also in the following contexts:

 Spam detection
 click, website, and keyword scoring (assigning a commercial value to a keyword,

group of keywords, or content category)
 Credit card fraud detection
 Botnet detection and predicting blog popularity.

The technique blends multiple algorithms that at first glance look traditional and math-
heavy, such as decision trees, regression (logistic or linear) and confidence intervals.
But they are radically different, can fit in a small spreadsheet (though the Python version
is more powerful, flexible, and efficient), and do not involve math beyond high-school
level. In particular, no matrix algebra is required to understand the methodology.

The methodology presented here is the result of 20 years’ worth of applied research on
various large industrial data sets.

25

Node table (extract, from spreadsheet)

Who should use the spreadsheet?

First, the spreadsheet (as well as the Python, R, Perl or Julia version) are free to use
and modify, even for commercial purposes, or to make a product out of it and sell it. It is
part of my concept of open patent, in which I share all my intellectual property publicly
and for free.

The spreadsheet is designed as a tutorial, though it processes the same data set as the
one used for the Python version. It is aimed at people that are not professional coders,
people who manage data scientists, BI experts, MBA professionals, and people from
other fields, with an interest in understanding the mechanics of some state-of-the-art
machine learning techniques, without having to spend months or years learning
mathematics, programming, and computer science. A few hours is needed to
understand the details. This spreadsheet can be the first step to help you transition to a
new, more analytical career path, or to better understand the data scientists that you
manage or interact with, or to spark a career in data science. Or even to teach machine
learning concepts to high school students.

The spreadsheet also features a traditional technique (linear regression) for comparison
purposes.

2. Description of the techniques used

Here we explain the differences between the standard and the Excel versions, and we
provide an overview, at a high level, of the techniques being used, as well as why they
are better in pretty much all applications, especially with unstructured and large data
sets. Detailed descriptions are available in the articles referenced in this section.

https://i.imgur.com/fl9p77S.png

26

Spreadsheet versus Python version

The Python version (also available in R, Perl and Julia) of the core technique is
described in the previous chapter. Python / Perl offer the following advantages over
Excel:

 It easily handles version 2.0 of HDT (see chapter 2) including overlapping nodes
 It easily handles big datasets, even in a distributed environment if needed
 It easily handles a large number of nodes
 Of course, it is incredibly faster for large data sets

The Excel version has the advantage of being interactive, and you can share it with
people who are not data scientists.

But Excel (at least the template provided here) is mostly limited to nodes that form a
partition of the feature space, that is, it is limited to non-overlapping nodes: see
HDT version 1.0. So even if we have two nodes, one for the keyword data, and one for
the keyword data science, in version 1,0, they are not overlapping: text buckets contain
either data and not data science, or data science. In version 2.0, we no longer have this
restriction. Note that nodes can be a combination of any number of keyword values or
any other variables (called features in machine learning), and these variables can be
quantitative or not.

For those familiar with computer science, nodes, both in the Excel or the Python
version, are represented here as key-value pairs, typically stored as hash tables in Perl
or Python, and as concatenated strings in Excel. For statisticians, nodes are just nodes
of decision trees, though no tree structure is used (nor built) in my methodology -- and
this is why it is sometimes referred to as hidden decision trees (HDT). But you don't
need to understand this to use the methodology or understand how the spreadsheet
works.

What is it about?

The methodology features an hybrid algorithm with essentially two components:

 Data aggregation into bins, based on sound feature selection, binning continuous
and discrete features, and metric design, not unlike decision trees. However, no
tree is actually built, and the nodes may belong to several overlapping small
decision trees, each one corresponding to a case or cluster easy to interpret.
This is particularly true in HDT 2.0. I will call this the pseudo decision tree
algorithm.

 The regression algorithm described in chapter 1, requiring much fewer
parameters than classical regression models, and more meaningful parameters,
to avoid over-fitting and to be able to cope with cross-correlated features, while at
the same time offering a simple interpretation. In the application discussed in the
spreadsheet, one could argue that the regression used here is closer to logistic

https://www.datasciencecentral.com/profiles/blogs/hidden-decision-trees-revisited

27

than linear regression as data is transformed using a logit mapping, and we are
predict, for an article, the odds of being popular.

Data points belonging to a small node (say n < 10 observations) have the estimated /
predicted response computed using the regression (algorithm #2 above), the remaining
points get scored using the pseudo-decision tree algorithm (algorithm #1 above.)

A lot of intelligence and creativity is put into creating great predictors (the features) and
then perform sound feature selection. However, the features used in the spreadsheet
and in the previous chapter (dealing with the same data set) apply to all NLP (natural
language processing) systems in numerous contexts.

In addition, while not incorporated in the spreadsheet, confidence intervals can be
computed for each node with at least n observations (say n = 10) using percentiles for
the response, computed for all data points (in this case, representing articles) in the
node in question, see example at the bottom of section 3. This percentile function is
even available in Excel. Then, data points in a node with too large a confidence interval
are scored using the pseudo regression (first chapter) rather than the pseudo decision
trees. By scoring, I mean having the response estimated or predicted. By response, I
mean the variable that we are trying to predict: in this case the page views number
attached to an article (indeed, its logarithm, to smooth out big spikes due to external
factors, or the fact that older articles have by definition more page views -- see chapter
19 for details.)

So no statistical theory is used anywhere in the methodology, not even to compute
confidence intervals.

Why a brand new set of machine learning tools?

The HDT methodology offers the following advantages:

 The loss of accuracy, compared with standard procedures, is so small in
the control data set, that it is negligible and much smaller than the inherent
noise present in the data. This has been illustrated before on a different data set
(see chapter 1), and it is confirmed again here (see next section.).

 The accuracy is much higher in the test data set, in a cross-validation framework
where HDT is performed on a control data set, and performance measured on a
different data set called test data set. So the methodology simply works better in
the real world. This is easy to understand: HDT was designed as a robust
method, to avoid over-fitting and issues caused by outliers, as well as to
withstand model failures, messy data, and violations of assumptions.

In addition HDT also offers the following benefits:

 Easy interpretation of the results

https://www.datasciencecentral.com/profiles/blogs/going-deeper-into-regression-analysis-with-assumptions-plots

28

 Simplicity, scalability, easy to implement in a distributed environment, and tested
on unstructured big data

 No need to know statistical or mathematical theory to understand its inner
workings

 Great to use as a machine learning tutorial for people who do not code or not
interesting in learning more about machine learning and coming from a different
field (software engineering, management consulting, bioinformatics,
econometrics, journalism, and so on.)

 Could be used in STEM programs in high schools, to give kids the chance to
work on real machine learning problems using modern techniques.

 Few parameters to deal with, this is essentially a non-parametric, data-driven (as
opposed to model-driven) technique.

 Since most companies use standard tools and software, using HDT can give you
a competitive advantage (if you are allowed to choose your own method), and
the learning curve is minimum.

Another way to highlight the benefits is to compare with Naive Bayes. Naive Bayes
assumes that the features are independent. It is the workhorse of spam detection, and
we all know how bad it performs. For instance, a message containing the keyword
“breast cancer” is flagged because it contains the keyword “breast”, and Naive Bayes
erroneously assumes that “breast” and “cancer” are independent. Not true with HDT.

Classical decision trees, especially the large ones with millions of nodes from just one
single decision tree and involving more than 5 or 6 features at each final node, suffer
from similar issues: over-fitting, artificial feature selection resulting in difficulties
interpreting the results, maintenance challenges, over-parameterization making it more
difficult to fine-tune, and most importantly, lack of robustness.

3. The Spreadsheet

The data set and features used in this analysis are described in the previous chapter.
The spreadsheet only uses a subset of the original features, as it is provided mostly as
a template and for tutorial purposes. Yet even with this restricted set of features, it
reveals interesting insights about some keywords (Python, R, data, data science)
associated with popularity (Python being more popular than R), and some keywords
that surprisingly, are not (keywords containing “analy”, such as analytic.) Besides
keywords found in the title, other features are used such as time of publication, and
have also been binarized to increase stability and avoid an explosion in the number of
nodes. Note that HDT 2.0 can easily handle a large number of nodes, and even HDT
1.0 (used in the spreadsheet) easily handles non-binary features.

There are 2,616 observations (articles) and 74 nodes. By grouping all nodes with less
than 10 observations into one node, we get down to 24 nodes. Interestingly, these small
nodes perform much better than the average node. The correlations between the
features and the response are very low, mostly because the keyword-like features

29

trigger very few observations: very few articles contain the keyword R in the title (less
than 3%.) As a result, the correlation between the response and predicted response is
not high, around 0.33 regardless of the model. The solution is of course to add many
more keywords to cover a much larger proportion of articles.

Notes

 In the Python version (see chapter 2), keyword detection / selection (to create
features) is part of the process, and included in the source code. Here, the
keywords used as features are assumed to be pre-selected.

 Page view index (see spreadsheet) is a much better performance indicator than
R-squared or correlation with response, to measure the predictive power of a
feature. This is clearly the case with the feature “Python”.

 The Excel version is slightly different from the Python version, from a
methodological point of view, as described in section 2.

 The goodness-of-fit for pseudo and linear regressions are very close, despite the
fact that the pseudo-regression is a very rough (but robust) approximation of the
linear regression.

 Pseudo-regression has been used in its most elementary version, with only one
M. When the cross-correlation structure is more complex, I recommend using it
with two M's as described in the first chapter.

 Some of the features are correlated, for instance “being a blog” with “being a
forum question”, or “containing data but not data science” with "containing data
science".

 When combining pseudo-regression with the pseudo-decision trees (applying
pseudo-regression to small nodes) we get a result that is better than pseudo-
regression, pseudo-decision trees, or linear regression taken separately.

 For much larger data sets that include all sorts (categories) of articles (not just
about data science), I recommend creating and adding a feature called category.
Such a feature can be build using an indexation algorithm (see chapter 6).

 The response is denoted as pv.

Click here to get the spreadsheet. Below are some screenshots from the spreadsheet.
Here pv is the response (logarithm of page views.)

http://storage.ning.com/topology/rest/1.0/file/get/2808334603?profile=original

30

Confidence intervals for the response: example

Node N-100-000000 in the spreadsheet has an average pv of 5.85 (pv is the response),
and consists of the following pv values: 5.10, 6.80, 5.56, 5.66, 6.19, 6.01, 5.56, 5.10,
6.80, 5.69. The 10th and 90th percentiles for pv are respectively 5.10 and 6.80, so [5.10,
6.80] is our confidence interval (CI) for this node. This computation of CI is similar to the
methodology discussed here. This particular CI is well below the average pv -- even the
upper bound 6.80 is below the average pv of 6.83. In fact this node corresponds to
articles posted after 2014, not a blog or forum question (it could be a video or event
announcement), and with a title containing none of the keywords from the keyword
feature list. The business question is: Should we continue to accept and promote such
poor performing content? The answer is yes, but not as much as we used to.

https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://i.imgur.com/JIcS39i.png
https://i.imgur.com/crukJbr.png

31

4. Fast Feature Selection

In all machine learning problems, deciding which metrics to use is one of the core
problems. This chapter addresses this topic.

I propose a simple metric to measure predictive power. It is used for combinatorial
feature selection, when a large number of feature combinations need to be ranked
automatically and very fast, for instance in the context of transaction scoring, in order to
optimize predictive models. It can easily be implemented in a Map Reduce framework. It
was developed by the author in the context of credit card fraud detection, and
click/keyword scoring.

Feature selection is used to detect the best subset of features, out of dozens or
hundreds of features (also called variables or rules). By “best”, we mean with
highest predictive power, a concept defined in the following subsection. In short, we
want to remove duplicate features, correlations between features, and features lacking
predictive power, or features (sometimes called rules) that are rarely triggered -- except
if they are excellent predictors of rare but costly fraud for instance.

The problem is combinatorial in nature. You want a manageable, small set of features
(say 20 features) selected from (say) a set of 500 features, to run algorithms such as
hidden decision trees (see chapter 2) in a way that is statistically robust. But there are
2.7 * 1035 combinations of 20 features out of 500, and you need to compute all of them
to find the feature set with maximum predictive power. This problem is computationally
intractable, and you need to find an alternate solution. The good thing is that you don’t
need to find the absolute maximum; you just need to find a subset of 20 features that is
good enough.

One way to proceed is to compute the predictive power of each feature. Then, add one
feature at a time to the subset (starting with 0 feature) until you reach either

 20 features (your limit)
 Adding a new feature does not significantly improve the overall predictive power

of the subset (in short, convergence has been attained)

At each iteration, choose the feature to be added, among the two remaining features
with the highest predictive power: you will choose (among these two features) the one
that increases the overall predictive power (of the subset under construction) most. Now
you have reduced your computations from 2.7 * 1035 to 40 = 2 * 20.

Technical note: Additional step to boost predictive power. Remove one feature at a
time from the subset, and replace it with a feature randomly selected from the remaining
features. If this new feature boosts the overall predictive power of the feature subset,

32

keep it, and otherwise switch back to old subset. Repeat this step 10,000 times or until
no more gain is achieved (whichever comes first).

Finally, you can add two or three features at a time, rather than one. Sometimes,
combined features have better predictive power than isolated features. For instance if
feature A = country, with values in {USA, UK} and feature B = hour of the day, with
values in {“day - Pacific Time”, “night - Pacific Time”}, both features separately have
little if any predictive power. But when you combine both of them, you have a much
more powerful feature: UK/night is good, USA/night is bad, UK/day is bad, and USA/day
is good, if your response (what you are predicting) is Internet traffic quality. Using these
two features together also reduces the risk of false positives / false negatives.

Also, in order to avoid highly granular features, use lists. So instead of having feature A
= country (with 200 potential country values), and feature B = IP address (with billions of
potential values), use:

 Feature A = country group, with 3 list of countries (high risk, low risk, neutral).
These groups can change over time.

 Feature B = type of IP address (with 6-7 types, one being for instance “IP
address is in some whitelist”.

1. Predictive Power of a Feature, Cross-Validation

Here we illustrate the concept of predictive power on a subset of 2 features. Let’s say
that we have two binary features A and B taking two possible values 0 or 1. Also, in the
context of fraud detection, we assume that each observation in the training set is either
Good (no fraud) or Bad (fraud). The fraud status (G or B) is called the response or
dependent variable in statistics. The features A and B are also called rules or
independent variables.

Cross validation

First, split your training set (the data where the response B or G is known) into two
parts: control and test. Make sure that both parts are data-rich: if the test set is big
(millions of observations) but contain only one or two clients (out of 200), it is data-poor
and your statistical inference will be negatively impacted (low robustness) when dealing
with data outside the training set. It is a good idea to use two different time periods for
control and test. You are going to compute the predictive power (including rule
selection) on the control data. When you have decided on a final, optimum subset of
features, you will then compute the predictive power on the test data. If the drop in
predictive power is significant in the test data (compared with control), something is
wrong with your analysis: detect the problem, fix it, start over. You can use multiple
control and test sets: this will give you an idea of how the predictive power varies from
one control set to another one. Too much variance is an issue that should be
addressed.

33

Predictive power

Using our above example with two binary features A, B taking on two values 0, 1, we
can break the observations from the control data set into 8 categories

 Let denote as n1, n2 … n8 the number of observations in each of these 8 categories,
and let us introduce the following quantities:

P00 = n5 / (n1 + n5), P01 = n6 / (n2 + n6), P10 = n7 / (n3 + n7), P11 = n8 / (n4 + n8)
p = (n5 + n6 + n7 + n8) / (n1 + n2 + … + n8).

Let’s assume that p, measuring the overall proportion of fraud, is less than 50% (that is,
p < 0.5, otherwise we can swap between fraud and non-fraud). For any r between 0 and
1, define the W function (shaped like a W), based on a parameter a (0 < a < 1,
typically a = 0.5 - p) as follows:

 W(r) = 1 - (r / p), if 0 < r < p
 W(r) = a (r - p) / (0.5 - p), if p < r < 0.5
 W(r) = a (r - 1 + p) / (p - 0.5), if 0.5 < r < 1 - p
 W(r) = (r - 1 + p) / p, if 1 - p < r < 1

Typically, r = P00, P01, P10 or P11. The W function has the following properties:

 It is minimum and equal to 0 when r = p or r = 1 - p, that is, when r does not
provide any information about fraud / non fraud,

 It is maximum and equal to 1when r = 1 or r = 0, that is, when we have perfect
discrimination between fraud and non-fraud, in a given bin.

 It is symmetric: W(r) = W(1 - r) for 0 < r < 1. So if you swap Good and Bad (G and
B), it still provides the same predictive power.

Now let’s define the predictive power:

H = P00 W(P00) + P01 W(P01) + P10 W(P10) + P11 W(P11)

The function H is the predictive power for the feature subset {A, B} having four bins 00,
01, 10, and 11, corresponding to (A = 0, B = 0), (A = 0, B = 1), (A = 1, B = 0) and (A = 1,

34

B = 1). Although H appears to be remotely related to the entropy, our H was designed to
satisfy desirable properties, and to be parameter-driven, thanks to a. Unlike entropy, our
H is not based on physical concepts or models; it is actually a synthetic (though useful)
metric.

Note that the weights P00… P11 in H guarantee that bins with low frequency (that is, low
triggering rate) have low impact on H. Indeed, I recommend setting W(r) to 0 for any bin
that has less than 20 observations. For instance, the triggering rate for bin 00 is (n1 +
n5) / (n1 + … + n8), its size is n1 + n5, and r = P00 = n5 / (n1 + n5) for this bin. If n1 + n5 = 0,
set P00 to 0 and W(P00) to 0. I actually recommend to do this not just if n1 + n5 = 0, but
also whenever n1 + n5 < 20, especially if p is low (if p is very low, say p < 0.01, you need
to over-sample bad transactions when building your training set, and weight the counts
accordingly). Of course, the same rule applies to P01, P10, and P11. Note that you should
avoid feature subsets that have a large proportion of observations spread across a large
number of almost empty bins, as well as feature subsets that produce a large number of
empty bins: observations outside the training set are likely to belong to an empty or
almost empty bin, and it leads to high-variance predictions. To avoid this drawback,
stick to binary features, select up to 20 features, and use our (hybrid) hidden decision
tree methodology for scoring transactions. Finally, Pkl is the naive estimator of the
probability P(A = k, B = l) for k, l = 0,1.

The predictive power H has interesting properties:

 It is always between 0 and 1, equal to 0 if the feature subset has no predictive
power, and equal to 1 if the feature subset has maximum predictive power.

 A generic version of H (not depending on p) can be created by setting p = 0.5.
Then the W functions are not shaped like a W anymore, they are shaped like a V.

2. Data structure, computations

You can pre-compute all the bin counts nk for the top 20 features (that is, features with
highest predictive power) and store them in a small hash table with at most 2 *
220 entries (approx. 2 million; the factor two is because you need two measurements per
bin: number of B’s, and number of G’s). An entry in this hash table would look like

$Hash{01101001010110100100_G} = 56,

meaning that Bin # 01101001010110100100 has 56 good (G) observations.

The hash table is produced by parsing your training set one time, sequentially: for each
observation, compute the flag vector (which rules are triggered, that is the
01101001010110100100 vector in this example), check if it’s good or bad, and update
(increase count by 1) the associated hash table entry accordingly, with the following
instruction:

$Hash{01101001010110100100_G}++

35

Then whenever you need to measure the predictive power of a subset of these 20
features, you don’t need to parse your big data set again (potentially billion of
observations), but instead, just access this small hash table: this table contains all you
need to build your flag vectors and compute scores, for any combination of features that
is a subset of the top 20.

You can even do better than top 20, maybe top 30. While this would create a hash table
with 2 billion entries, most of these entries would correspond to empty bins and thus
would not be in the hash table. Your hash table might contain only 200,000,000 entries,
maybe too big to fit in memory, and requiring a Map Reduce / Hadoop implementation.
Even better: build this hash table for the top 40 features. Then it will fully solve your
feature selection problem described earlier. However now, your hash table could have
up to 2 trillion entries. But if your dataset only has 100 billion observations, then of
course your hash table cannot have more than 100 billion entries. In this case, I suggest
that you create a training set with 20 million observations, so that your hash table will
have at most 20 million entries (and probably less than 10 million non-empty bins).
Thus, it can fit in memory.

You can compute the predictive power of a large number (say 100) of feature subsets
by parsing the big 40-feature input hash table obtained in the previous step, then for
each flag vector and G/B entry in the input hash table, loop over the 100 target feature
subsets to update counts (the nk’s) for these 100 feature subsets: these counts are
stored / updated in an output hash table. The key in the output hash table has two
components: feature ID and flag vector. You then loop over the output hash table to
compute the predictive power for each feature subset. This step can be further
optimized.

36

5. Fast Clustering for Big Data

Here we discuss two potential algorithms that can perform fast clustering on big data
sets, as well as the graphical representation of such complex clustering structures. By
fast, we mean a computational complexity of order O(n) and even faster such as O(n /
log n). This is much faster than good Hierarchical Agglomerative Clustering which are
typically O(n2 log n). By big data, we mean several millions, possibly billions of
observations.

Potential applications:

 Creating a keyword taxonomy to categorize the entire universe of cleaned
(standardized), valuable English keywords. We are talking of about 10 million
keywords made up of one, two or three tokens, that is, about 300 times the
number of keywords found in a good English dictionary. The purpose might be to
categorize all bid keywords that could be purchased by eBay and Amazon on
Google (for pay-per-click ad campaigns), to better price them. This is the
application discussed in this chapter.

 Clustering millions of documents (e.g. books on Amazon.com) or
 Clustering web pages, or even the entire Internet, which consists of about 100

million top websites and billions of web pages.

We also discuss whether it makes sense to perform such massive clustering, and how
Map Reduce can help.

1. Building a keyword taxonomy

Here's the answer, from my earlier article What MapReduce can't do. Step 2 is the
clustering part.

Step #1: pre-processing

You gather tons of keywords over the Internet with a web crawler (crawling Wikipedia or
Google), and compute the frequencies for each keyword, and for each “keyword pair”. A
“keyword pair” is two keywords found on a same webpage, or close to each other on a
same web page. Also by keyword, I mean stuff like "California insurance", so a keyword
usually contains more than one token, but rarely more than three. With all the keyword
frequencies, you can create a table (typically containing many million keywords, even
after keyword cleaning), where each entry is a pair of keywords and 3 numbers, e.g.

A=”California insurance”, B=”home insurance”, x=543, y=998, z=11

where

http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html
http://www.analyticbridge.com/profiles/blogs/what-mapreduce-can-t-do

37

 x is the number of occurrences of keyword A in all the web pages crawled
 y is the number of occurrences of keyword B in all the web pages crawled
 z is the number of occurrences where A and B form a pair (e.g. they are found on

a same page)

This “keyword pair” table can be easily and efficiently built using MapReduce
(distributed architecture). Note that the vast majority of keywords A and B do not form a
“keyword pair”, in other words, z=0. So by ignoring these null entries, your “keyword
pair” table is still manageable, and might contain as little as 100 million entries.

Note: This step #1 constitutes the final step of a number of interesting applications. For
instance, it is used in search engine technology to identify or recommend keywords
related to some other keywords. See example here.

Step #2: clustering

To create a taxonomy, you want to group the keywords found into similar clusters. One
way to do it is to compute a dissimilarity d(A, B) between two keywords A, B. For
instances d(A, B) = z / (xy)1/2, although other choices are possible. Note that the
denominator prevents extremely popular keywords (e.g. “free”) from being close to all
the keywords, and from dominating the entire keyword relationship structure: indeed, it
favors better keyword bonds, such as “lemon” with “law” or “pie”, rather than “lemon”
with “free”.

The higher d(A, B), the closer keywords A and B are to each other. Now the big problem
is to perform clustering - any kind of clustering, e.g. hierarchical - on the “keyword pair”
table, using any kind of dissimilarity metric. We now discuss our solution, and a
potential alternate solution.

2. Fast clustering algorithm

While this algorithm is described in the context of keyword clustering, it is
straightforward to adapt it to other contexts. Here we assume that we have n =
10,000,000 unique keywords and m = 100,000,000 keyword pairs {A, B}, where
d(A,B)>0. That is, an average of r = 10 related keywords attached to each keyword.
Our algorithm incrementally proceeds in several (5 or 6) rounds, as follows:

BEGIN

Initialization (Round #0): The small data (or seeding) step

Select 10,000 seed keywords, create (say) 100 categories and create a hash table

$hash where the key is one of the 10,000 seed keywords, and the value is a list of
categories the keyword is assigned to.

For instance, $hash{"cheap car insurance"} = {"automotive", "finance"}

http://frenchlane.com/kw8.html

38

The choice of the initial 10,000 seed keywords is very important. I suggest to pick up the
top 10,000 keywords, in terms of number of associations: that is, keywords A with many
B's where d(A, B) > 0. This will speed up the convergence of the algorithm.

Round #1: The big data step

Browse the table of m keyword pairs, from beginning to end.

When you find a pair {A, B} where (say) $hash{A} exists and $hash{B} does not, do:

 $hash{B} = $hash{A};

 $weight{B} = d(A, B)

When you find a pair {A, B} where both A and B are already in $hash, do

 if $d(A,B) > $weight(B) then { $hash{B} = $hash{A}; $weight{B} = $d(A,

B); } # Note: B gets re-categorized to A's category

 if $d(A,B) > $weight(A) then { $hash{A} = $hash{B}; $weight{A} = $d(A,

B); } # Note: A gets re-categorized to B's category

Round #2: Repeat Round #1 ($hash and $weight are kept in memory and keep growing
at each subsequent round)

Round #3: Repeat Round #1, one more time

Round #4: Repeat Round #1, one more time

Round #5: Repeat Round #1, one more time

END

The computational complexity is qm = O(n), with q being the number of rounds. This is n
= 10,000,000 times faster than good clustering algorithms. However, all these hash

table accesses will slow it a bit to O(n log n), as $hash and $weight grow bigger at each
subsequent round.

Would pre-sorting the big table of m pairs help? Sorting by d(A, B) would allow us to
drastically reduce the number of hash table accesses (by making all the re-
categorizations not needed anymore), but sorting is O(n log n), so we would not gain
anything. Note that sorting can be efficiently performed with Map Reduce. The reduce
step in this case, consists of merging a bunch of small, sorted tables.

This clustering algorithm seems easy to implement using Map Reduce (a distributed
architecture), however since the big table only has 100,000,000 entries, it might fit in
RAM.

http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html

39

You can improve the computational complexity by keeping the most important m / log n
entries (based on volume and d(A,B)) in the big table, and deleting the remaining
entries. In practice, deleting 65% of the big table (the very long tail only, but not the
entire long tail, from a keyword distribution point of view) will have very little impact on
the performance: you will have a large bucket of un-categorized keywords, but in terms
of volume, these keywords might represent less than 0.1%.

Comments

 Alternate algorithm: One could use Tarjan's strongly connected components
algorithm to perform the clustering. To proceed, you first bin the distances: d(A,
B) is set to 1 if it is above some pre-specified threshold, 0 otherwise. This is a
graph theory algorithm: each keyword represents a node, each pair of keywords
where d(A, B) = 1, represents an edge. The computational complexity of the
algorithm is O(n + m), where n is the number of keywords and m is the number of
pairs (edges). To take advantage of this algorithm, you might want to store the
big "keyword pair" table in a graph database (a type of NoSQL database).

 Visualization. How do you represent these keywords, with their cluster structure
determined by d(A, B), in a nice graph? 10 million keywords would fit in a 3,000 x
3,000 pixels image. For those interested in graphical representations, see
the Fruchterman and Rheingold algorithm, extensively used to produce such
graphs. Note that its computational complexity is O(n3) though, so we need to
very significantly improve it for this keyword clustering application - including the
graphical representation. The graphical representation could be a raster image
with millions of pixels, like a heat map where color represents category and,
when you point to a pixel, a keyword value shows up (rather than a vector image
with dozens of nodes, see graph below). Neighboring pixels would represent
strongly related keywords.

https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/NoSQL_(concept)
https://en.wikipedia.org/wiki/Force-directed_graph_drawing
https://www.google.com/search?source=ig&rlz=&q=heat+map

40

6. Structuring Unstructured Data

You have gathered gigabytes or terabytes of unstructured text, for instance scraping the
Internet, or pieces of email from your employees or users, or tweets, or millions of
products that you want to categorize (only product description and product name is
available - sometimes with typos). Now you want to make sense of it, and extract value,
possibly design a nice search engine so that your customers can easily find your
products. The core algorithm that you need is an automated cataloguer, also called
indexer. I explain here in layman's terms how it works. First, let's assume that the data
consists of

 Pages or articles (a web page or the body of an email, etc.)
 Subject lines (or page titles),
 Authors (for a web page or an email).

Typically, these “pages” are stored as large repositories containing millions or billions of
(sometimes compressed) text files spread across a number of folders and sub-folders,
or multiple servers. Sometimes a time stamp is attached to each document, and can be
leveraged to increase the accuracy of the indexer.

The technique also works even if you only have pages (no user information, no titles). If
you have pages and authors, you can classify the pages separately, then the authors
separately (or in parallel), then blend the results to maximize accuracy. The same
indexation algorithm (sometimes called tagging algorithm) is used in both cases.
Despite the fact that classifying billions of documents seems mathematically unfeasible
due to the computational complexity of traditional clustering algorithms (the time spent
to cluster is growing much faster than linearly, as a function of the size of your
repository), this algorithm is different, run very fast, and is easy to implement using a
distributed architecture.

The indexer algorithm creates a taxonomy of your pages (or products, articles,
documents etc.) Each page is assigned a category and sub-category.

1. Indexation algorithm

 Step 1: Create a data dictionary (that is, a frequency table, see section 8 in
chapter 25) of all one-token and two-token keywords found in all pages (both in
the title and in the body of the article). This assumes that you crawled all your
articles to extract all the text.

 Step 2: Filter / clean results. Ignore keywords with less than 5 occurrences.
Check all n-grams of a keyword (data science and science data) and eliminate n-
grams with low frequency, for each keyword

 Step 3: Look at top 300 entries, called seed keywords. Manually assign seed
keywords to 10-20 categories, (these categories are manually pre-selected, after
looking at the top 300 entries.) For instance, the top category data plumbing will

41

have the following seed keywords: data engineer, data architect, data
warehouse, Hadoop, Spark, data lake, IoT and many more. Don't forget to have
a top category called Unknown.

 Step 4. Based on keywords found in the title and body of an article, assign the
article in question to the top category that has the biggest overlap with the article,
in terms of seed keywords. Note that keywords found in the title might be
assigned a higher weight than those found in the body. Likewise, a different
weight can be attached to each seed keyword, in each top category.

This technique is called indexation because it is very similar to the creation of a search
engine. A business application is described in chapter 20.

2. Potential improvement

These improvements will boost the performance (accuracy).

 Add 3-token keywords in your dictionary, not just 1- and 2-token. For 3-token
keywords, you have 3! (factorial 3) = 6 n-grams. Usually, only one or two of these
6 n-grams will show up in the articles, for any keyword (data science central will
show up, but central science data won't).

 Use stop words to clean your data. Examples: it, where, how, why, for and so on.
Be careful though: IT Job cannot be reduced to Job by filtering out the token IT.
You can replace plurals by singular, and normalize the keywords.

 Some one-token words don't make sense. Do not break “San Francisco” into
“San” and “Francisco”. Used a table of keywords that should not be split.

Even without improvements, the methodology will work well, because you focus on top
keywords in terms of frequency. For instance, in Best San Francisco Hotels, the
keywords Best San and Francisco Hotels won't show up at the top, and if they do, you
can remove them, as you manually review the top 3,000 entries (a manual process that
takes 30 minutes).

Finally, you can use the BerkeleyDB open source software (combined with a bunch of
lookup tables such as stop keywords, synonyms and so on) to do many of these tasks.

https://en.wikipedia.org/wiki/Berkeley_DB

42

7. Testing for Randomness

This chapter is intended for practitioners who might not necessarily be statisticians or
statistically-savvy. The mathematical level is kept as simple as possible, yet I present an
original, simple approach to test for randomness, with an interesting application to
illustrate the methodology. This material is not something usually discussed in textbooks
or classrooms (even for statistical students), offering a fresh perspective, and out-of-the-
box tools that are useful in many contexts, as an addition or alternative to traditional
tests that are widely used. This chapter is written as a tutorial, but it also features an
interesting research result in the last section.

1. Context

Let us assume that you are dealing with a time series with discrete time increments (for
instance, daily observations) as opposed to a time-continuous process. The approach
here is to apply and adapt techniques used for time-continuous processes, to time-
discrete processes. More specifically (for those familiar with stochastic processes) we
are dealing here with discrete Poisson processes. The main question that we want to
answer is: Are some events occurring randomly, or is there a mechanism making the
events not occurring randomly? What is the gap distribution between two successive
events of the same type?

In a time-continuous setting (Poisson process) the distribution in question is modeled by
the exponential distribution. In the discrete case investigated here, the discrete Poisson
process turns out to be a Markov chain, and we are dealing with geometric, rather than
exponential distributions. Let us illustrate this with an example.

Example

The digits of 21/2 are believed to be distributed as if they were occurring randomly. Each
of the 10 digits 0, 1, ... , 9 appears with a frequency of 10% based on observations, and
at any position in the decimal expansion of 21/2, on average the next digit does not seem
to depend on the value of the previous digit (in short, its value is unpredictable.) An
event in this context is defined, for example, as a digit being equal to (say) 3. The next
event is the first time when we find a subsequent digit also equal to 3. The gap (or time
elapsed) between two occurrences of the same digit is the main metric that we are
interested in, and it is denoted as G. If the digits were distributed just like random
numbers, the distribution of the gap G between two occurrences of the same digit,
would be geometric, that is,

with p = 1/10 in this case, as each of the 10 digits (0, 1, ..., 9) seems -- based on
observations -- to have a frequency of 10%. We will show that this is indeed the case: In

https://api.ning.com/files/5-p*hFjvMILtpGTnraDMGiHyzoo*BAzx-6uGqC*qWotbXGPcooq*QrxztHtYNJ445jQVoln*tAwqSZaOYQz-GglD*Y-Zicz2/Capture.PNG

43

other words, in our example, the gap G is very well approximated by a geometric
distribution of parameter p = 1/10, based on an analysis of the first 10 million digits of
21/2.

What else should I look for, and how to proceed?

Studying the distribution of gaps can reveal patterns that standard tests might fail to
catch. Another statistic worth studying is the maximum gap, see chapter 14. This is
sometimes referred to as extreme events / outlier analysis. Also, in our above example,
studying gaps between groups of digits (not just single digits, but for instance how
frequently the “word” 234567 repeats itself in the sequence of digits, and what is the
distribution of the gap for that word. For any word consisting of 6 digits, p = 1 /
1,000,000. In our case, our data set only has 10 million digits, so you may find 234567
maybe only 2 times, maybe not even once, and looking at the gap between successive
occurrences of 234567, is pointless. Shorter words make more sense. This and
other issues are discussed in the next section.

2. Methodology

The first step is to estimate the probabilities p associated with the model, that is, the
probability for a specific event, to occur at any time. It can easily be estimated from your
data set, and generally, you get a different p for each type of event. Then you need to
use an algorithm to compute the empirical (observed) distribution of gaps between two
successive occurrences of the same event. In our example, we have 10 types of events,
each associated with the occurrence of one of the 10 digits 0, 1,..., 9 in the decimal
representation of 21/2. The gap computation can be efficiently performed as follows:

Algorithm to compute the observed gap distribution

Do a loop over all your observations (in our case, the 10 first million digits of 21/2, stored
in a file; each of these 10 million digits is one observation). Within the loop, at each
iteration t, do:

 Let E be the event showing up in the data set, at iteration t. For instance, the
occurrence of (say) digit 3 in our case. Retrieve its last occurrence stored in an

array, say LastOccurrences[E]

 Compute the gap G as G = t - LastOccurrences[E]

 Update the LastOccurrences table as follows: LastOccurrences[E] = t
 Update the gap distribution table, denoted as GapTable (a two-dimensional array

or better, an hash table) as follows: GapTable[E, G]++

Once you have completed the loop, all the information that you need is stored in the
GapTable summary table.

44

Statistical testing

If some events occur randomly, the theoretical distribution of the gap, for these events,
is known to be geometric, see above formula in first section. So you must test whether
the empirical gap distribution (computed with the above algorithm) is statistically
different from the theoretical geometric distribution of parameter p (remember that each
type of event may have a different p.) If not statistically different, then the assumption of
randomness should be discarded: you've found some patterns. This work is typically
done using a Kolmogorov- Smirnov test. If you are not a statistician but instead a BI
analyst or engineer, other techniques can be used instead, and are illustrated in the last
section:

 You can simulate events that are perfectly randomly distributed, and compare the
gap distribution obtained in your simulations, with that computed on your
observations. See here how to do it, especially the last comment featuring an
efficient way to do it. This Monte-Carlo simulation approach will appeal to
operations research analysts.

 In Excel, plot the gap distribution computed on your observations (one for each

type of event), add a trendline, and optionally, display the trendline equation and
its R-Squared. When choosing a trendline (model fitting) in Excel, you must
select the Exponential one. This is what we did (see next section) and the good
news is that, despite the very limited selection of models that Excel offers,
Exponential is one of them. You can actually test other trendlines in Excel
(polynomial, linear, power, or logarithmic) and you will see that by far,
Exponential offers the best fit -- if your events are really randomly distributed.

Further advice

If you have collected a large number of observations (say 10 million) you can do the
testing on samples of increasing sizes (1,000, 10,000, 100,000 consecutive
observations and so on) to see how fast the empirical distribution converges (or not) to
the theoretical geometric distribution. You can also compare the behavior across
samples (cross-validation), or across types of events (variance analysis). If your data
set is too small (100 data points) or your events too rare (p less than 1%), consider
increasing the size of your data set if possible.

Even with big data, if you are testing a large number of rare events (in our case, tons of
large “words” such as occurrences 234567 rather than single digits in the decimal
representation of 21/2 expect many tests to result in false negatives (failure to detect
true randomness.) You can even compute the probability for this to happen, assuming
all your events are perfectly randomly distributed. This is known as the curse of big
data.

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://math.stackexchange.com/questions/580901/r-generate-sample-that-follows-a-geometric-distribution
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/the-curse-of-big-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/the-curse-of-big-data

45

3. Application to Number Theory Problem

Here, we further discuss the example used throughout this chapter to illustrate the
concepts. Mathematical constants (and indeed the immense majority of all numbers)
are thought to have their digits distributed as if they were randomly generated, see
chapter 10 for details.

Many tests have been performed on many well-known constants (see here), and none
of them was able to identify any departure from randomness. The gap test illustrated
here is less well known, and when applied to 21/2, it was also unable to find departure
from randomness. In fact, the fit with a random distribution, as shown in the figure
below, is almost perfect.

There is a simple formula to compute any digit of 21/2 separately, see here, however it is
not practical. Instead, we used a table of 10 million digits published here by NASA. The
source claims that digits beyond the first five million have not been double-checked, so
we only used the first 5 million digits. The summary gap table, methodological details,
and the above picture, can be found in my spreadsheet. You can download it here.

The above chart shows a perfect fit between the observed distribution of gap lengths
(averaged across the 10 digits 0, 1, ..., 9) between successive occurrences of a same
digit in the first 5 million decimals of 21/2, and the geometric distribution model, using the
Exponential trendline in Excel.

I also explored the last 2 million decimals available in the NASA table and despite the
fact that they have not been double-checked, they also display the exact same random

https://en.wikipedia.org/wiki/Diehard_tests
https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://apod.nasa.gov/htmltest/gifcity/sqrt2.10mil
https://api.ning.com/files/yK2V4Dt3ezW*2thKGMSiCr8AgYCEyd7S24Xj2cQtxoZ*k2ZzsQ9hW8ew3oL*FNnR4d05VjEg*2p0PaYdw13jPPVPOMdj8iC5/sqrt2digitgap.xlsx
https://api.ning.com/files/yK2V4Dt3ezXVDLy3DD6-7S17-3bZUTVwlEzirv4qgGq-kt*gqJwyDkdvNdlYLtQj5bJGm-4dEKqUDlyxvVxb21SLjakR1BvB/Capture.PNG

46

behavior. Maybe these decimals are all wrong but the mechanism that generates them
preserves randomness, or maybe all or most of them are correct.

A counter-example

The number 0.123456789101112131415161718192021... known as the
Champernowne constant, and obtained by concatenating the decimal representations of
the natural numbers in order, has been proved to be “random”, in the sense that no digit
or group of digits, occurs more frequently than any other. Such a number is known as
a normal number. However, it fails miserably the gap test, with the limit distribution for
the gaps (if it even exists) being totally different from a geometric distribution. I tested it
on the first 8, 30, 50, 100 and 400 million decimals, and you can try too, as an exercise.
All tests failed dramatically.

Ironically, no one known if 21/2 is a normal number, yet it passed the gap test incredibly
well. Maybe a better definition of a “random” number, rather than being normal, would
be a number with a geometric distribution as the limit distribution for the gaps. Can you
create an artificial number that passes this test, yet exhibits strong patterns of non-
randomness? Is it possible to construct a non-normal number that passes the gap test?

Potential use in cryptography

A potential application is to use digits that appear to be randomly generated (like white
noise, and the digits of 21/2 seem to fit the bill) in documents, at random positions that
only the recipient could reconstruct, perhaps three or four random digits on average for
each real character in the original document, before encrypting it, to increase security --
a bit like steganography. Encoding the same document a second time would result in a
different kind of white noise added to the original document, and peppered randomly,
each time differently -- with a different intensity, and at different locations each time.
This would make the task of hackers more complicated.

4. Conclusion

Finally, this is an example where intuition can be wrong, and why you need data
science. In the digits of 21/2, while looking at the first few thousand digits (see picture
below), it looked to me like it was anything but random. There were too many 99, two
few 37 (among other things), according to my intuition and visual inspection (you may
call it gut feelings.) It turns out that I was wrong. Look at the first few thousand digits
below, chances are that your intuition will also mislead you into thinking that there are
some patterns. This can be explained by the fact that patterns such as 99 are easily
detected by the human brain and do stand out visually, yet in this case, they do occur
with the right frequency if you use analytic tools to analyze the digits.

https://en.wikipedia.org/wiki/Champernowne_constant
https://en.wikipedia.org/wiki/Normal_number
https://www.datasciencecentral.com/profiles/blogs/interesting-data-science-application-steganography

47

First few hundred digits of 21/2. Do you see any pattern?

https://api.ning.com/files/ZCTcWkdHpEXmtiXE1gBxuqNw*LwvCiTw873I0mJw7UDcXMHx51LD1zi6VOtdru5n1Adwqe-bqcM6lVfsF0Gr40stDXHJH7iu/Capture.PNG

48

8. Central Limit Theorem Revisited

In this chapter, we explore in layman’s terms the most fundamental statistics theorem.
We investigate a special but interesting and useful case, which is not discussed in
textbooks, data camps, or data science classes. This material is part of a series about
off-the-beaten-path data science and mathematics, offering a fresh, original and simple
perspective on a number of topics.

The theorem discussed here is the central limit theorem. It states that if you average a
large number of well-behaved observations or errors, eventually, once normalized
appropriately, it has a standard normal distribution. Despite the fact that we are dealing
here with a more advanced and exciting version of this theorem (discussing the
Lyapunov condition), we focus on applications

In short, we are dealing here with not-so-well-behaved observations, and we show that
even in that case, the limiting distribution of the “average” can be normal (Gaussian.).
More precisely, we show when it is and when it is not normal, based on simulations and
non-standard (but easy to understand) statistical tests.

49

Figure 1: Cases #1, 2 and 3 (section 2) show convergence to the Gaussian distribution
(Click here for a higher resolution picture)

1. A special case of the Central Limit Theorem

Let's say that we have n independent observations X1,..., Xn and we compute a
weighted sum

S = a1X1 + ... + anXn.

Under appropriate conditions to be discussed later, (S - E(S)) / Stdev(S) has a normal
distribution of mean 0 and variance 1. Here E denotes the expectation and Stdev
denotes the standard deviation, that is, the square root of the variance.

This is a non-basic case of the central limit theorem, as we are dealing with a weighted
sum. The classic, basic version of the theorem assumes that all the weights a1, ..., an
are equal. Furthermore, we focus here on the particular case where

 The highest weights (in absolute value) are concentrated on the first few
observations,

 The weight ak tends to 0 as k tends to infinity.

The surprising result is the fact that even with putting so much weight on the first few
observations, depending on how slowly ak converges to 0, the limiting distribution is still
Gaussian.

Context

You might wonder: how is this of any practical value in the data sets that I have to
process in my job? Interestingly, I started to study this type of problems long ago, in the
context of k-NN (nearest neighbors) classification algorithms. One of the questions, to
estimate the local or global intensity of a stochastic point process, and also related to
density estimation techniques, was: how many neighbors should we use, and which
weights should we put on these neighbors to get robust and accurate estimates? It
turned out that putting more weight on close neighbors, and increasingly lower weight
on far away neighbors (with weights slowly decaying to zero based on the distance to

https://api.ning.com/files/V0BiFi-tkRteQyHhPbj8RQVNOvcClBQt-DYM6WnxSg9v3b0wVsxx8nvQbTgIxG6eN2MTdYobMA-XCzY0ZmZgl-1uDLF2Js7A/special.PNG

50

the neighbor in question) was the solution to the problem. I actually found optimum
decaying schedules for the ak's, as k tends to infinity. You can read the detail here.

2. Simulations, testing, and conclusions

Let's get back to the problem of assessing when the weighted sum S = a1X1 + ... + anXn,
after normalization, converges to a Gaussian distribution. By normalization, I mean
considering (S - E(S)) / Stdev(S), instead of S.

In order to solve this problem, we performed simulations as follows:

Simulations

Repeat m = 10,000 times:

 Produce n = 10,000 random deviates X1, ..., Xn uniformly distributed on [0, 1]
 Compute S = a1X1 + ... + anXn based on a specific set of weights a1, ..., an
 Compute the normalized S, denoted as W = (S - E(S)) / Stdev(S).

Each of the above m iterations provides one value of the limiting distribution. In order to
investigate the limiting distribution (associated with a specific set of weights), we just
need to look at all these m values, and see whether they behave like deviates from a
Gaussian distribution of mean 0 and variance 1. Note that we found n = 10,000 and m =
10,000 to be large enough to provide relatively accurate results. We tested various
values of n before settling for n = 10,000, looking at what (little) incremental precision
we got from increasing n (say) from 500 to 2,000 and so on. Also note that the random
number generator is not perfect, and due to numerical approximations made by the
computer, indefinitely increasing n (beyond a certain point) is not the solution to get
more accurate results. That said, since we investigated 5 sets of weights, we performed
5 x n x m = 500 million computations in very little time. A value of m = 10,000 provides
about two correct digits when computing the percentiles of the limiting distribution
(except for the most extreme ones), provided n is large enough. The source code is
provided in the last section.

Analysis and results

We tested 5 sets of weights, see Figure1:

 Case 1: ak = 1, corresponding to the classic version of the Central Limit
Theorem, and with guaranteed convergence to the Gaussian distribution.

 Case 2: ak = 1 / log 2k, still with guaranteed convergence to the Gaussian
distribution

 Case 3: ak = k-1/2, the last exponent (-1/2) that still provides guaranteed
convergence to the Gaussian distribution, according to the Central Limit Theorem

http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00071/abstract

51

with the Lyapunov condition (more on this below.) A value below -1/2 violates the
Lyapunov condition.

 Case 4: ak = k-1, the limiting distribution looks Gaussian (see Figure 1) but it is
too thick to be Gaussian, indeed the maximum is also too low, and the kurtosis is
now significantly different from zero, thus the limiting distribution is not Gaussian
(though almost).

 Case 5: ak = k-2, not converging to the Gaussian distribution, but instead to an
hybrid continuous distribution, half-way Gaussian, half-way uniform.

Note that by design, all normalized S's have mean 0 and variance 1.

We computed (in Excel) the percentiles of the limiting distributions for each of the five
cases. Computations are found in this spreadsheet. We compared the cases 2 to 5 with
case 1, computing the differences (also called deltas) for each of the 100 percentiles.
Since case 1 corresponds to a normal distribution, we actually computed the deltas to
the normal distribution, see Figure 2. The deltas are especially large for the very top or
very bottom percentiles in cases 4 and 5. Cases 2 and 3 show deltas close to zero (not
statistically significantly different from zero), and this is expected since these cases also
yield a normal distribution. To assess the statistical significance of these deltas, one can
use the model-free confidence interval technique described here: it does not require any
statistical or probability knowledge to understand how it works. Indeed you don't even
need a table of the Gaussian distribution for testing purposes here (you don't even need
to know what a Gaussian distribution is) as case 1 automatically provides one.

The Lyapunov connection

For those interested in the theory, the fact that cases 1, 2 and 3 yield convergence to
the Gaussian distribution is a consequence of the Central Limit Theorem under the
Lyapunov condition. More specifically, and because the samples produced here come
from uniformly bounded distributions (we use a random number generator to simulate
uniform deviates), all that is needed for convergence to the Gaussian distribution is that
the sum of the squares of the weights -- and thus Stdev(S) as n tends to infinity -- must
be infinite. This result is mentioned in A. Renyi's book Probability Theory (Dover edition,
1998, page 443.)

Note that in cases 1, 2, and 3, the sum of the squares of the weights is infinite. In cases

4 and 5, it is finite, respectively equal to 2/6 and 4/90 (see here for details.) I am very
curious to know what the limiting distribution is for case 4.

3. Generalizations

Here we discuss generalizations of the central limit theorem, as well as potential areas
of research

https://api.ning.com/files/V0BiFi-tkRveDH*fsjizzkiLw4osdSb*41lIgTZVfnHJA*2bNLAi7Iwl6WwmYmBV2a0Mv8HroCqq-*tXvQzn*69lGluMTozn/special.xlsx
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://en.wikipedia.org/wiki/Riemann_zeta_function

52

3.1. Correlated observations

One of the simplest ways to introduce correlation is to define a stochastic auto-
regressive process using

Yk = pYk-1 + qXk

where X1, X2, ... are independent with identical distribution, with Y1 = X1 and
where p, q are positive integers with p + q = 1. The Yk's are auto-correlated, but clearly,
Yk is a weighted sum of the Xj's (1≤ j ≤ k), and thus, S = a1Y1 + ... + anYn is also a
weighted sum of the Xk's, with higher weights on the first Xk's. Thus we are back to the
problem discussed in this chapter, but convergence to the Gaussian distribution will
occur in fewer cases due to the shift in the weights.

More generally, we can work with more complex auto-regressive processes with a
covariance matrix as general as possible, then compute S as a weighted sum of the
Xk's, and find a relationship between the weights and the covariance matrix, to
eventually identify conditions on the covariance matrix that guarantee convergence to
the Gaussian distribution.

3.2. Generalization to non-random (static) observations

Is randomness really necessary for the central limit theorem to be applicable and
provable? What about the following experiment:

 Compute all unordered sums S made up of n integers, 0 or 1, with repetitions
allowed. For instance, if n = 2, the four possibilities are 0+0, 0+1, 1+0, 1+1. For
an arbitrary n, we have 2n possibilities.

 Normalize S as usual. For normalization, here use E(S) = n/2 and Stdev(S) = n1/2

/ 2.

Do these 2n normalized values of S (generated via this non-random experiment) follow
a Gaussian distribution as n tends to infinity? Ironically, one way to prove that this is the
case (I haven't checked if it is the case or not, but I suspect that it is) would be to
randomly sample m out of these 2n values, and then apply the central limit theorem to
the randomly selected values as m tends to infinity. Then by increasing m until m is as
large as 2n we would conclude that the central limit theorem also holds for the non-
random (static) version of this problem. The limiting distribution definitely has a
symmetric, bell-like shape, just like the Gaussian distribution, though this was also the
case in our above "case 4" example -- yet the limit was not Gaussian.

3.3. Other interesting stuff related to the Central Limit Theorem

There is a lot of interesting stuff on the Wikipedia entry, including about the Lyapunov
condition. But the most interesting things, at least in my opinion, were the following:

https://en.wikipedia.org/wiki/Central_limit_theorem

53

 The area S of a convex hull of n points X1, ..., Xn also converges to a normal
distribution, once standardized, that is when considering (S - E(S)) / Stdev(S).

 Under some conditions, the result below applies, with C being a universal
constant:

 If instead of a weighted average S, we consider the maximum M = max(X1, ...,
Xn), then we also have a limiting distribution for (M - E(M)) / Stdev(M) after proper
standardization. This is known as the Fisher–Tippett–Gnedenko theorem in
extreme value theory. The limit distribution is not Gaussian. What would happen
if instead of the maximum or weighted average, we consider the empirical
percentiles? See also chapter 16.

 The digits for the vast majority of numbers, in all number representation systems,
can be used to emulate Brownian motions, thanks to the central limit theorem.
See appendix B in this book.

Another potential generalization consists of developing a central limit theorem that is
based on L1 rather than L2 measures of centrality and dispersion, that is, the median
and absolute deviations rather than the mean and variance. This would be useful when
the observations come from a distribution that does not have a mean or variance, such
as Cauchy.

Also, does the limit distribution in case 4 depend on the distribution of the Xk's -- in this
case uniform -- or is it a universal distribution that is the same regardless of the Xk's
distribution? Unfortunately, the answer is negative: after trying with the square of
uniform deviates for the Xk's, the limit distribution was not symmetric, and thus different
from the one obtained with uniform deviates.

4. Appendix: source code

Below is the source code (Perl) used to produce the simulations:

$seed=100;
$c=-0.5; # the exponent in a(k) = k^c
$n=10000;
open(OUT,">out.txt");
for ($m=0; $m<10000; $m++) {
 $den=0;
 $num=0;
 $ss=0;
 for ($k=1; $k<=$n; $k++) {
 $r=rand();
 $aux=exp($c*log($k)); # k^c

 $num+=$r*$aux;
 $den+=$aux;

https://en.wikipedia.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem

54

 $ss+=($aux*$aux);
 }
 $dev=$num/$den;
 $std=sqrt(1/12) * (sqrt($ss)/$den); # 1/12 for Uni[0,1]
 $dev2=($dev-0.5)/$std;
 print OUT "$m\t$dev2\n";
}
close(OUT);

Also, Figure 2 below is referenced earlier in this chapter.

Figure 2: Two weight sets (green and purple) produce non-Gaussian limit distributions

https://api.ning.com/files/V0BiFi-tkRuYKJKie-wk5iIFIerTOvqPfkGNFmqZzSEy3rUbTDeZmQP*SpMJDsSwQVcH8PAGlHVQpCbTcNBKsT-LSwaFmWtn/Capture.PNG

55

9. More Tests of Randomness

We explore here some deterministic sequences of numbers, behaving like stochastic

processes or chaotic systems, together with another interesting application of the

central limit theorem.

In this chapter, you will learn some modern techniques to detect whether a sequence
appears as random or not, whether it satisfies the central limit theorem (CLT) or not --
and what the limiting distribution is if CLT does not apply -- as well as some tricks to
detect abnormalities. Detecting lack of randomness is also referred to as signal versus
noise detection, or pattern recognition.

It leads to the exploration of time series with massive, large-scale (long term) auto-
correlation structure, as well as model-free, data-driven statistical testing. No statistical
knowledge is required: we will discuss deep results that can be expressed in simple
English. Most of the testing involved here uses big data (more than a billion
computations) and data science, to the point that we reached the accuracy limits of our
machines. So there is even a tiny piece of numerical analysis in this article.

Potential applications include testing randomness, Monte Carlo simulations for
statistical testing, encryption, blurring, and steganography (encoding secret messages
into images) using pseudo-random numbers. A number of open questions are
discussed here, offering professional statisticians new research topics both in
theoretical statistics and advanced number theory. The level here is state-of-the-art, but
we avoid jargon and some technicalities to allow beginners and non-statisticians to
understand and enjoy most of the content. An Excel spreadsheet, attached to this
document, summarizes my computations and will help you further understand the
methodology used here.

Interestingly, I started to research this topic by trying to apply the notorious CLT (see
previous chapter) to non-random (static) variables -- that is, to fixed sequences of
numbers that look chaotic enough to simulate randomness. Ironically, it turned out to be
far more complicated than using CLT for regular random variables. So I start here by
describing what the initial CLT problem was, before moving into other directions such as
testing randomness, and the distribution of the largest gap in seemingly random
sequences. As we will see, these problems are connected.

1. Central Limit Theorem for Non-Random Variables

Here we are interested in sequences generated by a periodic function f(x) that has an

irrational period T, that is f(x+T) = f(x). Examples include f(x) = sin x with T = 2, or f(x)

= {x} where > 0 is an irrational number, { } represents the fractional part and T = 1/.
The kth element in the infinite sequence (starting with k = 1) is f(k). The central limit
theorem can be stated as follows:

http://www.datasciencecentral.com/profiles/blogs/interesting-data-science-application-steganography
https://en.wikipedia.org/wiki/Fractional_part

56

Under certain conditions to be investigated -- mostly the fact that the sequence seems
to represent or simulate numbers generated by a well-behaved stochastic process -- we
would have:

In short, U(n) tends to a normal distribution of mean 0 and variance 1 as n tends to
infinity, which means that as both n and m tends to infinity, the values U(n+1), U(n+2)
... U(n+m) have a distribution that converges to the standard bell curve.

In this chapter, we are dealing exclusively with sequences that are equidistributed over

[0, 1], thus = 1/2 and = 1/121/2. In particular, we investigate f(x) = {x} where > 0 is
an irrational number and { } the fractional part. While this function produces a sequence
of numbers that seems fairly random, there are major differences with truly random
numbers, to the point that CLT is no longer valid. The main difference is the fact that
these numbers, while somewhat random and chaotic, are much more evenly spread
than random numbers. True random numbers tend to create some clustering as well as
empty spaces. Another difference is that these sequences produce highly auto-
correlated numbers.

As a result, we propose a more general version of CLT, redefining U(n) by adding two
parameters a and b:

This more general version of CLT can handle cases like our sequences. Note that the
classic CLT corresponds to a = 1/2 and b =0. In our case, we suspect that a = 1 and b is
between 0 and -1. This is discussed in the next section.

Note that if instead of f(k), the kth element of the sequence is replaced by f(k2) then the
numbers generated behave more like random numbers: they are less evenly distributed
and less auto-correlated, and thus the CLT might apply. We haven't tested it yet.

2. Testing Randomness: Max Gap, Auto-Correlations and More

The sequence f(1), f(2), … generated by our function f(x) is called an -sequence or

perfect process (see appendix B in this book.) Here we compare properties of -
sequences with those of random numbers on [0, 1] and we highlight the striking
differences. Both sequences, when n tends to infinity, have a mean value converging to
1/2, a variance converging to 1/12 (just like any uniform distribution on [0, 1]), and they
both look quite random at first glance. But the similarities almost stop here.

https://en.wikipedia.org/wiki/Equidistributed_sequence
https://api.ning.com/files/lFg-2*UqyS7c3VI1rJZ-56pQ-GyU5xXXkHlDEUSKvuwlpdSIRwDUfjr3xOgRJrcmHLIZsg5POMw3AEUtxkYMs0yg5m2eTCSz/Capture1.PNG
https://api.ning.com/files/lFg-2*UqyS56ZvvpU4DRshu2WGmCT-Qy7KhoDkR33qA-NoS0R3KKs8pyNdgUK7tmwvNckoY0upDSVU2kpnieorvFjugeKavG/Capture2b.PNG

57

Maximum gap

The maximum gap among n points scattered between 0 and 1 is another way to test for
randomness. If the points were truly randomly distributed, the expected value for the
length of the maximum gap (also called longest segment) is known and is equal to

See this article for details, or the book Order Statistics published by Wiley, page 135.
The max gap values have been computed in the spreadsheet (see section below to

download the spreadsheet) both for random numbers and for -sequences. It is pretty
clear from the Excel spreadsheet computations (and confirmed in chapter 17) that the
average maximum gaps have the following expected values, as n becomes very large:

 Maximum gap for random numbers: log(n)/n as expected from the above
theoretical formula

 Maximum gap for -sequences: c/n (c is a constant close to 1.5; the result
needs to be formally proved)

So -sequences have points that are far more evenly distributed than random numbers,

by an order of magnitude, not just by a constant factor! This is true for the eight -

sequences (eight different values of) investigated in the spreadsheet, corresponding
to eight “nice” irrational numbers (more on this in the research section below, about
what a “nice” irrational number might be in this context.)

Auto-correlations

Unlike random numbers, values of f(k) exhibit strong, large-scale auto-correlations: f(k)
is strongly correlated with f(k+p) for some values of p as large as 100. The successive
lag-p auto-correlations do not seem to decay with increasing values of p. To the
contrary, it seems that the maximum lag-p auto-correlation (in absolute value) seems to
be increasing with p, and possibly reaching very close to 1 eventually. This is in stark
contrast with random numbers: random numbers do not show auto-correlations
significantly different from zero, and this is confirmed in the spreadsheet. Also, the vast
majority of time series have auto-correlations that quickly decay to 0. This surprising
lack of decay could be the subject of some interesting number theoretic research.
These auto-correlations are computed and illustrated in the Excel spreadsheet (see
section below) and are worth checking out. Exact values are computed in chapter 13.

Convergence of U(n) to a non-degenerate distribution

Figures 2 and 3 in the next section (extracts from our spreadsheet) illustrate why the
classic central limit theorem (that is, a = 1/2, b =0 for the U(n) formula) does not apply

to -sequences, and why a = 1 and b = 0 might be the correct parameters to use
instead. However, with the data gathered so far, we can't tell whether a = 1 and b = 0 is
correct, or whether a = 1 and b = -1 is correct: both exhibit similar asymptotic behavior,

https://math.stackexchange.com/questions/13959/if-a-1-meter-rope-is-cut-at-two-uniformly-randomly-chosen-points-what-is-the-av
https://www.amazon.com/Order-Statistics-Herbert-David/dp/0471389269
https://api.ning.com/files/KtY2yaJFKB6Voi*GralKMEEv*VZ4x3sYQ1rrR46fXestPxL*UBN-2KCB0r7MTCxVzmrWO3LBNkUB8DmmuV8TDBm370qFI7nv/Capture.PNG

58

and the data collected is not accurate enough to make a final decision on this. The
answer could come from theoretical considerations rather than from big data analysis.
Note that the correct parameters should produce a somewhat horizontal band for U(n)
in figure 2, with values mostly concentrated between -2 and +2 due to normalization
of U(n) by design. And a = 1, b = 0, as well as a = 1, b = -1, both do just that, while it is
clear that a = 1/2 and b = 0 (classic CTL) fails as illustrated in figure 3. You can play
with parameters a and b in the spreadsheet, and see how it changes figure 2 or 3,
interactively.

One issue is that we computed U(n) for n up to 100,000,000 using a formula that is ill-
conditioned: multiplying a large quantity n by a value close to zero (for large n) to
compute U(n), when the precision available is probably less than 12 digits. This might
explain the large, unexpected oscillations found in Figure 2. Note that oscillations are
expected (after all, U(n) is supposed to converge to a statistical distribution, possibly the
bell curve, even though we are dealing with non-random sequences) but such large-
scale, smooth oscillations, are suspicious.

3. Excel Spreadsheet with Computations

Click here to download the spreadsheet. The spreadsheet has 3 tabs: One for -
sequences, one for random numbers -- each providing auto-correlation, max gap, and
some computations related to estimating a and b for U(n) -- and a tab summarizing n =

100,000,000 values of U(n) for -sequences, as shown in figures 2 and 3. That tab,
based on data computed using a Perl script, also features moving maxima and moving
minima, a concept similar to moving averages, to better identify the correct parameters
a and b to use in U(n).

Confidence intervals (CI) can be empirically derived to test a number of assumptions, as
illustrated in Figure 1: in this example, based on eight measurements, it is clear that

maximum gap CI's for -sequences are very different from those for random numbers,

meaning that -sequences do not behave like random numbers.

Figure 1: max gap times n (n = 10,000), for eight -sequences (top) and
eight sequences of random numbers (bottom)

http://datashaping.com/tctl.xlsx
https://api.ning.com/files/KtY2yaJFKB6KsHYx84NGKv2T24dHWq4PXxXtg7d**3gwNuzqLMLQUR2jrHDa3mMAiyU80buVj7F1Z39Of4ro7UpF1I2UN83c/Capture.PNG

59

Figure 2: U(n) with a = 1, b = 0 (top) and moving max / min bands

(bottom) for -sequences

https://api.ning.com/files/KtY2yaJFKB6nBIDr4NLvNg3f*p-xVEt9yMsro5RPphWM*x34ZiC5dcJ1JViH6ZyVQjrTqqO*g2hn80uBmyYTEcLykRWkI3NQ/CaptureA.PNG

60

Figure 3: U(n) with a = 0.5, b = 0 (top) and moving max / min bands (bottom)

for sequences

4. Potential Research Areas

Here we mention some interesting areas for future research. By sequence, we mean -
sequence as defined in section 2, unless otherwise specified.

 Using f(kc) as the kth element of the sequence, instead of f(k). Which values
of c > 0 lead to equidistribution over [0, 1], as well as yielding the classic version

of CLT with a = 1/2 and b = 0 for U(n)? Also what happens if f(k) = {p(k)} where
p(k) is the kth prime number and { } represents the fractional part? This sequence
was proved to be equidistributed on [0, 1] (this by itself.is a famous result of
analytic number theory, published by Vinogradov in 1948) and has a behavior
much more similar to random numbers, so maybe the classic CLT applies to this
sequence? Nobody knows.

 What is the asymptotic distribution of the moments and distribution of the

maximum gap among the n first terms of the sequence, both for random numbers
on [0, 1] and for the sequences investigated in this article? Does it depend on the

https://api.ning.com/files/KtY2yaJFKB5il*-FhIyyJS7ibpjMnMP-64KqHhPHEfWrgQlJKkEHnkRG5CJeeLCt88F-b3AAOpwl1lDF0J3wvTkYjcKc3764/Captureb.PNG

61

parameter ? Same question for minimum gap and other metrics used to test
randomness, such as point concentration, defined for instance in the article On
Uniformly Distributed Dilates of Finite Integer Sequences?

 Does U(n) depend on ? What are the best choices for , to get as much
randomness as possible? In a similar context, 21/2 - 1 and (51/2 - 1)/2 are found to
be good candidates: see this Wikipedia article (read the section on additive

recurrence.) Also, what are the values of the coefficients a and b in U(n), for -
sequences? It seems that a must be equal to 1 to guarantee convergence to a

non-degenerate distribution. Is the limiting distribution for U(n) also normal for -
sequences, when using the correct a and b?

 What happens if is very close to a simple rational number, for instance if the

first 500 digits of are identical to those of 3/2?

Generalization to higher dimensions

So far we worked in dimension 1, the support domain being the interval [0, 1]. In

dimension 2, f(x) = {x} becomes f(x, y) = ({x}, {y}) with , , and / irrational; f(k)
becomes f(k,k). Just like the interval [0, 1] can be replaced by a circle to avoid boundary
effects when deriving theoretical results, the square [0, 1] x [0, 1] can be replaced by the
surface of the torus. The maximum gap becomes the maximum circle (on the torus) with
no point inside it. The range statistic (maximum minus minimum) becomes the area of
the convex hull of the n points. For a famous result regarding the asymptotic behavior
of the area of the convex hull of a set of n points, see previous chapter and check out
the sub-section entitled “Other interesting stuff related to the Central Limit
Theorem.” Note that as the dimension increases, boundary effects become more
important.

Figure 4: bi-variate example with c = 1/2, = 311/2, = 171/2

and n = 1000 points

http://www.sciencedirect.com/science/article/pii/S0022314X99924204
http://www.sciencedirect.com/science/article/pii/S0022314X99924204
https://en.wikipedia.org/wiki/Low-discrepancy_sequence
https://api.ning.com/files/5yCEGsYwHQr1dk1G9i2cH1fchLFoDRoH4ONMOJ-6vFsDU1vxyjxKyeEior6HtwcVBGmeNsvaMaUnCpUO6Ogz2CBD72UOYKTy/biv.PNG

62

Figure 4 shows an unusual example in two dimensions, with strong departure from
randomness, at least when looking at the first 1,000 points. Usually, the point pattern
looks much more random, albeit not perfectly random, as in Figure 5.

.

Figure 5: bi-variate example with c = 1/2, = 131/2, = 261/2
and n = 1000 points

Computations are found in this spreadsheet. Note that we've mostly discussed the
case c = 1 in this chapter. The case c = 1/2 creates interesting patterns, and the
case c = 2 produces more random patterns. The case c = 1 creates very regular
patterns (points evenly spread, just like in one dimension.)

https://api.ning.com/files/QzmRjEe-2pZ3iaGKOuGtjwCfeTA7dpgyYjRCGBMY8WSco0FnNqXlGyGv67job4C6PfHwvKQsMeE7Znnok-7y-OddV0W5Vww7/bivariate.xlsx
https://api.ning.com/files/QzmRjEe-2paSdrJZvK-BHRQxwI*tUYGdGk28ST-vzHjO4HlXin1L4YcJzzRuwYVkmXWnmXnR003FmDBZ2QUYnKl3NryeeMnF/vvv.PNG

63

10. Random Weighted Sums

You won't learn this in textbooks, college classes, or data camps. Some of the material
in this chapter is very advanced yet presented in simple English, with an Excel
implementation for various statistical tests, and no arcane theory, jargon, or obscure
theorems. It has a number of applications, in finance in particular. This chapter covers
several topics under a unified approach, so it was not easy to find a title. In particular,
we discuss:

 When the central limit theorem fails: what to do, and case study
 Various original statistical tests, some unpublished, for instance to test if an

empirical statistical distribution (based on observations) is symmetric or not, or
whether two distributions are identical

 The power and mysteries of stable (also called divisible) statistical distributions
 Dealing with weighted sums of random variables, especially with decaying

weights
 Fun number theory problems and algorithms associated with these statistical

problems
 Decomposing a (theoretical or empirical / observed) statistical distribution into

elementary components, just like decomposing a complex molecule into atoms

The focus is on principles, methodology, and techniques applicable to, and useful in
many applications. For those willing to do a deeper dive on these topics, many
references are provided. This chapter, written as a tutorial, is accessible to
professionals with elementary statistical knowledge, like stats 101. It is also written in a
compact style, so that you can grasp all the material in hours rather than days. This
simple chapter covers topics that you could learn in MIT, Stanford, Berkeley, Princeton
or Harvard classes aimed at PhD students. Some is state-of-the-art research results
published here for the first time, and made accessible to the data science of data
engineer novice. I think mathematicians (being one myself) will also enjoy it. Yet,
emphasis is on applications rather than theory.

Finally, we focus here on sums of random variables. The next chapter will focus on
mixtures rather than sums, providing more flexibility for modeling purposes, or to
decompose a complex distribution in elementary components. In both cases, my
approach is mostly non-parametric, and based on robust statistical techniques, capable
of handling outliers without problems, and not subject to over-fitting.

Finally, many statistical tests are introduced in this chapter, in addition to those
mentioned in the previous chapters.

64

1. Central Limit Theorem: New Approach

Let us consider a weighted sum of n independent and identically distributed random
variables, with finite variance and mean equal to zero:

When the weights are identical, the central limit theorem (CLT) states that this
converges to a Gaussian distribution. Regardless of the weights or n, we have:

This is also true when n tends to infinity. Without loss of generality, we assume here
that all these random variables have their expectation equal to 0. Now, let us
decompose the weighted sum into two components. First, let us introduce a partition
of N = {1, ..., n} into two subsets I and J. For instance, the set I consists of the odd
integers in N, and J consists of the even integers in N. Or I consists of the integers
smaller than n/2, and J consists of the integers larger or equal to n/2. The
decomposition is as follows:

The variables Zn, Vn and Wn have the same variance as X1. Let us define pn = vn / sn,
and qn = wn / sn. At the limit as n tends to infinity, assuming the limits exist, we have

When the weights ak's are identical (corresponding to the standard CLT) then the
factors p and q can be made arbitrarily close to any real number (by choosing I and J
appropriately) and thus the limit distribution satisfies the following property, presented
here as a theorem:

Theorem

If the weights ak are identical (classic CLT framework) then Z can be written as any
linear combination pV + qW of tho independent random variables V and W that have the
same exact distribution as Z (with same variance), provided that p2 + q2 = 1.

http://storage.ning.com/topology/rest/1.0/file/get/2808361228?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808361359?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808375633?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808379284?profile=original

65

Note that by convergence and limit, here we mean convergence in distribution. A
distribution that satisfies the property stated in the above theorem is called a stable
distribution. Evidently the Gaussian distribution is one example of a stable distribution.
But is it the only one? That is, does this property uniquely characterize the Gaussian
distribution?

Let us introduce the concept of semi-stable distribution. A random variable Z has
a semi-stable distribution if for any strictly positive integer n, it can be written as the
sum of n independent random variables, divided by n1/2, with each random variable
having the same distribution as Z. Gaussian distributions are one example. All stable
distributions are also semi-stable (see exercise below), but the converse might not be
true.

Let's say that the variables Xk have a semi-stable distribution, but one that is non-
Gaussian. For each value of n including at the limit as n tends to infinity, Zn would have
(by construction) that exact same semi-stable distribution, which is non-Gaussian. But
the central limit theorem states that at the limit, the distribution must be Gaussian. This
contradiction makes you think that the only semi-stable distribution is the Gaussian one.
I won't spend much time on this paradox, but I invite you to think about it. There are
other stable and semi-stable distributions, as we shall see in the next section. Generally
speaking, they have a thick tail and infinite variance. The Gaussian one is the only one
with a finite variance.

Exercise

Prove that any stable distribution is also semi-stable. Hint: For a stable distribution,
Z can be written as Z = (2/3)1/2{ (V + W) / 21/2 } + (1/3)1/2U = (V + W + U) / 31/2,
with U, V, W, (V + W) / 21/2 having the same distribution as Z. This easily generalizes to
4, 5 or more variables, and can be proved by induction. Here, U, V and W are
independent.

2. Stable and Attractor Distributions

The initial problem I was interested in, is to approximate a random variable Z with a
complicated distribution, by a weighted sum of independent, identically distributed
random variables that have a simple distribution. These random variables, denoted
as X1, X2 and so on throughout this article, are also called kernels.

We have seen that if these kernels have a stable distribution, then Z must also have a
stable (and identical) distribution. So, unless we want to restrict ourselves to the small
family of stable distributions, we must consider unstable kernels. From now on, we will
mostly focus on (unstable) kernels that have a uniform distribution on [-1/2, 1/2].

The next question is: can any Z (regardless of its distribution) be represented (that is,
decomposed) in this manner? It is similar to asking whether any real function can be
represented by a Taylor series. The answer, in both cases, is no. The kind of random

66

variables Z that can be represented in this manner are called attractors. Their
distribution is called an attractor distribution. We are curious to find out

 Which distributions can be attractors,
 Whether Z's distribution depends on the choice of the kernels, and
 Whether an attractor distribution must necessarily be a stable distribution, even if

the kernel is not.

So clearly, we are here in a context where the assumptions of the CLT (central limit
theorem) are violated, and the CLT does not apply. Let us introduce one additional
notation:

With this notation, Zn can be re-written as

Depending on the weights ak, the coefficient bnk for any fixed k, may not depend on n,
as n tends to infinity.

Using decaying weights

We shall consider, moving forward, decaying weights of the form ak = 1/kc, where c is a
positive parameter in the interval [0.5, 1]. If c is less than or equal to 0.5, then we are
back under the CLT conditions and Z has a Gaussian distribution, even if the kernel has
a uniform distribution. If c is larger than 0.5, then we have the following:

 The distribution of Z is NOT a Gaussian one (see chapter 8 for details.)
 For any fixed k, bnk does not depend on n, as n tends to infinity. For instance, if c =

1, then bnk tends to 61/2ak / as n tends to infinity.

Decaying weights have plenty of applications. For instance, I used a decaying weighted
sum of nearest neighbor distances in a k-NN clustering problems, rather than the kth
nearest neighbor alone, to boost robustness. The resulting distribution of Z was rather
special; the details are available in this article.

Exact distribution of Z

This topic is more advanced for statisticians, as it is based on the characteristic function
of a statistical distribution. For physicists, mathematicians, signal processing experts,
and engineers, it is not very advanced, in the sense that it is a simple application of
the convolution theorem and Fourier transforms. I assume here that c = 1.

The characteristic function of Z is a product of characteristic functions of uniform
distributions (the kernels):

https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9574.00071
https://en.wikipedia.org/wiki/Convolution_theorem
http://mathworld.wolfram.com/CharacteristicFunction.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://storage.ning.com/topology/rest/1.0/file/get/2808380009?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808380108?profile=original

67

The infinite product is converging. But this is not the characteristic function of a semi-
stable distribution, unlike with c = 1/2 or c = 0. To find the density attached to Z, one has
to take the inverse Fourier transform of the characteristic function:

The characteristic function can be re-written as G(t)H(t), with

Written that way, Z appears as the sum of two independent random variables with
characteristic functions respectively equal to H(t) and G(t). H(t) corresponds to the
kernel distribution: uniform on [-1/2, 1/2]. As for G(t), you get a good approximation if
you only use the first 20 factors (n = 20) in the above infinite product. Indeed, G(t) is not
very much different from a constant function equal to 1, corresponding to a Dirac
distribution when you take the inverse Fourier transform, especially when t is close to
zero.

Note that we have:

See here for the above infinite product formula for the sine function. The asymptotic
approximation on the right-hand side is based on the Taylor series for the sine function.
This is what makes this representation particularly interesting, and beautiful. However,
since Z and the kernel have the same variance, and since the sum of two independent
random variables has a variance greater than or equal to that of each summand, the
distribution attached to G (if it exists) must be improper. In other words, G may not be a
characteristic function.

More about stable distributions and their applications

In some sense, stable distributions are invariant under linear transformations, while
semi-stable distributions are invariant under addition. The Wikipedia entry for stable
distributions is worth reading, especially the section related to the CLT. Examples of
stable distributions, besides the Gaussian one, include the Levy and Cauchy
distributions; both of them have infinite variance (sometimes called heavy tail.) Stable
distributions are also related to the Levy process, with applications to financial markets.

https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/Stable_distribution
https://www.datasciencecentral.com/profiles/blogs/four-interesting-math-problems
https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_process
http://storage.ning.com/topology/rest/1.0/file/get/2808380590?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808380834?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808381772?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808382790?profile=original

68

The following references provide additional insights about the topics discussed here:

 Stable Distributions Models for Heavy Tailed Data (book published in 2018;
focuses on multivariate distributions, with application to financial modeling,
$370 on Amazon)

 Limit Distributions for Sums of Independent Random Variables (seminal book
published in 1954; costs $686 on Amazon, for a used book!)

 Heavy Tails in Theory and Practice (book published in 2001; $200 on Amazon)
 Random Summation: Limit Theorems and Applications (book published in 1996;

costs $245 on CRC Press; focuses on sums where the number of summands is
itself random; costs $41 on Amazon)

 Indecomposable distributions (Wikipedia entry)

Stable distributions were once considered just a mathematical curiosity. Around 1960
researchers began to discover evidence of heavy tail fluctuations in financial data. This
line of research led to the discovery of fractals. By now, stable models are firmly
established in the area of finance. Stable distributions are also used in electrical
engineering and hydrology. Applications in other areas of science are emerging rapidly,
and the subject continues to gain momentum.

3. Non CLT-compliant Weighted Sums, and their Attractors

In this section, we investigate what happens when using decaying weights ak = 1/kc,
with c = 1, and with uniform kernels on [-0.5, 0.5], as discussed in the previous section.
The busy reader can jump to the conclusion at the bottom. For the statistician, data
scientist, or machine learning architect, I present simple, interesting statistical tests that
were used during my analysis, to obtain my results and conclusions.

Testing for normality

In our main test, we divided N = {1, ..., n} into two subsets I and J as follows: I contains
the integers less than 20; and J the integers greater or equal to 20. We also tested other
partitions of N, see tests for semi-stability, below. Here, n was set to 100. We sampled
from 5 different distributions, generating m = 20,000 deviates for each one:

 A Gaussian distribution for comparison purpose (Gaussian A)
 Another Gaussian distribution (Gaussian B) to assess variations across two

samples from a same distribution
 Vn, Wn, and Zn

The testing was done in Excel. By construction, all these distributions have a theoretical
mean and median equal to zero, and a variance equal to 1/12 (that's the variance of the
kernel), as evidenced by the estimates in the table below. The number P.80 represents
the 80th percentile. The number P.25 + P.75 is zero if the distribution is symmetric. This is
the case in this example.

http://fs2.american.edu/jpnolan/www/stable/chap1.pdf
https://www.amazon.com/Stable-Distributions-John-Nolan/dp/0817641599
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209
https://www.stt.msu.edu/~mcubed/RVbook.html
https://www.amazon.com/Limit-Distributions-Independent-Random-Vectors/dp/B01A0BIZ82
https://www.crcpress.com/Random-Summation-Limit-Theorems-and-Applications/Gnedenko-Korolev/p/book/9780849328756
https://www.amazon.com/Random-Summation-Limit-Theorems-Applications/dp/0849328756
https://en.wikipedia.org/wiki/Indecomposable_distribution

69

The sample size (m = 20,000) gives about two correct decimals in the table. The rule of
thumb is that the precision is equal to about 1/m1/2 except for Max and Min, which are
always highly volatile. Clearly, the two Gaussian A and B look identical as expected, the
distribution of Vn and Zn look identical too though clearly non Gaussian, and the
distribution of Wn looks Gaussian. In fact it is not Gaussian, but close: the sample size is
too small to pinpoint the difference. Likewise, Vn and Wn do not have the same exact
distribution (almost) but the sample size is too small to pinpoint the difference. This
framework actually serves as a great benchmark to assess the power of the statistical
tests involved.

We also performed visual tests to measure the difference between pairs of percentile
distributions, see figure below.

http://storage.ning.com/topology/rest/1.0/file/get/2808383262?profile=original

70

The yellow curve shows the empirical (observed) percentiles delta between the two
Gaussians A and B. The differences are negligible. The red curve shows the percentile
delta between the (almost identical) distributions of Vn and Wn. To the contrary, the
three other curves are comparing distributions that are significantly different. For
instance, the black curve represents the difference between Gaussian A and the
distribution of Vn. These percentile tests are similar to a Kolmogorov-Smirnov test,
except that Kolmogorov-Smirnov is based on the empirical cumulative distribution
(CDF) while ours is based on the empirical percentile function, which is the inverse of
the CDF. They clearly show when distributions are statistically different.

All the Excel computations are available in this spreadsheet.

Testing for symmetry and dependence on kernel

One can compare R(x) = | 2 Median - P.x - P.1-x | with that of a symmetric distribution, for
various values of x between 0 and 0.5, to check if a distribution is symmetric around the
median. The theoretical value of R(x) is zero regardless of x, if your empirical
distribution is symmetric. Here P.x represents the xth percentile. Other tests for
symmetry can be found here.

In this test, we used a highly non-symmetric kernel: a mixture of Bernoulli and uniform
distributions. We discovered that while the limit (attractor) distribution is much less
asymmetric than the kernel, it is still clearly non symmetric. This also means that the
distribution of Z depends on the kernel: when the kernel has a symmetric distribution,
Z also has a symmetric distribution.

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
http://storage.ning.com/topology/rest/1.0/file/get/2808384496?profile=original
https://stats.stackexchange.com/questions/50603/how-do-i-test-for-a-symmetric-distribution
http://storage.ning.com/topology/rest/1.0/file/get/2220289349?profile=original

71

Testing for uni-modality and other peculiarities

All standard attractors investigated in the literature have a unimodal distribution. We
haven't tested if Z is unimodal, but we believe it is, regardless of the kernel. To test if a
distribution is unimodal, several tests have been devised: the bandwidth test, the dip
test, the excess mass test, the MAP test, the mode existence test, the run test, the span
test, and the saddle test. The dip test is available in R. Read more here. Some of these
tests, in case of multimodality, can tell you how many modes (or clusters) are in your
data sets.

Other potential tests, not discussed here, could be used to check if Z has an an
unbounded support domain, or to check if its density is bounded. The answer is
believed to be positive in both cases. An example of unbounded density is f(x) = 0.25 /
|x|1/2 with x in [-1, 1]. We could also test for infinite mean or infinite variance (a feature
all stable distributions have, except the Gaussian) however it is irrelevant here since by
construction the mean is zero, and the variance is equal to the variance of the kernel.

Testing for semi-stability

As stated in the first section, if the limiting distribution is semi-stable, it must
satisfy Z = pV + qW, with p = q = 1/21/2. I tried various combinations for the subsets of
indices I and J, but could not get close to p= q. Indeed, the closest you can get is
with I = {1} and J = {2, 3, ..., n}. When n tends to infinity, this leads to p = 0.78 and q =

0.63 (approximately); the exact values are p = 61/2 / and q = (2 - 6)1/2 / .

If you try ak = 1/kc, with c = 0.6 rather than c = 1, you might be able to get p = q with a
judicious choice of I and J. Likewise, if you try with ak = 1/(k + 5) rather than ak = 1/k, it
might work. However the resulting Z, V and W still have different distributions, so it fails
to prove that Z is semi-stable. It does not disprove it either.

So how do you choose I and J to get p = q, assuming this equality is reachable in the
first place? Whether or not it is feasible depends on how fast the weights decay. This is
actually a number theory problem. For instance, if n = 18, ak = 1/(k+5), I = {1, 4, 6, 8,
10, 12, 14, 15, 18} and J = {2, 3, 5, 7, 9, 11, 13, 16, 17}, then we get very close to p = q.
This configuration was obtained using a greedy algorithm, as described fox example in
this article.

Out of curiosity, we generated two independent samples of Z, say Z' and Z''. We
checked whether Z and (Z' + Z'') / 21/2 had the same distribution, using the tests
described in the above sub-section. It turns out that the two distributions are clearly
different (they have the same mean and variance, but not the same kurtosis), thus Z is
not semi-stable. In fact,(Z' + Z'') / 21/2 looks surprisingly close to a Gaussian distribution,
while Z does not. This result is in contrast with what other authors wrote on the
subject, 70 years ago, stating that any attractor must be semi-stable. The explanation is
that these authors used different assumptions than ours, when analyzing converging
weighted sums. Finally, note that (Z' + Z'') / 21/2 cannot be Gaussian: if it was,

https://cran.r-project.org/web/packages/diptest/index.html
https://en.wikipedia.org/wiki/Multimodal_distribution
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1038
https://en.wikipedia.org/wiki/Greedy_algorithm
https://www.datasciencecentral.com/profiles/blogs/new-representation-of-numbers-with-very-fast-converging-fractions
https://www.datasciencecentral.com/profiles/blogs/new-representation-of-numbers-with-very-fast-converging-fractions
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209

72

both Z' and Z'' would have to be Gaussian too according to Cramer's theorem, and this
is clearly not the case.

4. Conclusions

The framework discussed here produces a Gaussian distribution as the limit distribution
for the weighted sum, if the weights are decaying slowly. This is just the standard CLT.
If the weights are decaying a bit too fast -- faster than 1/k1/2 but not faster than 1/k -- the
following issues and benefits arise:

 The limiting distribution (attached to Z) is not Gaussian: good, that is what we
were looking for.

 The limiting distribution (also called attractor) may not be stable either, offering
more flexibility. It might not even be symmetrical, depending on the kernel. We
haven't checked if the attractor must be unimodal (even if the kernel is not)
however in all our tests, it was unimodal.

 Few distributions can be an attractor, so the amount of flexibility offered with fast-
decaying weights is still limited. In fact, attractors don't look very much different
from Gaussian distributions, though they are clearly not Gaussian; this offers
limited possibilities for modeling.

 The limiting distribution depends both on the choice for the kernel, and the first
few terms in the weighted sum, unlike with the classic CLT; it is a combination of
a normal distribution, with a non-normal distribution. The non-normal part is
attached to the first few terms of the weighted sum. This is indeed not bad, as it
allows you to decompose these sums into two parts: the sum of the first 10 terms
or so (non-normal) and the remaining of the sum (almost normal.) This is helpful
for modeling purposes, allowing you to separate background noise (Gaussian-
like tail) from the true signal.

A better tool to decompose a potential attractor into an infinite collection of basic
kernels, is a mixture model, rather than a weighted sum. In that case, any distribution
can be an attractor. This is discussed in the next chapter.

https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%99s_decomposition_theorem

73

11. Mixture Models

In this chapter, emphasis is on science, not just on data. State-of-the art material is
presented in simple English, from multiple perspectives: applications, theoretical
research asking more questions than it answers, scientific computing, machine learning,
and algorithms. I attempt here to lay the foundations of a new statistical technology,
hoping that it will plant the seeds for further research on a topic with a broad range of
potential applications. It is based on mixture models. Mixtures have been studied and
used in applications for a long time, and it is still a subject of active research. Yet you
will find here plenty of new material.

Content

 Introduction and Context
 Approximations Using Mixture Models

o The error term
o Kernels and model parameters
o Algorithms to find the optimum parameters
o Convergence and uniqueness of solution
o Find near-optimum with fast, black-box step-wise algorithm

 Example
o Data and source code
o Results

 Applications
o Optimal binning
o Predictive analytics
o Test of hypothesis and confidence intervals
o Deep learning: Bayesian decision trees
o Clustering

 Interesting problems
o Gaussian mixtures uniquely characterize a broad class of distributions
o Weighted sums fail to achieve what mixture models do
o Stable mixtures
o Nested mixtures and Hierarchical Bayesian Systems
o Correlations

1. Introduction and Context

In the previous chapter, I attempted to approximate a random variable representing real
data, by a weighted sum of simple kernels such as uniformly and independently,
identically distributed random variables. The purpose was to build Taylor-like series
approximations to more complex models (each term in the series being a random
variable), to

74

 Avoid over-fitting,
 Approximate any empirical distribution (the inverse of the percentiles function)

attached to real data,
 Easily compute data-driven confidence intervals regardless of the underlying

distribution,
 Derive simple tests of hypothesis,
 Perform model reduction,
 Optimize data binning to facilitate feature selection, and to improve visualizations

of histograms
 Create perfect histograms,
 Build simple density estimators,
 Perform interpolations, extrapolations, or predictive analytics,
 Perform clustering and detect the number of clusters,
 Create deep learning Bayesian systems.

Why I've found very interesting properties about stable distributions during this research
project, I could not come up with a solution to solve all these problems. The fact is that
these weighed sums would usually converge (in distribution) to a normal distribution if
the weights did not decay too fast -- a consequence of the central limit theorem. And
even if using uniform kernels (as opposed to Gaussian ones) with fast-decaying
weights, it would converge to an almost symmetrical, Gaussian-like distribution. In short,
very few real-life data sets could be approximated by this type of model.

I also tried with independently but NOT identically distributed kernels, and again, failed
to make any progress. By “not identically distributed kernels”, I mean basic random
variables from a same family, say with a uniform or Gaussian distribution, but with
parameters (mean and variance) that are different for each term in the weighted sum.
The reason being that sums of Gaussian's, even with different parameters, are still
Gaussian, and sums of Uniform's end up being Gaussian too unless the weights decay
fast enough. Details about why this is happening are provided in the last section.

Now, in this chapter, starting in the next section, I offer a full solution, using mixtures
rather than sums. The possibilities are endless.

2. Approximations Using Mixture Models

The problem is specified as follows. You have an univariate random variable Y that
represents any of your quantitative features in your data set, and you want to
approximate or decompose it using a mixture of n elementary independent random
variables called kernels and denoted as X(n, k) for k = 1, ..., n, with decreasing
probability weights p(n, k) that converge to zero. The approximation of Y based on the
first n kernels, is denoted as Y(n). By approximation, I mean that the data-generated
empirical distribution of Y is well approximated by the known, theoretical distribution
of Y(n) and that as n tends to infinity, both become identical (hopefully).

https://www.statisticshowto.datasciencecentral.com/empirical-distribution-function/
https://en.wikipedia.org/wiki/Empirical_distribution_function

75

Moving forward, N denotes your sample size, that is the number of observations; N can
be very large, even infinite, but you want to keep n as small as possible.

Generalizations to the multivariate case is possible but not covered in this article. The
theoretical version of this consists in approximating any known statistical distribution
(not just empirical distributions derived from data sets) by a small mixture of elementary
(also called atomic) kernels.

In statistical notation, we have:

We also want Y(n) to converge to Y, in distribution, as n tends to infinity. This implies
that for large n, the weights p(n, k) must tend to zero as k tends to infinity.

The error term

There are various ways to define the distance between two distributions, say between
Y(n) and Y. See here for details; one of the most popular ones is the Kolmogorov-
Smirnov metric. Or you can also use the distance between the inverse of the cumulative
distributions, see chapter 14 for details (read the section on testing for normality, in
particular the percentile test.) Regardless of the metric used, the error term is denoted
as E(n) = ||Y - Y(n)||. Of course, the problem, for a given value of n, is to minimize E(n).
As n tends to infinity, by carefully choosing the parameters in the model (that is, the
weights, as well the the means and variances of the kernels,) the error E(n) is
supposed to converge to 0. Note that the kernels are independent random variables, but
not identically distributed: a mix of kernels with different means and variances is not
only allowed, but necessary to solve this optimization problem.

Kernels and model parameters

Besides the weights, the other parameters of the models are the parameters attached to
each kernel X(n, k). Typically, each kernel X(n, k) is characterized by two
parameters: a(n, k) and b(n, k). In the case of Gaussian kernels, a(n, k) is the mean
and b(n, k) is the variance; b(n, k) is set to 1. In the case of Uniform kernels
with Y taking on positive values, a(n, k) is the lower bound of the support interval,
while b(n, k) is the upper bound; in this case, since we want the support domains to
form a partition of the set of positive real numbers (the set of potential observations), we
use, for any fixed value of n, a(n, 1) = 0 and b(n, k) = a(n, k+1).

Finally, the various kernels should be re-arranged (sorted) in such a way that X(n, 1)
always has the highest weight attached to it, followed by X(n, 2), X(n, 3) and so on. The
methodology can also be adapted to discrete observations and distributions, as we will
discuss later in this chapter.

https://en.wikipedia.org/wiki/Statistical_distance
https://storage.ning.com/topology/rest/1.0/file/get/1173127669?profile=original

76

Algorithms to find the optimum parameters

The goal is to find optimum model parameters, for a specific n, to minimize the
error E(n). And then try bigger and bigger values of n, until the error is small enough.
This can be accomplished in various ways.

The solution consists in computing the derivatives of E(n) with respect to all the model
parameters, and then finding the roots (parameter values that make the derivatives
vanish, see for instance section 12 in chapter 28.) For a specific value of n, you will
have to solve a non-linear system of m equations with m parameters. In the case of
Gaussian kernels, m = 2n. For uniform kernels, m = 2n + 1 (n weights, n interval lower
bounds, plus upper bound for the rightmost interval.) No exact solution can be found, so
you need to use an iterative algorithm. Potential modern techniques used to solve this
kind of problem include:

 Swarm gradient optimization
 EM algorithm
 Stochastic search (see also here)
 Stochastic gradient descent

You can also use Monte-Carlo simulations, however here you face the curse of
dimensionality, the dimension being the number m of parameters in your model. In
short, even for n as small as n = 4 (that is, m = 8), you will need to test trillions of
randomly sampled parameter values (m-dimensional vectors) to get a solution close
enough to the optimum, assuming that you use raw Monte-Carlo techniques. The speed
of convergence is an exponential function of m. Huge improvements to this method are
discussed later in this section, using some kind of step-wise algorithm to find local
optima, reducing it to a 2-dimensional problem. By contrast, speed of convergence is
quadratic for gradient-based methods, if E(n) is convex in the parameter space. Note
that here, E(n) may not always be convex though.

Convergence and uniqueness of solution

In theory, both convergence and the fact that there is only one global optimum, are
guaranteed. It is easy to see that, under the constraints imposed here on the model
parameters, two different mixture models must have two distinct distributions. In the
case of Uniform kernels, this is because the support domains of the kernels form a
partition, and are thus disjoint. In the case of Gaussian kernels, as long as each kernel
has a different mean, no two mixtures can have the same distribution: the proof is left as
an exercise. To put it differently, any relatively well behaved statistical distribution
is uniquely characterized by its set of parameters associated with its mixture
decomposition. When using Gaussian kernels, this is equivalent to the fact that any
infinitely differentiable density function is uniquely characterized by its coefficients in its
Taylor series expansion. This is discussed in the last section.

https://www.datasciencecentral.com/profiles/blogs/swarm-optimization-goodbye-gradients
https://www.statisticshowto.datasciencecentral.com/em-algorithm-expectation-maximization/
https://www.sciencedirect.com/science/article/abs/pii/S0031320312000167
https://link.springer.com/article/10.1007/s11634-015-0209-7
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality

77

The fact that under certain conditions, some of the optimization algorithms described in
the previous subsection, converge to the global optimum, is more difficult to establish. It
is always the case with the highly inefficient Monte Carlo simulations. In that case, the
proof is pretty simple and proceeds as follows

 Consider the discrete case where Y takes only on positive integer values (for
example, your observations consist of counts,) and use the discrete Uniform
kernel.

 In that case, the solution will converge to a mixture model where each kernel
support domain is a set with one value, and its associate weight is the frequency
of that value, in your observed data. This is actually the global optimum, with E(n)
converging to 0 as n tends to infinity.

 Continuous distributions can be approximated by discrete distributions after
proper re-scaling. For instance, a Gaussian distribution can be perfectly
approximated by sequences of increasingly granular binomial distributions. Thus,
the convergence to a global optimum, can be derived from the convergence
obtained for the discrete approximations.

The stopping rule, that is, deciding when n is large enough, is based on how fast E(n)
continue to improve as n increases. Initially, for small but increasing values of n, E(n)
will drop sharply, but for some value of n usually between n = 3 and n = 10,
improvements will start to taper off, with E(n) slowing converging to 0. If you plot E(n)
versus n, the curve will exhibit an elbow, and you can decide to stop at the elbow. See
the elbow rule in chapter 25 (section 3.)

Finally, let us denote as a(k) the limit of a(n, k) as n tends to infinity; b(k) and p(k) are
defined in a similar manner. Keep in mind that the kernels must be ordered by
decreasing value of their associated weights. In the continuous case, a theoretical
question is whether or not these limits exist. With Uniform kernels, p(n, k), as well
as b(n, k) - a(n, k), that is, the length of the kth interval, should both converge to 0,
regardless of k, as n tends to infinity. The limiting quotient represents the value of Y's
density at the point covered by the interval in question. Also, the sum of p(n, k) over
all k's, should still be equal to one, at the limit as n tends to infinity. In practice, we are
only interested in small values of n, typically much smaller than 20.

Find near-optimum with fast step-wise algorithm

A near optimum may be obtained fairly quickly with small values of n, and in practice
this is good enough. To further accelerate the convergence, one can use the following
step-wise algorithm, with the Uniform kernel. At iteration n+1, modify only two adjacent
kernels that were obtained at iteration n (that is, kernels with adjacent support domains)
as follows:

 Increase the upper bound of the left interval, and decrease the lower bound of
the right interval accordingly. Or do the other way around. Note that the
cumulative density within each interval, before or after modification, is always
equal to 1, since we are using uniform kernels.

78

 Adjust the two weights, but keep the sum of the two weights unchanged.

So in fact you are only modifying two parameters (degrees of freedom is 2.) Pick up the
two adjacent intervals, as well as the new weights and lower/upper bounds, in such a
way as to minimize E(n+1).

3. Example

Here, I illustrate some of the concepts explained earlier, with an example based on
simulated data. The source code and the data is provided so that my experiment can be
replicated, and the technical details understood. The 10,000 data points generated
(representing Y) are deviates from a skewed, non-symmetrical negative binomial
distribution, taking integer values between 0 and 110. Thus we are dealing with discrete
observations and distributions. The kernels have discrete uniform distributions, for
instance uniform on {5, 6, 7, 8, 9, 10, 11} or on {41, 42, 43, 44}. The choice of a non-
symmetrical target distribution (for Y) is to illustrate the fact that the methodology also
works for non-Gaussian target variables, unlike the classic central limit theorem
framework applying to sums (rather than mixtures) and where convergence is always
towards a Gaussian. Here instead, convergence is towards the simulated negative
binomial target.

I tried to find online tools to generate deviates from any statistical distribution, but
haven't found any interesting ones. Instead, I used R to generate the 10,000 deviates,
with the following commands:

The first line of code generates the 10,000 deviates from a negative binomial
distribution, the second line produces its histogram with 50 bins (see picture below,
where the vertical axis represents frequency counts, and the horizontal axis represents
values of Y.) The third line of code exports the data to an output file that will first be
aggregated and then used as an input for the script that (1) computes the model
parameters, and (2) computes and minimizes the error E(n).

https://storage.ning.com/topology/rest/1.0/file/get/1177714890?profile=original

79

Histogram for the 10,000 deviates (negative binomial distribution) used in our example

Data and source code

The input data set for the script that processes the data, can be found here. It consists
of the 10,000 negative binomial deviates (generated with the above R code), and
aggregated / sorted by value. For instance, the first entry (104) means that among the
10,000 deviates, 104 of them have a value equal to 0. The second entry (175) means
that among the 10,000 deviates, 175 of them have a value equal to 1. And so on.

The script is written in Perl (you are invited to write a Python version) but it is very easy
to read and well documented. It illustrates the raw Monte-Carlo simulations with 4
discrete uniform kernels. So it is very inefficient in terms of speed, but easy to
understand, with few lines of code. You can find it here. It produced the distribution
(mixture of 4 kernels) that best approximates the above histogram, see picture below.

https://storage.ning.com/topology/rest/1.0/file/get/1180507775?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1180558170?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1183586605?profile=original

80

Approximation of above histogram with mixture model, using 4 uniform kernels

Results

The chart below shows a contour plot for the error E(2), when using n = 2 discrete
uniform kernels, that is two intervals, with lower bounds of the first interval displayed on
the vertical axis, and upper bounds on the horizontal axis. The upper bound of the
second (rightmost) interval was set to the maximum observed value, equal to 110.
Ignore the curves above the diagonal; they are just a mirror of the contours below.
Outside the kernel intervals, densities were kept to 0. Clearly the best kernel (discrete)
intervals to approximate the distribution of Y, are visually around {1, 2, ... , 33} and {34,
..., 110} corresponding to a lower bound of 1, and an upper bound of 33 for the first
interval; it yields an error E(2) less than 0.45.

The contour plot below was produced using the contour function in R, using this data
set as input, and the following code:

The interesting thing is that the error function E(n), as a function of the mixture model
parameters, exhibits large areas of convexity containing the optimum parameters,
when n = 2. This means that gradient descent algorithms (adapted to the discrete space
here) can be used to find the optimum parameters. These algorithms are far more
efficient than Monte-Carlo simulations.

https://www.statisticshowto.datasciencecentral.com/contour-plots/
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
https://storage.ning.com/topology/rest/1.0/file/get/1182661742?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1182661742?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1180758197?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1181636658?profile=original

81

Contour plot showing the area where optimum parameters are located, minimizing E(1)

I haven't checked if the convexity property still holds in the continuous case, or when
you include the weight parameters in the chart, or for higher values of n. It still might, if
you use the fast step-wise optimization algorithm described earlier. This could be the
best way to go numerically, taking advantage of gradient descent algorithms, and
optimizing only a few parameters at a time.

Now I discuss the speed of convergence, and improvements obtained by increasing the
number of kernels in the model. Here, optimization was carried out via very slow, raw
Monte-Carlo simulations. The table below shows the interval lower bounds and weights
associated with the discrete uniform kernel, for n = 4, obtained by running 2 million
simulations. The upper bound of the rightmost interval was set to the maximum
observed value, equal to 110. For any given n, only simulations performing better than
all the previous ones are displayed: in short, these are the records. Using n = 5 does not
significantly improve the final error E(n). Low errors with n = 2, 3, and 4 were
respectively 0.41, 0.31, and 0.24. They were obtained respectively at iterations 7,662
(n = 2), 96,821 (n = 3) and 1,190,575 (n=4). It shows how slow Monte-Carlo converges,
and the fact that the number of required simulations grows exponentially with the
dimension n. The Excel spreadsheet, featuring the same table for n = 2, 3, 4, and 5, can
be found here.

https://storage.ning.com/topology/rest/1.0/file/get/1183671040?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1181591524?profile=original

82

4. Applications

The methodology proposed here has many potential applications in machine learning
and statistical science. These applications were listed in the introduction. Here, I just
describe a few of them in more details.

Optimal binning

These mixtures allow you to automatically create optimum binning of univariate data,
with bins of different widths and different sizes. In addition, the optimum number of bins
can be detected using the elbow rule described earlier. Optimum binning is useful in
several contexts: visualization (to display meaningful histograms), in decision trees, and
in feature selection procedures. Some machine learning algorithms, for instance the one
described in chapter 2, rely on features that are not too granular and properly binned, to
avoid over-fitting and improve accuracy and processing time. These mixture models are
handy tools to help with this.

For more on optimal binning, read this article (2013) or check the relevant R package
smbinning.

https://arxiv.org/abs/physics/0605197
https://www.datasciencecentral.com/profiles/blogs/optimal-binning-for-scoring-modeling-r-package
https://storage.ning.com/topology/rest/1.0/file/get/1183610037?profile=original

83

Predictive analytics

Since this methodology creates a simple model to fit with your data, you can use that
model to predict frequencies, densities, (including perform full density estimation),
intensities, or counts attached to unobserved data points, especially if using kernels with
infinite support domains, such as Gaussian kernels. It can be used as a regression
technique, or for interpolation or extrapolation, or for imputation (assigning a value to a
missing data point), all of this without over-fitting. Generalizing this methodology to
multivariate data will make it even more useful.

Test of hypothesis and confidence intervals

These mixtures help build data-driven intermediate models, something in-between a
basic Gaussian or exponential or whatever fit (depending on the shape of the kernels)
and non-parametric empirical distributions. It also comes with core parameters (the
model parameters) automatically estimated. Confidence intervals and tests of
hypothesis are easy to derive, using the approximate mixture model distribution to
determine statistical significance, p-values, or confidence levels, the same way you
would do with standard, traditional parametric distributions.

Clustering

Mixture models were invented long ago for clustering purposes, in particular under a
Bayesian framework. This is also the case here, and even more so as this methodology
gets extended to deal with multivariate data. One advantage is that it can automatically
detect the optimum number of clusters thanks to its built-in stopping rule, known as the
elbow rule. Taking advantage of convexity properties in the parameter space, to use
gradient descent algorithm for optimization, the techniques described in this chapter
could perform unsupervised clustering faster than classical algorithms, and be less
computer intensive.

Deep learning: Bayesian decision trees

See the subsection on nested mixtures, in section 5, for details.

5. Interesting Problems

We discuss here, from a more theoretical point of view, two fundamental results
mentioned earlier, as well as new topics of interest about mixtures, including stable,
nested mixtures and potential use in deep learning. All mixtures here may be infinite,
and the kernels (in the mixture model) can be correlated.

84

Gaussian mixtures uniquely characterize a broad class of distributions

Let us consider an infinite mixture model with Gaussian kernels, each with a different
mean ak, same variance equal to 1, and weights pk that are strictly decreasing. Then the
density associated with this mixture is

Two different sets of (ak, pk) will result in two different density functions, thus the
representation uniquely characterizes a distribution. Also, the exponential functions in
the sum can be expanded as Taylor series. Thus we have:

Density functions infinitely differentiable at y = 0, can be represented in this way.
Convergence issues are beyond the scope of this chapter.

Weighted sums fail to achieve what mixture models do

It is not possible, using an infinite weighted sum of independent kernels of the same
family, to represent any arbitrary distribution. This fact was established in chapter 10 in
the case where all the kernels have the exact same distribution. It is mostly an
application of the central limit theorem. Here we generalize this theorem to kernels from
a same family of distributions, but not necessarily identical. By contrast, the opposite is
true if you use mixtures instead of weighted sums.

With a weighted sum of Gaussian kernels of various means and variances, we always
end up with a Gaussian distribution (see here for explanation.) With Uniform kernels (or
any other kernel family) we can prove the result as follows:

 Consider a sum of n kernels from a same family. Say n1 of them have (almost)
the same parameters, another n2 of them have the same parameters but different
from the first group, another n3 of them have the same parameters but different
from the first two groups, and so on, with n = n1 + n2 + ...

 Let n tends to infinity, with n1, n2 and so on also tend to infinity. The weighted
sum in each group will converge to Gaussian, by virtue of the central limit
theorem.

 The overall sum across all groups will tend to a sum of Gaussian, and thus must
be Gaussian. This depends on how fast the weights are decaying. Details about
the decaying rate, for the result to be correct, are provided in the previous
chapter.

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://storage.ning.com/topology/rest/1.0/file/get/1184838489?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1184937631?profile=original

85

By contrast, a mixture or any number of Gaussian kernels with different means is not
Gaussian.

Stable mixtures

Just like the Gaussian family is stable with respect to weighted sums, in the sense that
the weighted sum of independent Gaussian is Gaussian (it is indeed the only type of
distribution with finite variance, stable under addition, see previous chapter), is it
possible to find families of kernel distributions that are stable when mixed? In order to
answer this question, it is enough to identify two different kernels X and Z belonging to a
same family, such that the densities (regardless of the kernel parameters) satisfy

with Y also belonging to the same family, regardless of the weight p. Note that X and Z
can be correlated here. Clearly, the Gaussian family is not stable under mixing.

However, there is actually a large number of stable kernels for mixture models. Let g
and h be arbitrary density functions. Then we have the following result:

In short, for mixtures, we have an infinite class of stable kernel families, of all shapes.
Interestingly, if you choose two Gaussian with different means for g and h, then the
resulting kernel (a mixture itself), is stable under mixing. That is, it belongs to the same
family. So a mixture of different Gaussian constitutes a stable family of distributions for
mixtures, but not for weighted sums. Yet the Gaussian kernel itself is not stable for
mixtures, while it is the only stable family for weighted sums.

Note that stable kernels are not limited to two components. It easily generalizes
to n components.

Nested mixtures and Hierarchical Bayesian Systems

In the previous subsection on stable mixtures, we've seen that the components
(kernels) of a mixture can be mixtures themselves. So you can recursively build a tree
of nested mixtures, with as many nodes as you wish, and as deep as you wish. What's
more, all the mixtures, at any level in the hierarchy, can share the same arbitrary family
of distributions (with any number of parameters), each mixture with its own set of
parameters. This is just a standardized deep learning, Bayesian hierarchical system.
For instance, with the notations used in the previous subsection, P(Y), P(Z | Y) and
P(X | Y) have the same distribution, up to a change in parameters. This also works if the
distributions are multivariate.

https://storage.ning.com/topology/rest/1.0/file/get/1186854204?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1189631355?profile=original

86

For a standard treatment of nested mixtures, see here (Deep Gaussian Mixture Models,
paper submitted for publication in November 2017) and here (Hierarchical Mixture
Models for Nested Data Structures, undated).

Correlations

A sum Y = X + Z of independent random variables is always correlated with each of its
summands (unless Y is constant, which is not possible if X and Z are independent.) This
is also true for mixtures. Using the same mixture (with two components) as in the
subsection on stable mixtures, prove the following:

Here and are used to denote the correlation and standard deviation, respectively.
How does this formula generalize to any number of kernels?

A consequence is that for kernels with identical variances (as in the theoretical model),
ordered by decreasing weights, the successive correlations between a component
(kernel) and the target distribution Y, are also decreasing. This is a bit like a principal
component analysis, and it can also be used for data reduction. The difference here is
that the components are created from scratch, using the algorithms described in section
2. In practice, unequal kernel variances are allowed: they boost the speed of
convergence, but the price to pay, depending on the kernel family being used, is that
two different sets of parameters can lead to the same target distribution Y. The solution
may no longer be unique.

Note that if instead of a mixture, we consider the weighted sum Y = pX + qZ,
with X and Z independent, the correlation formulas above (as well as the conclusions)
are still valid; the only thing that changes is the formula for the variance of Y.

https://arxiv.org/abs/1711.06929
https://www.statisticalinnovations.com/wp-content/uploads/Vermunt2005.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1207634209?profile=original

87

12. Heavily Auto-correlated Time Series

We investigate a large class of auto-correlated, stationary time series, proposing a new
statistical test to measure departure from the base model, known as Brownian motion.
We also discuss a methodology to deconstruct these time series, in order to identify the
root mechanism that generates the observations. The time series studied here can be
discrete or continuous in time, they can have various degrees of smoothness (typically
measured using the Hurst exponent) as well as long-range or short-range correlations
between successive values. Applications are numerous, and we focus here on a case
study arising from some interesting number theory problem. In particular, we show that
one of the times series investigated in my article on randomness theory [see Appendix
B, read section 4.1.(c)] is not Brownian despite the appearance. It has important
implications regarding the problem in question. Applied to finance or economics, it
makes the difference between an efficient market, and one that can be gamed.

This chapter it accessible to a large audience, thanks to its tutorial style, illustrations,
and easily replicable simulations. Nevertheless, we discuss modern, advanced, and
state-of-the-art concepts. This is an area of active research.

1. Introduction and time series deconstruction

We are dealing with a series of N observations or events denoted as z1, ..., zN and
indexed by time. The respective times of arrival are denoted as T1, ..., TN. Events are
equally spaced in time, and typically, N is large while time intervals are small, thus
providing a good approximation to a time-continuous process. The time series
discussed here are assumed to have stationary increments with unit variance and zero
mean. We will define what this means exactly when needed.

1.1. Example

The picture below shows typical examples of the time series that we are dealing with in
this chapter. The X-axis represents the time. These are discrete approximations of time-
continuous series found in many contexts, in particular in finance.

88

Smooth (bottom) versus rugged time series (top)

Interestingly, these two examples come from number theory, and are studied later in
this article. In each case, it consists of 22,000 observations. The chart at the top is a
classic example of a Brownian motion, while the one at the bottom exhibits long-range
auto-correlations not found in traditional Brownian motions. The statistical tests
discussed in section 2 help assess which type of time series we are dealing with. .

1.2. Deconstructing time series

The observed time series considered here are typically the result of a cumulative
process. The parent process { yn } causing the pattern usually results (but not always as
we shall see) in { zn } being a Brownian motion or a fractional Brownian motion. The
parent process, sometimes called differential process, is defined as follows:

The square root factors in the above formula are needed, as increments zn - zn-1 are
very small, since { zn } mimics a time-continuous process. For instance, in the above
figure, we have 750 observations in a time interval of length 1. And indeed, if you do the
reverse operation, starting with the parent process -- consisting (say) of independent
and identically distributed random variables with mean 0 and variance 1 -- then

https://storage.ning.com/topology/rest/1.0/file/get/1739211504?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1728291392?profile=original

89

The square root factor is clearly mandatory here, by virtue of the central limit theorem,
to keep the variance finite and non-zero in { z(n) }. For details, see chapter 1 in my book
on applied stochastic processes.

Note:

If your observed { zn } is stationary, proceed as follows. Shift the time axis (that is, shift
the Tn values) so that the new origin is far in the future. This is implemented and
illustrated in my spreadsheet (shared later in this article) via the offset parameter, and it
fixes issues near the origin. Indeed, if { zn } is stationary, then time location does no
matter as far as probabilistic properties are concerned, because of the very definition of
stationarity. By doing so, the parent process { yn } is also (almost) stationary.

1.3. Correlations, Fractional Brownian motions

The traditional setting consists of { yn } being a white noise, that is, a sequence of
independent and identically distributed random variables with mean 0 and variance 1 in
this case. The resulting time-continuous limit of { zn } is then called a Brownian motion.
In most cases investigated here, the yn's are not independent and exhibit auto-
correlations. The resulting process is then called a fractional Brownian motion. And in
some cases, { yn } may not even be stationary. We will show what happens then.
The stronger the long-range correlations in { yn }, the smoother { zn } looks like. The
degree of smoothness is usually measured using the Hurst exponent, described in the
next section.

2. Smoothness, Hurst exponent, and Brownian test

The traditional and simple metric to measure the smoothness in your data is called
the detrending moving average, and it is abbreviated as DMA. It is the mean square
error between your observations and its various moving averages of order m = 1, 2, 3,
and so on. The exact definition can be found in this article (Statistical test for fractional
Brownian motion based on detrending moving, by Grzegorz Sikoraa, 2018, see section
2). Other criteria are also used, such as FA and DFA. A comparison of these metrics
can be found in this article (Comparing the performance of FA, DFA and DMA using
different synthetic long-range correlated time series, by Ying-Hui Shao et al., 2018).
DMA, along with other metrics, are used in our computations.

With the notation DMA(m) to emphasize the fact that it depends on m, we have this
well-known result:

This is an asymptotic result, meaning that it becomes more accurate as m grows to
infinity. The constant H is known as the Hurst exponent. See here (section 2) for

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://arxiv.org/pdf/1803.08553.pdf
https://arxiv.org/pdf/1208.4158.pdf
https://arxiv.org/pdf/1803.08553.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1728171645?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1739508899?profile=original

90

details. H takes on values between 0 and 1, with H = 1/2 corresponding to the Brownian
motion (see also chapter 1 in this book.) Higher values correspond to smoother time
series, and lower values to more rugged data.

Let's N be the number of observations in your time series. We used N = 22,000 in all
our examples, and typically, m of the order N1/2. The above asymptotic result is not
applicable in our context, and we use a slightly different methodology.

2.1. Our Brownian tests of hypothesis

Testing the Brownian character of a time series is typically done using the above
formula with the Hurst exponent. See here and here for details. Our approach here is
different, as we are more interested in small-range and mid-range correlations, than in
long-range ones. We use the notation S(N, m) instead of DMA(m), since this metric also
depends on your sample size N.

We performed two types of tests. The first one is based on S(N, m), and we used m =
100, 200, up to 500. We used the correlation R between { S(N, m) } and { m } computed
on these 5 values of m, with N = 22,000. Since the correlation is very close to 1 in all
examples, the actual test statistic is -log(1 - R). Its distribution can be empirically
computed by simulations. The second test is based on auto-correlations of lag m,
with m = 1, 100, 200, 300, 400 and 500, both for the observations { zn } and the
deconstructed time series { yn }. The result with detailed computations, using 6 time
series A, B, C, D, E, F, are available in my spreadsheet in section 2.2.

2.2. Data

We tested the methodology on different types of time series. The results are illustrated
in the pictures below, and replicable using my spreadsheet. The time series { z(n) }
were constructed as follows:

 Step 1: Create a base process { xn }.
 Step 2: Standardize { xn } so that its mean and variance become 0 and 1

respectively. The resulting sequence is { yn }.
 Step 3: Create the cumulative process { zn } using the formula in section 1.2.

The time Tn was set to T(n) = 600 + n/750. That's what makes the series { zn } look like
continuous in time.

The six time series (simulations) investigated here are constructed as follows. They are
also pictured in section 3.1. Here INT is the integer part function.

 Series A: Use xn+1 = bxn - INT(bxn) with x1 = log 2 and b = (1 + 51/2)/2.

 Series B: Use xn+1 = bxn - INT(bxn) with x1 = /4 and b = (1 + 51/2)/2.

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Brownian_motion
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://arxiv.org/pdf/1803.08553.pdf
https://www.quora.com/Is-there-a-statistical-test-to-test-whether-a-time-series-behaves-like-a-Brownian-motion

91

 Series C: Here xn is a Bernouilli deviate of parameter 1/2. The xn's are
independent.

 Series D: Use xn+1 = b + xn - INT(b + xn) with x1 = 1 and b = 21/2. In addition,
use z'n = zn - n

1/2/2, rather than the standard zn.

 Series E: Use xn+1 = b + xn - INT(b + xn) with x1 = log 2 and b = 16. In addition,
use z'n defined by z'n+1 = z'n + zn+1/(Tn)

3, with z'1 = z1 and T1 =24, rather than the
standard zn.

 Series F: Use xn+1 = b + xn - INT(b + xn) with x1 = 0 and b = (1 + 51/2)/2.

Series A and B are generated by a b-process, while series D, E, and F are generated by
a perfect process. The purpose of this study was to compare b-processes with perfect
processes, and their ability to generate Brownian motions of fractional Brownian
motions. Perfect processes and b-processes were introduced in my article on the theory
of randomness, see Appendix B in this book. Series D is actually pictured in section
4.1(c) in that appendix. Series C corresponds to the classic Brownian motion.

The data and computations are available in my spreadsheet, here. Both columns D and
I represent the same exact { yn } in the spreadsheet. But column D is used to build { zn },
while column I assumes that you only observe { zn } and must compute { yn } from
scratch, by deconstructing { zn }.

3. Results and conclusions

In this section, we summarize our findings. Many illustrations are provided.

3.1. Charts and interpretation

The first three series A, B, C in our picture below feature processes that behave pretty
much like Brownian motions, with an Hurst exponent H equal or close to 1/2. Series A
and B are two realizations of the exact same processes, as b is identical in both cases.
Series C illustrates a perfect Brownian motion, with H = 1/2.

Note that the auto-correlations in the deconstructed time series { yn } rapidly drop to 0,
while the correlations in { zn } are very high, but slowly drop to a value between 0.80 and
0.90 when m = 500. As a result, S(N, m), as a function of m, is a perfect straight line
(m is the order of the moving average; N = 22,000 is the total number of observations.)

https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://storage.ning.com/topology/rest/1.0/file/get/1740793992?profile=original

92

Time series D, E, and F, pictured below, behave very differently from A, B, and C.
Series D exhibits very high auto-correlations in { zn } while auto-correlations in { yn }
slowly drop to 0. It is smoother than A, B, and C. As a result, S(N, m), as a function
of m, is no longer a straight line: it is now a convex function. If this was a financial time
series, it would correspond to a non-efficient market. So the statistical tests described in
section 2 can be used to test market efficiency.

The smoothness is even more pronounced in series E. In this case, auto-correlations in
{ yn } are long-range and do not drop to zero. Series F, to the contrary, is very rugged.
Auto-correlations in { zn } are lower than in the other examples, and S(N, m) is now
mostly concave. There are still long-range auto-correlations if you look at { yn }. We are
dealing with a mixture of smoothness and bumpiness, though the smooth part is not
visible with the naked eye. The rugged part also shows up in the first half of the S(N, m)
curve, which is concave, while the smooth part shows up in the second half of
the S(N, m) curve, which is convex.

https://storage.ning.com/topology/rest/1.0/file/get/1735694819?profile=original

93

3.2. Conclusions

We have explored four types of time series, and characterized them using auto-
correlation indicators:

 Brownian-like with very short-range auto-correlations in the deconstructed time
series { yn }. Examples: series A and B.

 Brownian for series C, with no auto-correlation in the deconstructed time series
{ yn }.

 Smooth, fractional Brownian-like for series D (in series E, { yn } is not stationary,
so it is not Brownian at all).

 Rugged, fractional Brownian-like for series E

The tests presented here can be integrated in a Python library. The initial purpose was
to compare b-processes (series A and B) with perfect processes (series D, E and F).
These two processes have been found here to be very different. Indeed, perfect
processes are so peculiar that the standard division by n1/2 in the construction of { zn }
[section 1.2.] does not work. Factors other than n1/2 must be used, and even then, the

https://storage.ning.com/topology/rest/1.0/file/get/1735698946?profile=original

94

final time series { zn } is not a perfect Brownian motion, not even close: it usually has a
smooth component and long-range auto-correlations in { yn }. This makes perfect
processes less attractive than b-processes, for use in cryptographic applications. But
more attractive, to model inefficient markets or less than perfect randomness.

95

13. Multivariate Time Series

We study some interesting multivariate time series, using a number theory problem
related to the material in Appendix B, and building on the univariate time series studied
in the previous chapter. The multivariate case is discussed in section 2 as well as in the
last section of this chapter, featuring a gaming application.

So many fascinating and deep results have been written about the number (1 + 51/2)/2
and its related sequence - the Fibonacci numbers - that it would take years to read all of
them. This number has been studied both for its applications (population growth,
architecture) and its mathematical properties, for over 2,000 years. It is still a topic of
active research.

I show here how I used the golden ratio for a new number guessing game (to generate
chaos and randomness in ergodic time series) as well as new intriguing results, in
particular:

 Proof that the rabbit constant is not normal in any base; this might be the first
instance of a non-artificial mathematical constant for which the normalcy status is
formally established.

 Beatty sequences, pseudo-periodicity, and infinite-range auto-correlations for the
digits of irrational numbers in the numeration system derived from perfect
stochastic processes

 Properties of multivariate b-processes, including integer or non-integer bases.
 Weird behavior of auto-correlations for the digits of normal numbers (good

seeds) in the numeration system derived from stochastic b-processes
 A strange recursion that generates all the digits of the rabbit constant

This chapter also features techniques to de-correlate time series.

1. Some Definitions

We use the following concepts in this article:

 A normal number is a number that has its digits uniformly distributed. If you pick
up a number at random, its binary digits are uniformly distributed: the proportion
of zero's is 50% and the digits are not auto-correlated, among other things. No

one knows if constants such as , log 2, 21/2, or the Euler constant, are normal or
not.

 Rather than normal numbers, we rely on the concept of good seeds, which is a
generalization to numeration systems where the base b might not be an integer.

http://mathworld.wolfram.com/RabbitConstant.html
http://mathworld.wolfram.com/NormalNumber.html

96

In such systems, the vast majority of numbers (good seeds) have digits that are
distributed according to some specific equilibrium distribution, usually not a
uniform distribution. Also they have a specific auto-correlation structure. Any
number with a different digit distribution or auto-correlation structure is called
a bad seed. Typically, rational numbers are bad seeds. Examples of numeration
systems, with their equilibrium distribution, are discussed here, also in Appendix
B and in my book on stochastic processes.

 The concept of numeration system can be extended to non-integer bases. Two
systems have been studied in detail: perfect processes and b-processes, see
Appendix B. The b-process generalizes traditional numeration systems. In that
system, a sequence xn+1 = bxn - INT(bxn) is attached to a seed x1, where INT
represents the integer part function, and b is a real number larger than 1. The nth
digit of the seed x1 is defined as INT(bxn). When b is an integer, it corresponds to
the traditional base-b numeration system.

 The perfect process of base b is defined by the recursion xn+1 = b + xn - INT(b +

xn) and a seed x1, where b is a positive irrational number. In that system, the nth
digit of the seed x1 is defined as INT(2xn). All seeds including x1 = 0 are good
seeds. Also, xn+1 = nb + x1 - INT(nb + x1). A table comparing b-processes with
perfect processes is provided in section 4.1(b) in Appendix B. Perfect processes
are related to Beatty sequence (see also here.)

 By gentle chaos, we mean systems that behave completely chaotically, but that

are ergodic. By ergodicity, we mean that these systems have equilibrium
distributions, also called attractor distributions in the context of dynamical
systems, or a stable distribution (see chapter 10) in the context or probability
theory. The equilibrium can be found using a very long sequence xn starting with
any good seed, or using x1 only and a large number of different (good) seeds.

2. Digits Distribution in b-processes

It is known that the digits are not correlated, and that the digit distribution is uniform
if b is an integer. If the base b is not an integer, the digits take values 0, 1, 2, and so on,
up to INT(b). Then, the digit distribution and auto-correlation (for good seeds) is known
only for special bases, such as the golden ratio, the super-golden ratio, and the plastic
number: see section 4.2 in Appendix B for details. Also, the lag-k auto-correlation in
base b is equal to the lag-1 auto-correlation in base bk. The picture below shows the
empirical lag-1 auto-correlation for b in]1, 4]. The bumps are real and not caused by
small sample sizes in our computations.

https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
http://mathworld.wolfram.com/BeattySequence.html
https://en.wikipedia.org/wiki/Beatty_sequence
https://en.wikipedia.org/wiki/Ergodicity
https://en.wikipedia.org/wiki/Attractor

97

Figure 1: Lag-1 auto-correlation in digit distribution of good seeds, for b-processes

Figure 1 shows that the lag-1 auto-correlation, for any good seed, is almost always
negative. In particular, it is always negative if b is in]1, 2[. It is minimum for the golden
ratio b = (1 + 51/2)/2 and in that case, its value is (-3 + 51/2)/2. This fact can be proved
using results in Appendix B (see section 3.2.(a) about the golden ratio process.)

Finally, unlike perfect processes that have long range (indeed, infinite range) auto-
correlations just like periodic time series, for b-processes auto-correlations are decaying
exponentially fast. See Chapter 12 for illustrations. For an exact formula for the cross-
correlation between the two components of a bivariate perfect process, see section 3.1
in Chapter 15, or see here.

The digit distribution, for b in]1, 2], is pictured in section 4.3.(b) in Appendix B. If b is in
]1, 2[, the digits are binary and the proportion of zero's is always less than 50%. .

3. Strange Facts and Conjectures about the Rabbit Constant

The rabbit constant R = 0.709803442861291 ... is related to Fibonacci numbers (and
thus to the golden ratio) used to model demographics in rabbit populations. It is typically
defined by its sequence of binary digits in the ordinary binary numeration system (a
special case of b-processes with b = 2) and it has an interesting continued fraction
expansion, see here.

We use here a different approach to construct this number, leading to some interesting
results. First, let us introduce a new constant. We call it the twin rabbit constant, and it is
denoted as R*.

https://math.stackexchange.com/questions/3212314/correlation-between-two-sequences-of-irrational-numbers
http://mathworld.wolfram.com/RabbitConstant.html
https://oeis.org/A000301
https://storage.ning.com/topology/rest/1.0/file/get/2174191063?profile=original

98

The twin rabbit constant R* is built as follows:

 xn = n (-1 + 51/2)/2 - INT(n (-1 + 51/2)/2) for n = 1, 2, and so on
 dn =INT(2xn) is equal to 0 or 1
 R* = d1/2 + d2/4 + d3/8 + d4/16 + d5/32 + ... = 0.6470592723139 ...

The rabbit constant R is built as follows, using the same sequence xn:

 xn = n (-1 +51/2)/2 - INT(n (-1 +51/2)/2) for n = 1, 2, and so on
 g(n) = INT(xn)
 en = g(n+1) - g(n) and is thus equal to 0 or 1
 R = e1/2 + e2/4 + e3/8 + e4/16 + e5/32 + ... = 0.709803442861291 ...

Note that xn is a perfect process with b = (-1 + 51/2)/2. We have the following properties:

3.1. Facts and Conjectures

Here are a few surprising facts:

 The digits dn and en, respectively of R* and R, are identical about 88% of the
time. The exact figure is probably (4 - 51/2)/2.

 If dn and en are different, dm and em are different, with m > n, and for all values
between n and m, the digits are identical, then m - n must be equal to 5, 8 or 13.
This is still a conjecture; I haven't proved it.

 The function g(n) satisfies the recurrence relation g(n) = n - g(g(n-1)) with g(0) =
0. I published the proof in 1988, in Journal of Number Theory (download the
proof).

 The lag-1 auto-correlation in the digit sequence { en } is equal to (1 - 51/2)/2. You
can try to prove this fact, as an exercise. This is lower than the lowest value that
can be achieved with any good seed, in any b-process. We have the same issue
with the sequence { dn }. Thus, the binary digit sequences { en } and { dn } of
the rabbit and twin rabbit numbers cannot generate a good seed (or normal
number) in any base.

 The proportion of digits equal to zero in the rabbit number, is (3 - 51/2)/2, also too
low to be a good seed, regardless of the base. For the twin rabbit number, the
proportion is 50%.

It would be interesting to study the more general case where b is any positive irrational
number, constructing twin numbers using the same methodology, and analyze their
properties. Some of the candidate numbers include those listed in the Beatty sequence.
Here we only focused on b = (-1 + 51/2)/2. As a general result, the binary digits of the
twin numbers generated this way, can never generate a good seed in any base,
because they are too strongly auto-correlated.

https://storage.ning.com/topology/rest/1.0/file/get/2177532845?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2177532845?profile=original
http://mathworld.wolfram.com/BeattySequence.html

99

4. Gaming Application

We use this technology in a generic number guessing game. The gaming platform
features pre-computable winning numbers, and payout based on the distance between
guesses and winning numbers. This system is described in chapter 18. It mimics a
stock market or lottery game depending on the model parameters. At its core, among
many sequences, we also use the golden ration b-process { xn } described in section 3.2
in the Appendix. Here b = (1 + 51/2)/2. Of course, we start with a good seed.

In order to make the number guessing process more challenging, we de-correlate the
digits. For this purpose, we consider two options.

4.1. De-correlating Using Mapping and Thinning Techniques

This option consists of de-correlating the sequence { xn }. The first step is to map { xn }
onto a new sequence { yn }, so that the new equilibrium distribution becomes uniform on
[0, 1]. This is achieved as follows:

If xn < b -1, then yn = xn / (b - 1) else yn = (xn - (b-1)) / (2-b).

Now the { yn } sequence has a uniform equilibrium distribution on [0, 1]. However, this
new sequence has a major problem: high auto-correlations, and frequently, two or three
successive values that are identical (this would not happen with a random b, but
here b is the golden ratio -- a very special value -- and this is what is causing the
problem.)

A workaround is to ignore all values of xn that are larger than b - 1, that is, discarding yn
if xn is larger than b - 1. This is really a magic trick. Now, not only the lag-1 auto-
correlation in the remaining { yn } sequence is equal to 1/2, the same value as for the full
{ xn } sequence with b = 2, but the lag-1 auto-correlation in the remaining sequence of
binary digits (digits are defined as INT(byn) is also equal to zero, just like for ordinary
digits in base 2.

4.2. Dissolving the Auto-correlation Structure Using Multivariate b-processes

An interesting property of b-processes is the fact that auto-correlations in { xn } are
decaying exponentially fast. In fact, for any good seed, the lag-k auto-correlation in
base b is equal to the lag-1 auto-correlation in base bk. Note that if b is an integer, the
lag-1 auto-correlation is equal to 1/b.

Another interesting property is the fact that two sequences { xn } and { yn } using
different (good) seeds x1 and y1, and the same base b, are independent if the seeds are
independent in base b. The concept of independent seeds will be formally defined in a
future article, but it is rather intuitive. For instance, the seeds x1 and y1 = x3 are not
independent, regardless of the base.

100

Thus, in order to dilute the auto-correlations by a factor bk, one has to interlace k
sequences using the same base b for each sequence, but using k independent good
seeds, one for each sequence. Doing so, we are actually working with multivariate b-
processes that are not cross-correlated. The same mechanism can be applied
recursively to each of the k sequences, eventually resulting in multiple layers of nested
sequences (a tree structure) to further reduce auto-correlations. Finally, re-mapping the
resulting process may be necessary to obtain a uniform equilibrium distribution.

Note that if b is an integer, there is no need to de-correlate as the sequence of digits is
automatically free of auto-correlations. Also, in that case, no re-mapping is needed as
the equilibrium distribution is uniform to begin with.

101

14. Statistical Tests: Summary

We have explored many statistical tests in the previous chapters. Here is a summary.
More generic model-free tests are discussed in Part 5 of this book.

Many of the following statistical tests are rarely discussed in textbooks or in college
classes, much less in data camps. Yet they help answer a lot of different and interesting
questions. I used most of them without even computing the underlying distribution under
the null hypothesis, but instead, using simulations to check whether my assumptions
were plausible or not. In short, my approach to statistical testing is model-free, data-
driven. Some are easy to implement even in Excel. Some of them are illustrated here,
with examples that do not require statistical knowledge for understanding or
implementation.

This material should appeal to managers, executives, industrial engineers, software
engineers, operations research professionals, economists, and to anyone dealing with
data, such as biometricians, analytical chemists, astronomers, epidemiologists,
journalists, or physicists. Statisticians with a different perspective are invited to discuss
my methodology and the tests described here. In my case, I used these tests mostly in
the context of experimental mathematics, which is a branch of data science that few
people talk about. In that context, the theoretical answer to a statistical test is
sometimes known, making it a great benchmarking tool to assess the power of these
tests, and determine the minimum sample size to make them valid.

I provide here a general overview, as well as my simple approach to statistical testing,
accessible to professionals with little or no formal statistical training. Detailed
applications of these tests are found in my recent book and throughout this book.
Precise references to these documents are provided as needed, in this article.

1. General Methodology

Despite my strong background in statistical science, over the years, I moved away from
relying too much on traditional statistical tests and statistical inference. I am not the only
one: these tests have been abused and misused, see for instance section 3 in chapter
28, on p-hacking. Instead, I favored a methodology of my own, mostly empirical, based
on simulations, data- rather than model-driven. It is essentially a non-parametric
approach. It has the advantage of being far easier to use, implement, understand,
and interpret, especially to the non-initiated. It was initially designed to be integrated in
black-box, automated decision systems. Here I share some of these tests, and many
can be implemented easily in Excel. Also keep in mind that the methodology presented
here works with data sets that have at least a few thousand observations. The bigger
the better.

https://en.wikipedia.org/wiki/Experimental_mathematics
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

102

The concept

I illustrate the concept on a simple problem, but it generalizes easily to any test. Here
you want to test whether a univariate data set consists of numerical values
(observations) that follow a normal distribution, or not. In order to do so, in a nutshell,
you can proceed as follows:

 Normalize your data, so that the mean is zero and variance is equal to one.
 Simulate 10 samples (of same size as your data set) from a normal distribution of

mean zero and variance one. The easiest way to do this, in Excel, might be to
simulate 25 uniform deviates with the function RAND, then average and
normalize, for each normal deviate being created. There are more efficient ways
to do it though, see here.

 Compute the percentile distribution for your normalized data, as well as for the 10
simulated samples that you created. Easy to do in Excel, see section 2.4.

 Look at how much variance there is between the percentiles distributions
computed on the 10 simulated data sets. This will give you an idea of what the
natural or internal variance is.

 Compare the percentile distribution computed on your real data, with those from
the simulated data. Does it look like the curve is similar to those produced with
the simulated data? Or is there some kind of departure? Maybe it clearly grows
more slowly initially, then catches up later, compared to the 10 curves resulting
from simulation?

Ideally, you would want to have more than one real data set, to compare variations
between real samples, with variations between simulated samples, and then cross-
differences between real data and simulated samples. If your data set is large enough
(say 3,000 observations) one way to achieve this is to split your data set into three
subsets.

Now that you have an idea of the principles, we can dive in the details. The above test
is one of those described in more detail in the next section, with Excel spreadsheets to
illustrate the computations.

2. Off-the-beaten-path Statistical Tests

Below is our selection of unusual statistical tests, as well as some well-known tests
presented in an non-standard (yet simpler) way.

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

103

2.1. Testing for symmetry

This test is used to check if the underlying distribution of your data has the same shape
(mirrored) both on the left side and the right side of the median. It can be performed as
follows.

One can compare R(x) = | 2 Median - P.x - P.1-x | with that of a symmetric distribution, for
various values of x between 0 and 0.5, to check if a distribution is symmetric around the
median. The theoretical value of R(x) is zero regardless of x, if your empirical
distribution is symmetric. Here P.x represents the x-th percentile. Other tests for
symmetry can be found here. See illustration in chapter 10.

2.2. Testing for un-imodality and other peculiarities

To test if a distribution is unimodal, several tests have been devised: the bandwidth test,
the dip test, the excess mass test, the MAP test, the mode existence test, the run test,
the span test, and the saddle test. The dip test is available in R. Read more here. Some
of these tests, in case of multimodality, can tell you how many modes (or clusters) are in
your data sets.

Other potential tests could be used, for instance to check if your data

 Has an unbounded support domain (values can be arbitrarily large in absolute
value given a large enough sample size),

 If its support domain has some gaps (no value can exist in some particular sub-
interval),

 If its empirical density function (histogram) is bounded (an example of unbounded
density is f(x) = 0.25 / |x|1/2 with x in [-1, 1])

 Or test for infinite mean or infinite variance

2.3. Testing whether or not there is some structure in your data

I investigated a metric that measures the presence or absence of a structure or pattern
in a data set. The purpose is to measure the strength of the association between two
variables, and generalizes the correlation coefficient in a few ways. In particular, it
applies to non-numeric data, for instance a list of pairs of keywords, with a number
attached to each pair, measuring how close to each other the two keywords are. You
would assume that if there is no pattern, these distance distributions (for successive
values of the sample size) would have some kind of behavior uniquely characterizing
the absence of structure, behavior that can be identified via simulations. Any deviation
from this behavior would indicate the presence of a structure. See here for more details.

2.4. Testing for normality, with Excel

Traditional tests exist, for instance Chi-square or Kolmogorov-Smirnov. This also works
for any distribution, not just the normal (Gaussian) one. And you can use it to compare
too sets of data, or two-subsets corresponding to two different time periods, to check

https://stats.stackexchange.com/questions/50603/how-do-i-test-for-a-symmetric-distribution
https://cran.r-project.org/web/packages/diptest/index.html
https://en.wikipedia.org/wiki/Multimodal_distribution
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1038
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
https://www.statisticshowto.datasciencecentral.com/chi-square-test-normality/
https://www.statisticshowto.datasciencecentral.com/kolmogorov-smirnov-test/

104

whether they have the same distribution or not, regardless of what that distribution is.
Instead of comparing empirical PDF's (probability distribution function) as in
Kolmogorov-Smirnow, I use empirical percentiles (the inverse of the PDF), which are
very easy to compute in Excel. See illustration (with Excel spreadsheet) in this article. I
call it the percentile test. I typically use it after normalizing the data, so that the median
value is zero.

Among other things, I have used the percentile test to solve stochastic integral
equations, that is, to find the exact equilibrium distribution attached to some chaotic
dynamical systems. See my previous book, page 18 (download the spreadsheet listed
below the chart on page 18) and page 74.

Note: A curious normality test consists in splitting your data Z in two subsets X and Y of
same size, and testing whether (X + Y)/21/2 has the same distribution as Z. Explanations
are provided in chapter 10, and it works as long as the underlying theoretical variance is
not infinite.

2.5. Tests for time series

Many assumptions could be tested, when dealing with time series observations.
Sometimes, it is useful to first normalize the data by removing the trend, periodicity,
outliers, and some noise. You could test if the data exhibits change points, that is, a
sudden and long-term increase or decrease in observed values, usually the result of
some event that took place at some point in time; see here for illustration. Or whether
the change is more subtle, for instance there is no discontinuity, but the slope (trend)
suddenly changes at one point. Or test whether some auto-correlations (lag-1, lag-2,
and so on) are present. You can even compare the whole correlation structures of two
paired time series, to check if they come from the same statistical model. Or you can
perform model fitting: for instance, you suspect that your data follows an ARIMA time
series model; then

 You estimate the coefficients of that tentative model,
 Then simulate values from the exact same model with same coefficients (it is

much better to simulate several instances of that model to get an idea of what
natural variations between same-model time series should be),

 Then test - by comparing the correlation structure in the observed and simulated
data - whether the model is a good fit,

 Then try again with a different model to see if you can get a better fit.

In my case, I used some home-made tests to check whether a time series exhibits
some sort of periodicity, and, as a result, I found that pseudo-random generators
available in some programming languages, have a very short period, making them unfit
for industrial applications. See my previous book, page 33.

https://www.datasciencecentral.com/profiles/blogs/new-perspective-on-central-limit-theorem-and-related-stats-topics
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/weird-mathematical-object-fractional-exponential
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

105

2.6 Gap test, with Excel

Along with the percentile test described in section 2.4, this is one of my favorite tests to
detect patterns. It is best illustrated in chapter 9. In essence, the gap test consists of
measuring the largest gap with no observation, in a set of ordered values
(observations). That is, the largest interval with no data point. It generalizes to higher
dimensions, where the gap can be a square or circle with no data point in it. The exact
distribution of the gap area or length, assuming data points are uniformly distributed, is
known. If the data points take on integer values only, the distribution is a geometric one,
readily available in Excel. More on this in my previous book, page 84. The test can also
be used for outlier detection: a point too far away from its nearest neighbor could be an
outlier.

2.7. Sparsity test

Is your data voluminous but sparse, a bit like the night sky where trillions of stars
occupy a tiny portion of the sky? Or is it full of holes of moderate sizes, like Gruyere
cheese? We tested this assumption in a setting that is similar to fractional factorial
tables. You can check it out in my previous book, page 71.

Along the same topic, are apparent patterns real, or an illusion? For instance, in the
night sky, many stars seem to be very close to each other despite the vast emptiness of
the universe. Are there too many of them (called twin points) to just be a coincidence?
An answer to this question, based on a statistical test, is provided here. See also a
related problem about Mars craters, here.

2.8. Elbow test

The elbow test is traditionally used as a rule-of-thumb to detect the number of clusters
when implementing a clustering algorithm, see section 3 in chapter 25 for illustration. I
also used it to determine how many digits are accurately computed, when using high
precision libraries available in some programming language. The answer was far below
what is advertised in the manuals, especially when working with a mathematically ill-
conditioned problem that requires an unstable iterative algorithm for computations, as in
some chaotic dynamical systems. See my book, page 48.

2.9. Testing for accelerating growth

This could be used, for instance to check if glaciers are melting down at an accelerating
pace. It is based on the distribution of records, and in particular, the arrival times of
these records. Again simulations can be performed for this test. It is illustrated in section
2 in chapter 28, focusing on the distribution of arrival times of extreme events: the exact
distribution, in the absence of growth, does not depend on the distribution of the
observations (neither observed nor extreme values) making it a pretty generic non
parametric test.

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-
https://www.datasciencecentral.com/profiles/blogs/mars-craters-an-interesting-stochastic-geometry-problem
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

106

2.10. Run test

I used the run test in the context of stock trading, to assess how likely a run (say, 6
successive days with stock prices going up) is followed by a reversal, trying to find
patterns to increase gains. The same can apply to sport bets. In general, run tests can
be used in situations in which the underlying process behaves like a Markov chain. It
helps you assess the probability of getting a + or - after any sequence of ups and
downs, such as ++-+---+-+++. This test has also been used (among many other tests) to

check if the distribution of the digits of some number (say in base 2) appears to be
uniform and without auto-correlations. Note that in the case of a random walk, for
instance when throwing a dice, even after an extremely improbable run of 1,000 heads,
the chance of obtaining an head next time is still 50%. The same seems to be true with

the digits of in base 2: after any sequence of 1,000 consecutive digits all equal to 1,
the chance that the next digit is 1, is also 50%. This is indeed true regardless of the
combination of 0's and 1's in the previous 1,000 digits. So the run test can be used to
measure departures from randomness.

https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test
https://www.datasciencecentral.com/page/search?q=markov+chain

107

15. Modern Resampling Techniques

This crash course features a new fundamental statistics theorem -- even more important
than the central limit theorem -- and a new set of statistical rules and recipes. We
discuss concepts related to determining the optimum sample size, the optimum k in k-
fold cross-validation, bootstrapping, new re-sampling techniques, simulations, tests of
hypotheses, confidence intervals, and statistical inference using a unified, robust,
simple approach with easy formulas, efficient algorithms and illustration on complex
data.

Little statistical knowledge is required to understand and apply the methodology
described here, yet it is more advanced, more general, and more applied than standard
literature on the subject. The intended audience is beginners as well as professionals in
any field faced with data challenges on a daily basis. This chapter presents statistical
science in a different light, hopefully in a style more accessible, intuitive, and exciting
than standard textbooks, and in a compact format yet covering a large chunk of the
traditional statistical curriculum and beyond.

In particular, the concept of p-value is not explicitly included in this tutorial. Instead,
following the new trend after the recent p-value debacle (addressed here by the
president of the American Statistical Association), it is replaced with a range of values
computed on multiple sub-samples.

Our algorithms are suitable for inclusion in black-box systems, batch processing, and
automated data science. Our technology is data-driven and model-free. Finally, our
approach to this problem shows the contrast between the data science unified, bottom-
up, and computationally-driven perspective, and the traditional top-down statistical
analysis (see here) consisting of a collection of disparate results that emphasizes the
theory.

Contents

 Re-sampling and Statistical Inference
o Main Result
o Sampling with or without Replacement
o Illustration
o Optimum Sample Size
o Optimum K in K-fold Cross-Validation
o Confidence Intervals, Tests of Hypotheses

 Generic, All-purposes Algorithm
o Re-sampling Algorithm with Source Code
o Alternative Algorithm
o Using a Good Random Number Generator

https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://en.wikipedia.org/wiki/Resampling_(statistics)

108

 Applications
o A Challenging Data Set
o Results and Excel Spreadsheet
o A New Fundamental Statistics Theorem
o Some Statistical Magic
o How does this work?
o Does this contradict entropy principles?

 Conclusions

1. Re-sampling and Statistical Inference

We are dealing with a set of N (possibly multivariate) observations, called population.
We want to split it into M subsets called sub-samples, each with n observations. In each
sub-sample, observations may or may not be duplicated. The total number of data
points in all the sub-samples is nM. Usually, nM is less than or equal to N, however
here, we allow nM to be of any size, even larger than N. The purpose is to study the
empirical distribution of some statistical quantities of interest, such as mean, variance,
percentiles, correlations, mean squared error, and so on. In particular, we want to
determine how large the sample size N must be, in order to achieve a pre-specified
level of accuracy, typically measured by the width of some confidence intervals.

In each sub-sample, observations are drawn from the population, either with or without
replacement. Whenever possible, drawing without replacement is the preferred method
as it leads to maximum variance reduction, with no duplicated observations. Interesting
cases include:

 Leaving-one-out method: Each sub-sample consists of N-1 distinct
observations. We just remove one observation in turn from the population, to
create each sub-sample.

 Adding-one-over method: This is the dual version of the leaving-one-out
method, but it is never mentioned in the literature. Each sub-sample consists
of N+1 observations, with N distinct observations. One observation (different for
each sub-sample) is duplicated in each sub-sample.

 Bootstrapping: Each sub-sample consists of N observations, drawn with
replacement from the original population. So the proportion of duplicated
observations in each sub-sample is high. The expected number of distinct
observations in each sub-sample is of the order (1 - e-1) N.

 K-fold cross-validation: In this machine learning technique, the original data set
is split into K subsets, with one of them used for validation, and K-1 used for
training. Typically, sampling is done without replacement, and the sub-samples
form a partition of the original data set.

If you want to measure some quantity T, say the mean value, you can do it using the
entire population with N observations, or using the M sub-samples. The formula below
is fundamental to solve most statistical inference problems in this context.

109

1.1. Main Result

If V denotes the variance of some estimated quantity T using the entire population,
and W the variance using the M sub-samples, then:

Here is a positive constant, and the weight wk represents the multiplicity of the kth
observation across the M sub-samples. It is assumed that the N observations are
independently and identically distributed, and that T can be computed as a combination
of sums over the observations: this is the case for the estimated mean, variance,
correlation, and many other estimators. Even when these assumptions are violated, the
above results can still be used as a rule of thumb, thanks to the central limit theorem.
An example is discussed in section 3.

We are mostly interested in the ratio F. In particular, if sampling is done without
replacement, then F = N1/2/(nM)). The quantity F represents the ratio of the confidence
interval widths, when comparing the re-sampled estimate (numerator) versus the
population estimate (denominator). Thus F is a precision indicator used to determine
ideal sample sizes. The smaller F, the better. Note that F is always larger or equal to 1.
Also, the ratio of two F's associated with two different re-sampling schemes can be used
to determine which one is the most efficient.

1.2. Sampling with or without Replacement

We have two cases:

 Without replacement. There is no duplicate observation in the sub-samples: in
this case, all the weights are equal to 0 or 1, and nM is smaller or equal to N. In
the cross-validation example, nM = N and all weights are equal to 1.

 With replacement. There may be duplicates: in this case, some weights are
higher than 1, penalizing the variance W(T).

In both cases, the weights can be explicitly and efficiently computed at once for multiple
values of n, using the algorithm in section 2. Thus, it is easy to compute F. In addition,
we have the following results:

If sampling without replacement, then

https://storage.ning.com/topology/rest/1.0/file/get/2229137744?profile=original

110

If sampling with replacement, on average we have:

Also, in that case, the expected number of distinct (non-duplicate) observations across
the M sub-samples, is equal to

These results are easy to prove. The proof is left as an exercise, see also here.

1.3. Illustration

Here we illustrate the computation with the following simple example, with N = 5, M = 2,
and n = 3:

 Population = (1, 2, 3, 4, 5)
 Sample 1 = (2, 4, 4)
 Sample 2 = (2, 4, 5)

In this case, w1 = 0, w2 = 2, w3 = 0, w4 = 3, w5 = 1.

1.4. Optimum Sample Size

The F, V and W statistics can be used to determine the minimum sample size needed to
achieve the desired level of accuracy for the estimator T. The width of your confidence
interval being proportional to N-1/2, by multiplying N by a factor 4, you increase accuracy
by a factor 2.

Another option to determine the sample size, especially when some of the assumptions
are violated (the fact that the observations must be identically and identically distributed)
consists in extrapolating the variance V or W as N increases, to find when N is large
enough so that (say) V is small enough. This is discussed in section 3.

1.5. Optimum K in K-fold Cross-Validation

The number of sub-samples used in cross-validation is usually denoted as K (rather
than M) and one of the main problems is to determine the optimum K. Typically, K is
small, between 2 and 20. The statistics T of interest, in this case, is a goodness-of-fit
metric, for instance the mean squared error for predictions computed on the control sub-
sample. The model is trained on K-1 sub-samples, called training sets. One approach to
this problem is to plot T as a function of K, and check when an increase in K stops

https://math.stackexchange.com/questions/3209949/expected-proportion-of-distinct-observations-when-sampling-n-observations-with
https://storage.ning.com/topology/rest/1.0/file/get/2229284188?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229289046?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229302326?profile=original

111

producing a significant improvement (error reduction) in T. Then you reached the
ideal K. This can be automated using our elbow rule algorithm (see section 3 in chapter
25.)

1.6. Confidence Intervals, Tests of Hypotheses

Confidence intervals (CI) for an estimate T are easy to obtain. The first step consists of
computing the empirical percentiles for T, based on M sub-samples, each
with n observations. Then, a 90% CI is defined as [T.05, T.95] with

 T.05 being the 5th percentile for T, computed across the M sub-samples. If M =
100, then T.05 is the fifth lowest value of T among the 100 computed values (one
for each sub-sample.)

 T.95 being the 95th percentile for T, computed across the M sub-samples. If M =
100, then T.95 is the fifth highest value of T among the 100 computed values (one
for each sub-sample.)

To narrow the width T.95 - T.05 of the 90% confidence interval, one must increase n and
N. To test with a 90% confidence level whether an estimate T is equal to a particular,
pre-specified value t, one has to check whether t is in the 90% confidence interval
[T.05, T.95]. All of this is illustrated in section 3.

2. Generic, All-purposes Algorithm

In this section we share a generic algorithm that performs most of the computations
described earlier.

2.1. Re-sampling Algorithm with Source Code

This algorithm generates the M samples, each with n observations, based on the
original data set with N observations. It can perform re-sampling with or without
replacement, and covers all cases. In the case of re-sampling without replacement, it
sequentially browses the list of N observations, incrementally building the sub-samples
by adding one new observation each time. Thus each sub-sample consists of a block
of n consecutive observations from the original data set. This feature is useful when
processing time series data. The sub-samples contain duplicate observations if and only
if nM is larger than N.

The algorithm computes the estimate T for each sample and each value of n, as well as
the weights w1, w2, and so on, for each n. Here, T is the mean. In section 3, a different
version computes the correlation for bivariate data, instead of the mean. The
computations are done efficiently: the computational complexity is O(nM).

112

Source code:

See picture below, or download the text file version here.

The above version performs re-sampling without replacement. For re-sampling with
replacement, replace the line

$idx=(int(($sample*$N)/$M)+$n)%$N

by

$idx=int($N*rand()).

Notes:

 $weight2 is the sum of squared weights at iteration n

 $used is the number of distinct observations in the M sub-samples at iteration n

https://storage.ning.com/topology/rest/1.0/file/get/2229955300?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229951445?profile=original

113

 % is the symbol representing the modulo operator

In section 2.2 we discuss sampling without replacement, picking up observations
randomly rather than sequentially.

2.2. Alternative Algorithm

If the N observations in the original population are somewhat clustered, it is better not to
create sub-samples consisting of blocks of successive observations, when sampling
without replacement. In this case, one can proceed iteratively as follows:

 Initialization: Iteration k = 1. Select the first observation randomly among
the N observations in the original population. Assign it to sub-sample number 1.

 Loop: At iteration k+1, randomly and repeatedly pick up an observation among
the N observations in the original population, until you find one that has not been
picked up already in a previous iteration. Assign the newly found observation to
segment number (k+1) modulo M.

 Stop when each sub-sample has n observations.

The number of trials required at iteration k, to find an observation that has not been
picked up already in a previous iteration, is equal to N / (N - k + 1) on average. Thus the
computational complexity of this procedure is

2.3. Using a Good Random Number Generator

Modern programming languages and even Excel provide reliable pseudo-random
number generators, capable of generating up to 1015 distinct values. This limit is due to
machine precision, but it is more than enough for our purpose, especially since re-
sampling methods are particularly useful for relatively small data sets.

However, Perl is a notable exception, capable of generating only 32,767 distinct
pseudo-random numbers; see here for details. This is why we created our own
generator. With our generator, the kth deviate is equal to the fractional part of kb log(k),
with b = (1 + 21/2)/7. These deviates are uniformly distributed on [0, 1] and exhibit no
auto-correlation. Proving the random character of these deviates is an interesting and
difficult number theory problem, beyond the scope of this tutorial.

We also used our generator to create the original data set with N observations, in
section 2.1.

https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://storage.ning.com/topology/rest/1.0/file/get/2229575336?profile=original

114

3. Applications

In this section, we use a more complex data set to illustrate the concepts discussed
earlier, to obtain new theoretical results, and to create new statistical recipes. The
framework described here could be called statistics 2.0. One amazing feature discussed
in section 3.4 is a recipe to design an estimator more accurate than the best possible
estimator available for a fixed value of N, without increasing N (the number of
observations) in essence seemingly working with much more information than the data
set actually contains, as if N was larger than it actually is.

3.1. A Challenging Data Set

The data set consists of N bi-variate observations (xk, yk) with k = 1, 2, ..., n. It is built
as follows: xk is the fractional part of b1k, and yk is the fractional part of b2k, with b1 = - 1
+ 51/2/2 and b2 = 2/51/2. The data (the two variables) is stored in two

arrays a1[] and a2[], using the code below:

The data set is a realization of a bi-variate perfect process with N = 100,000 points.
These processes are studied in chapter 13 and appendix B. In particular, each of the
two variables exhibits strong, long-range (indeed, infinite range) auto-correlations. The
exact values of these auto-correlations are known, making this data set a good
candidate to benchmark statistical tests. The cross-correlation T between the two
variables is also known and equal to

In particular, with the values of b1 and b2 chosen here, the cross-correlation, as N tends
to infinity, is equal to T = 1/20, see here. Pretty close to zero, but distinct from zero. The
brackets in the above formula represent the fractional part function.

We make statistical inference about the cross-correlation T, using M = 20 sub-samples,
each containing up to n = 5,000 points. Sampling is done without replacement,
and nM = N. So there is no duplicate observation in the sub-samples. The source code,
adapted from section 2.1, becomes

https://math.stackexchange.com/questions/3212314/correlation-between-two-sequences-of-irrational-numbers
https://storage.ning.com/topology/rest/1.0/file/get/2279254084?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2280812814?profile=original

115

The source code is available in text format, here.

3.2. Results and Excel Spreadsheet

We computed the cross-correlation T for all sub-sample sizes n between n = 2 and n =
5,000, for the M = 20 sub-samples, using the code in section 3.1. We then computed (in
Excel), for each n, the percentiles T.05 and T.95, as well as the width L = T.95 - T.05 of the
confidence intervals, across the M sub-samples. The results are available in this
spreadsheet. You can change the percentile thresholds (0.05 and 0.95) in the
spreadsheet to interactively visualize the impact on the charts. These thresholds are
stored in cells AC2 and AD2. The two charts of interest are shown below.

https://storage.ning.com/topology/rest/1.0/file/get/2280461125?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281515783?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281515783?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2280410248?profile=original

116

Figure 1: Width L of the confidence interval for T, as a function of n (the dotted line is

an approximation)

Figure 2: Upper and lower bounds of the confidence interval for T, as a function of n

The true, theoretical value of T (when N is infinite) is T = 1/20 = 0.05. The charts speak
for themselves: they provide the confidence intervals and suggest that indeed, based on
our computations, a value of 0.05 for T is highly plausible, and that T is clearly not equal
to 0 (it would be zero if the two irrational bases b1 and b2 used to build our data set,
were not related.) But there is much more to that, as we shall see in section 3.3 and
3.4.

Note that we did not use any statistical theory to arrive to our conclusions, not even the
concept of random variable, statistical distribution, or the central limit theorem.

https://storage.ning.com/topology/rest/1.0/file/get/2281769557?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281784263?profile=original

117

3.3. A New Fundamental Statistics Theorem

In the example in section 3.2, the assumptions of the central limit theorem are severely
violated, in particular, the observations are not independent at all. In other cases,
observations may have different variances and are not identically distributed. Yet, the
width L of the confidence interval (L = T.95 - T.05, using M = 10 or M = 20) is very well
approximated by a power function of n as illustrated in Figure 1. Actually, this is also
true with L = T.90 - T.10, and indeed, with any percentile thresholds (that is, with any
confidence level, to use the standard statistical terminology.)

In our example in Figure 1, the relationship is L = 8.781 / n0.894 which becomes more
and more accurate as n increases (see the dotted line.) Generally speaking, the
relationship is L = A/nB, where A and B are two constants that depend on your data set.
This leads to the following theorem:

Theorem: The width L of any confidence interval is asymptotically equal (as n tends to
infinity) to a power function of n, namely L = A / nB where A and B are two positive
constants depending on the data set, and n is the sample size. We discuss here the
conditions required for the theorem to be valid.

The exponent B bears some resemblance with the Hurst exponent in time series,
see here and here. The standard case, when the data is well behaved and satisfies the
assumptions of the central limit theorem (CLT), yields B = 1/2. The constant A is linked
to the estimated variance attached to a single observation, and is further discussed in
chapter 16. Any departure from B = 1/2 indicates that the data has some patterns, and
that the CLT assumptions are violated. The same is true with the Hurst exponent. In
some sense, the above theorem is a generalization of the CLT. Other generalizations
exist, see for instance here, but the one featured in our theorem is of an entirely
different nature. It can be used to very accurately determine the value of n (and thus N)
needed to achieve a specific level of accuracy for an estimator T, even when the CLT
assumptions are severely violated.

In our example, we picked up T.05 and T.95, as opposed to (say) T.25 and T.75, because
the thresholds 0.05 and 0.95 provide a better fit with the power function, and especially,
a more symmetrical confidence interval. Finally, L is the difference between two values
of the empirical percentile distribution for T. This distribution is known to converge to
that of a normal distribution under certain conditions, and this fact can be used if you
are interested in digging into the mathematical details. Note that T.95 and T.05 are not
independent random variables.

You can use our theorem on smaller data sets, for instance with M = 10 and n = 2,000,
that is, N = 20,000 observations.

https://www.datasciencecentral.com/profiles/blogs/confidence-intervals-without-pain
https://www.datasciencecentral.com/profiles/blogs/long-range-correlation-in-time-series-tutorial-and-case-study
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Detrended_fluctuation_analysis
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem

118

3.3. Some Statistical Magic

With N between 98,000 and 100,000 observations, the value for the cross-correlation
estimator T discussed in section 3.1 and 3.2 is quite stable, and oscillates between
0.049962093 and 0.050143847, with an average of 0.050039804. The exact value
(when N is infinite) is 0.050000000. There is an intuitive way to get a much more
precise estimate without increasing the sample size, and this applies to any data set
and any estimator.

Let us look at the value computed on each of the 20 sub-samples, when n is between
2,500 and 5,000, using increments of 1,000 in n. In particular, let us focus on the 5%
and 95% percentiles (T.05 and T.95). The median value computed on these 52 percentile
data points is 0.049992500.

Note that in practice, the sample size N is determined in advance. You have to assume
that the best possible estimate is obtained by taking all the 100,000 observations into
account. In our case, this yields -- by pure chance -- an unexpectedly very good value
of 0.050011877, more accurate than (say) with N = 99,999 or 99,998, but less accurate
than with N = 98,900 (with N = 98,900 the estimated value is 0.050002867 and it is one
of the very best that you can get from the data set.) Of course, in practice, on a real
data set, there is no way to known that N = 98,900 yields a more accurate value
than N = 100,000, and you won't know if N = 100,000 works better or not than N =
99,999. By contrast, the technique described in the previous paragraph is replicable,
and also provides an incredibly accurate value.

Let us summarize our findings:

 Without using our trick, expect to get an estimated value of 0.050039804
 With our trick, the estimated value is 0.049992500
 The true value is 0.050000000

The error reduction factor with our trick is | 0.050039804 - 0.050000000 | /
| 0.049992500 - 0.050000000 | = 5.3. If you were to get that kind of improvement simply
by increasing the sample size, you would need a sample size about 5.3 x 5.3 = 28 times
bigger. Our trick essentially gives you one extra digit of accuracy, without increasing N.
For a related method that accomplishes similar results, download this PDF
presentation (originally posted here) by Nathaniel E. Helwig, entitled Bootstrap
Confidence Intervals, and look for second-order accurate intervals starting at slide 29.

How does this work?

We have simply smoothed out little variations in the estimated value around N =
100,000, using an high-pass filter to sharpen the signal. This is similar to using an high-
pass filter in image processing to remove noise and increase sharpness. This type of
filter (in image processing) also uses medians rather than averages. Averages are
actually used to do the opposite effect: blur the image, and the filter is then called a low-

https://storage.ning.com/topology/rest/1.0/file/get/2308013821?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2308013821?profile=original
http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf

119

pass filter. Also, because at N around 100,000, the estimated values are mostly above
the exact value, using medians that include T.05 allows you to correct for the tiny bias.
This would also work if the opposite was true, that is, if the values were mostly below
the exact value, thanks to using T.95 as well. And this feature (the tiny bias) is present
in any data set, when looking at short windows such as N between 98,000 and
100,000.

Does this contradict entropy principles?

It does not contradict entropy principles, not more than accuracy boosts obtained by
removing outliers (thus reducing the sample size) that do better than increasing the
sample size.

The basic principle is that the insights you get from a data set are based on the amount
of information that it contains. If you use all the information in your data set (and the
standard estimator based on the N observations does that) then there is no way you
can get anything better unless you increase the sample size. This is true in theory, but
not always in practice: removing errors is a counter-example, with an error-free data set
seemingly containing more information than if errors were added to it.

However, in compliance with the entropy principle, over sub-sampling (creating sub-
samples with duplicated observations, resulting in nM larger than N) in hopes of getting
more accurate estimators, would not solve the problem. We have established this fact in
section 1.1, proving that F is always above 1, or equal to 1 if and only if all the
information in the data set is used. Whether it is used only once or duplicated, does not
change the fact that F cannot be lower than 1. Thus the confidence level cannot be
improved that way.

4. Conclusions

It is sometimes said that data science needs statistics to make things work. Here it is
the other way around, with statistics benefiting from mathematical discoveries arising
from applied data science research, to improve existing statistical methods.

In this article, we discussed a new way to process, analyze and extrapolate data sets,
leading to a new fundamental statistical theorem, and a way to find more information in
a data set, than what traditional entropy and statistical theory suggest. It allows you to
increase the accuracy of statistical estimators without increasing the sample size. The
boost in accuracy is equivalent to increasing the sample size by a factor 25. The magic
in this technique is not more spectacular than the magic used to enhance blurred
images and make them look perfect. Indeed, these two extrapolation techniques are
closely related.

Under the umbrella of re-sampling, many statistical problems are solved in a simple
way, ranging from optimizing cross-validation experiments to designing sound tests of
hypotheses when traditional assumptions imposed on the data set are severely
violated.

120

All of this is discussed without using even basic statistical concepts such as random
variable, p-value, or statistical distribution, making the material not only accessible to
the layman, but also easy to integrate in black-box machine learning systems.

121

16. Model-free Confidence Intervals

We propose a simple model-free solution to compute any confidence interval and to
extrapolate these intervals beyond the observations available in your data set. In
addition we propose a mechanism to sharpen the confidence intervals, to reduce their
width by an order of magnitude. The methodology works with any estimator (mean,
median, variance, quantile, correlation and so on) even when the data set violates the
classical requirements necessary to make traditional statistical techniques work. In
particular, our method also applies to observations that are auto-correlated, non-
identically distributed, non-normal, and even non stationary.

No statistical knowledge is required to understand, implement, and test our algorithm,
nor to interpret the results. Its robustness makes it suitable for black-box, automated
machine learning technology. It will appeal to anyone dealing with data on a regular
basis, such as data scientists, statisticians, software engineers, economists, quants,
physicists, biologists, psychologists, system and business analysts, and industrial
engineers.

Power curve fitting: see here

In particular, we provide a confidence interval (CI) for the width of confidence intervals
without using Bayesian statistics. The width is modeled as L = A/nB and we compute,
using Excel alone, a 95% CI for B in the classic case where B = 1/2. We also exhibit an

artificial data set where L = (log n)-. Here n is the sample size.

Despite the apparent simplicity of our approach, we are dealing here with martingales.
But you don't need to know what a martingale is to understand the concepts and use
our methodology.

https://www.datasciencecentral.com/profiles/blogs/modern-re-sampling-and-statistical-recipes
https://storage.ning.com/topology/rest/1.0/file/get/2578549388?profile=original

122

Contents

 Principle
 Examples

o Estimator used in nearest neighbors clustering
o Weighted averages when dealing with outliers
o Correlation coefficient estimated via re-sampling
o Auto-correlated time series, U-statistics

 Counterexamples
 Estimating A
 Estimating B

o Getting more accurate values
o Getting even more accurate values

 Theoretical Background
o Connection with the re-scaled range and the Hurst exponent
o General case
o Another approach to building confidence intervals

 Conclusions

1. Principle

We have tested our methodology in cases that are challenging when using traditional
methods, such as a non-zero correlation coefficient for non-normal bi-variate data. Our
technique is based on re-sampling and on the following, new fundamental theorem:

Theorem: The width L of any confidence interval is asymptotically equal (as n tends to
infinity) to a power function of n, namely L = A / nB where A and B are two positive
constants depending on the data set, and n is the sample size. The requirements for the
theorem to be valid are discussed in section 6.

The standard (textbook) case is when B = 1/2. Typically, B is a function of the intrinsic,
underlying variance attached to each observation, in your data set. Any value of B
larger than 1/2 results in confidence intervals converging faster than what traditional
techniques are able to offer. In particular, it is possible to obtain B = 1. Departure
from B = 1/2 can be caused by unusual data (see sections 2.3, 2.4, and 6.3) or by a-
typical estimators (see section 2.1 and 2.2.) Indeed, testing whether B = 1/2 can be
useful to check if your data has hidden patterns such as uneven variances.

Our new technique is described in details (with source code, spreadsheet and
illustrations) in chapter 15. When reading that chapter, you may skip section, 1, and
focus on section 2, and especially section 3, where all the results are presented.

2. Examples

We provide here a few examples where the exponent B is different from 1/2.

123

2.1. Estimator used in nearest neighbors clustering

An example of a non-standard case is the following. In the context of supervised
classification, one sometimes uses a function of the distances between a point x outside
of the training set, and its n nearest neighbors in the training set, to decide which
cluster x should be assigned to. This function uses decaying weights, with the highest
weights attached the closest neighbors within a same cluster. Depending on how fast
these n weights decay, the resulting cluster density estimators measured at location x,
may have an exponent B different from 1/2. Also, if the confidence intervals attached to
two or more clusters overlap, it means that x could belong to any of these clusters.

2.2. Weighted averages when dealing with outliers

One way to eliminate or reduce the impact of outliers, when estimating the mean T, is to
use weighted averages with positive weights, the weight attached to each observation
being a decreasing function of the distance between the median and the observation in
question. It is defined as follows:

We assume here that the n independently and identically distributed observations are
ordered according to their distance to the median, with the closest one corresponding to
the first term in the sum. If b < 1/2, then B = 1/2 as in the standard case. An example is
when all weights are identical (b = 0). If b is in]0.5, 1[then it is easy to prove (see
chapter 10) that B = 1 - b. The same is true for other estimators, not just the mean.

The general rule is as follows. If you use weights wk decaying more slowly than 1/k1/2,
then B = 1/2. If the weights decay faster than 1/k1/2 but more slowly than 1/k, then you
still end up with a power function, but B is strictly between 0 and 1/2. More specifically,
with the notation

the exponent B is equal to

In particular, sn is minimum and equal to 1/n1/2 if all the weights wk are identical. In that
case, B= 1/2.

2.3. Auto-correlated time series, U-statistics

We provide here an example where B = 1. In a time series X(1), X(2), and so on, the
most extreme case (producing the highest value for B) is when X(k+1) depends solely
on X(k). This is actually the case in the example discussed in section 6.3.

https://storage.ning.com/topology/rest/1.0/file/get/2584612922?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2628158071?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2628286325?profile=original

124

For instance, in the artificial case where X(k+1) = aX(k) + b with |a| < 1, the mean (or
any other estimator) is a function of X(1) and the constants a and b alone. The variance
of the mean is

and thus B = 1. The same upper bound B = 1 can be achieved with actual (non-
degenerate) stationary auto-regressive time series, see the answer to a question I
asked on CrossValidated.com, here.

The problem with time series is that if you re-shuffle the observations, you lose the auto-
correlation structure, and thus B may revert back to B = 1/2. Can you find an estimator
that keeps a value of B higher than 1/2 even if you reshuffle the observations? The
answer is positive if you consider U-statistics: they provide estimators that can converge
faster (B > 1/2) to the true value, than standard estimators. See this paper (originally
posted here), especially the sentence above example 3.11 on page 3, and this article.
The most well-known U-statistic is Gini's mean difference, defined as

with p = 1. While more efficient than traditional dispersion estimators, its B exponent is
also 1/2. The interesting case is when p tends to infinity: then G(n) is the range
(maximum minus minimum observation). If the observations are uniformly and
independently distributed on [0, 1], then the range has a Beta(n - 1, 2) distribution, thus
its variance is 2(n - 1) / [(n + 2) (n + 1)2] and B = 1. It would be interesting to see what
happens if the observations have a fat tail distribution instead. If the distribution is
exponential, B = 0 (see chapter 17 for the proof.) If the distribution is Gaussian, B = 1/2
(see chapter 17.)

2.4. Correlation coefficient estimated via re-sampling

Below is an illustration for the correlation coefficient using a bi-variate artificial data set
that simulates somewhat random observations. The illustration in this section is based
on re-sampling, using the approach discussed in sections 2 and 3 in chapter 15.

The resulting value of B is 0.46. The boosting technique (to improve B) has not been
used here, but it is described and illustrated in section 3.3, in the chapter in question.
The power function mentioned in our above theorem, fitted to this particular data set, is
represented by the red, dotted curve, in the top chart below.

https://en.wikipedia.org/wiki/Autoregressive_model
https://stats.stackexchange.com/questions/408755/minimum-variance-of-the-mean-for-n-correlated-random-variables/
https://storage.ning.com/topology/rest/1.0/file/get/2644931847?profile=original
http://pages.stat.wisc.edu/~doksum/STAT709/n709-33.pdf
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Fat-tailed_distribution
https://storage.ning.com/topology/rest/1.0/file/get/2643496884?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2645159461?profile=original

125

The simulated data set was built as follows:

More examples with more details, can be found in chapter 15. One way to get more
accurate values for A and B is to re-do the same computations using 10 different re-
ordering of the data set, by randomly shuffling the observations, then
averaging A and B across these 10 sets: see discussion in section 5.

3. Counterexamples

The theorem is very general, and applies to most data sets. Exceptions consist of odd,
artificially manufactured data sets that are not found in business applications, or non-
stationary processes such as Brownian motions (see also chapter 2, here.)

For instance, the data set created in my new spreadsheet (download it here) consists of
10,000 observations: the first 5,000 are assigned to sample x[1], and the remaining
ones to sample x'[2] (respectively column A and D in the spreadsheet). Observations in

https://www.datasciencecentral.com/page/search?q=brownian+motion
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/2371091213?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2310699011?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2311953848?profile=original

126

each sample are independently and uniformly distributed, and the correlation between
the two samples is zero. Yet the confidence intervals for the mean have a width L(n) of

the form A/(log n)B, here with A = 1 and B = : see column J. You can change the fitting
curve (column K) as well as the values of the observations in x[1], and keep everything
else unchanged, and get whatever curve you want for L(n), even a trigonometric
function. This is possible only because the data has been created to make this happen:
while the first-order cross-correlation between the two samples is nil, the second-order
cross-correlations are extremely high, see cell P9.

Usually, with these counterexamples, if you randomly sort the data set, re-compute the
estimator and its width L on the reshuffled data for various n, the fitted curve for the
width of the interval will be a totally different function. That's actually how you recognize
that these data sets are artificial. However, even with real-life data, you are sometimes
faced with data glitches that produce the same issues, and that are hard to detect as in
my above example.

Yet there are some estimators that truly do not have a power function for the width of
their confidence interval. An example is provided in my article on Poisson processes. It
is about a local estimator of the intensity of a Poisson process based on the distances
to the n nearest neighbors. The width L is asymptotically equivalent to (log n)/n1/2.
See here, or download the article: this estimator is described page 118, just above
Remark 1.

Our main theorem can be generalized as follows to cover even more cases, using a
second order approximation:

The constant C may be positive or negative. Even then, the logarithm of the
width L is asymptotically equivalent to a curve with only two parameters: log A and B.

4. Estimating A

The constant A attached to the power function (see theorem), is related to the intrinsic
variance present at the individual observation level, in your data. We provide its value
for common estimators (up to a factor that depends only on the confidence level), in the
ideal case when observations are independently and identically distributed with an
underlying normal distribution. These values can still provide a good approximation in
the general case.

https://www.researchgate.net/publication/230268902_Estimation_of_the_intensity_of_a_Poisson_point_process_by_means_of_nearest_neighbor_distances
https://storage.ning.com/topology/rest/1.0/file/get/2363982564?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2364105727?profile=original

127

The formula for the median is a particular case of the pth quantile with p = 0.5. All the
values in the second column represent the unknown theoretical value of the quantities
involved. In practice, these values are replaced by their estimates computed on the data
set. These estimates converge to the true values, so using one or another does not
matter, as far as the correctness of the table is concerned.

The exact formula for the correlation when it is not zero and the normal assumption is
not satisfied, is very complicated. See for instance this article. By contrast, dealing with
any correlation (or even more complicated estimators such as regression parameters) is
just as easy as dealing with the mean, if you use our methodology. Even if none of the
standard assumptions is satisfied.

Finally, A, B and n provide more useful information about your estimator, than p-values.

5. Estimating B

We denote as L(n) the value of the interval width computed on a sample
with n observations. The standard way to fit L(n) with the power curve A/nB is not very
efficient, resulting in high volatility. Here we offer strategies to get much more accurate
and stable values for A and B. All the illustrations in this section are based on re-
sampling, using the approach discussed in sections 2 and 3 in chapter 15.

5.1. Getting more accurate values

The following strategies significantly improve the accuracy when estimating B:

 Use 10 different re-ordering of the data set, by randomly reshuffling the
observations, then average B across these 10 sets

 Focus on small values of the sample size (less than n = 10,000.)
 When fitting L(n) with A/nB, do not use all the values of n, but only a fraction of

them, that are unequally spaced: for instance n = 4, 9, 16, 25, 36, 49, 64 and so
on. Cubes work even better if your samples are large enough.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230981/
https://storage.ning.com/topology/rest/1.0/file/get/2313207865?profile=original

128

 Large confidence intervals, with lower and upper bounds equal to the 2.5 and
97.5 empirical percentiles, work better than smaller ones. Also, M = 20 or M = 10
(see algorithm in section 3 in chapter 15) work better than M = 2 or M = 5. Large
values of M (say M = 50) do not offer extra benefits.

We applied these strategies to compute a confidence interval for B, on a data set
consisting of 4 non-overlapping samples (M = 4), each with n = 2,500 observations,
drawn from a population of N = 10,000 observations. We repeated this procedure 10
times, by re-shuffling the 10,000 observations 10 times in the original data set. The
value obtained for B is 0.484, while the theoretical value (with an infinite sample) would
be 0.500. The data set, computations, and results are available in this spreadsheet (10
MB.)

5.2. Getting even more accurate values

The estimated values for B are very volatile due to the fact that L(n) is computed
recursively based on embedded samples of increasing sizes. Indeed, { L(n) } is
a martingale. Instead of trying to fit L(n) with a power curve, you can fit the much
smoother integrated L(n), denoted as J(n), with an appropriate curve, then estimate
B using J(n) rather than L(n). It turns out that J(n) is also well approximated by a power
curve with the same B, at least as a first order approximation. If for the theoretical
(exact) value, L(n) = A/Bn, then we have:

Note that B is in]0, 1[, and in most cases B = 1/2. If you ignore the term B/N in the
above formula, then you also have a power curve for J(n). If you include that term, your
estimation will be more accurate, but the model fitting technique (to find B) is a tiny bit
more tricky.

Instead of using J(n), you could use the median value of L(n) computed on the
first n observations in your sample. This median is denoted as Q(n). It provided the
most accurate results for B, among the four methods tested.

http://www.datashaping.com/B.xlsx
https://en.wikipedia.org/wiki/Martingale_(probability_theory)
https://storage.ning.com/topology/rest/1.0/file/get/2417335026?profile=original

129

We tested the four methods -- L(n), approximated J(n), bias-corrected J(n) denoted
as J*(n), and Q(n) -- using M = 2 samples each with up to n = 10,000 observations,
reshuffling the samples 50 times to obtain the 50 x 4 values of B shown in the above
figure. The estimated value of B, computed over the 50 tests using Q(n), is 0.49. The
data set was designed so that the theoretical B should be the classic 1/2 value as n
tends to infinity. The above figure gives you an idea of the confidence intervals for B.
Note that the method based on L(n) is by far the worst, with bias and high volatility,
including 5 outliers (very low values of B) not shown in the figure. All the details, with
additional comments, are found in this spreadsheet.

6. Theoretical Background

We first compare the asymptotic formula for the re-scaled range, based on the Hurst
exponent H, with our asymptotic formula for L(n), based on the B exponent. We then
explain how the formula L(n) = A/Bn can be derived under general assumptions, using
some heuristics. All the illustrations in this section are based on resampling, using the
approach discussed in sections 2 and 3 in chapter 15.

6.1. Connection with the re-scaled range and the Hurst exponent

We assume here that the number of samples is M = 2. Given a sample with n
observations, the re-scaled range, in its simplest form, is defined as the range of the
observations (the difference between the maximum and the minimum) divided by the
standard deviation computed on the n observations, see here (or alternatively here) for
details.

Also, if M = 2, the width of the confidence interval L(n) is proportional to |T'(n) - T''(n)|
where T'(n) and T''(n) are the values of the estimator of interest computed for each
sample of size n. Let us denote as p the proportion in question, measuring the level of
the confidence interval, so that

https://storage.ning.com/topology/rest/1.0/file/get/2643811800?profile=original
https://mosaic.mpi-cbg.de/docs/Racine2011.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2458806456?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2453175711?profile=original

130

Under some general conditions, T'(n) and T''(n) have a Gaussian distribution. Thus, L(n)
has a folded normal distribution, and its expectation is

Now, let's introduce the following notations:

For instance, if the estimator T in question is the mean, then Z'(k) is the kth observation
in the first sample. Now we can write the well-known asymptotic expansion for the re-
scaled range, as

where H is the Hurst exponent. In the above formula, if you replace V'(n) by Var[T'(n)]
and R(n) by a constant R, it becomes

Since the two samples are independent, Var[T''(n)] ~ Var[T'(n)] and thus H = B.

6.2. General case

We assume here that we have M samples, say M = 20 (a small number.) Let us assume
that T'(n), T''(n) and so on, computed on each sample, are also independent with
asymptotically (as n tends to infinity) the same variance denoted as Var[T(n)]. Then the
(say) 95% confidence interval for T has a width L(n) proportional to the range of its
values computed on the M samples. Let p be the proportion in question, depending on
the confidence level. In short, asymptotically, E[L(n)] is the expectation of the range
of M independent Gaussian variables with same mean E[T(n)], and same variance
Var[T(n)], multiplied by p. Thus, E[L(n)] ~ A/nB is still proportional to (Var[T(n)])1/2.

Intuitively, when the observations have strong, long-range auto-correlations, the
variance of any estimator -- which is itself an increasing function of the variance in the
observations -- is small, and thus B is high. See this spreadsheet for such an example,
with B = 0.8.

6.3. Another approach to building confidence intervals

This framework suggests yet another potential approach to estimating B and obtaining
confidence intervals for T:

https://en.wikipedia.org/wiki/Folded_normal_distribution
https://storage.ning.com/topology/rest/1.0/file/get/2643837557?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2471474098?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2471559385?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2472296398?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2475323131?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2476236011?profile=original

131

 Compute T(n) and its empirical percentiles on M independent samples of size n,
with increasing values of n. Instead of independent samples, you could
use M reshuffled versions of one sample if you don't have much data, but you
need to be careful about biases.

 Compute the mean, empirical percentiles, and variance of T(n) across
the M samples, for several values of n. The mean and empirical percentiles will
give you confidence intervals (CI) of any level for T, for different values of n. You
can extrapolate these CI's to any value of n, using model fitting techniques. If you
do the same with the empirical variance of T(n), fitting it with a power curve A/nB,
you then get an estimate for A and B.

If you use this approach, you can use sample sizes that are smaller, but the
number M of samples must be large enough, at least M = 20. If your samples come
from just one sample set that you reshuffle M times, you still need to use a large sample
size but focus on nested sub-samples of growing sizes that are not too large, as all your
estimated values across all samples, will be identical once you reach the full sample
size.

The computations and results, using this approach, are found in this spreadsheet. The
data set used here also has an high B exponent, above 0.8. You would expect to find
patterns in the data with such a high B, and this is the case here: look at column Y in
the Details tab. Below are the model-free 90% confidence intervals for various values
of n. The estimator T investigated here is the mean. Its true theoretical value is 0.5.
Standard statistical techniques would not work here due to the long-range auto-
correlations in the data. In particular, convergence to the theoretical value is much
faster than with standard techniques applied to standard data corresponding to B = 1/2.

The iterative computation of the 10,000 medians Q(n) is very slow. If you clear column
S in the Details tab in the spreadsheet, computations will run much faster, but you will
miss the estimate of B based on these medians. Finally, if you use one sample from the
previous spreadsheet, and reshuffle it M times to produce M samples (as opposed to
using non-overlapping samples as in the previous spreadsheet) then you kill many of
the patterns present in that data set, and as a result your estimated B is much closer to

https://storage.ning.com/topology/rest/1.0/file/get/2643854649?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2506083435?profile=original

132

1/2, and the speed at which confidence intervals converge to the true theoretical value,
will be slower, that is, more "normal". This is illustrated in this spreadsheet.

7. Conclusions

Some frameworks can handle unclean data with lack of independence between
observations, lack of stationarity, non-Gaussian behavior and so on. For instance, in
time series, the Hurst exponent H plays a role very similar to our exponent B. Both lie in
[0, 1], take on similar values depending on whether the data is very chaotic (H and B <
1/2), unusually smooth (H and B > 1/2) or well behaved like a standard Brownian motion
(H = B = 1/2).

In the theory of martingales (we are actually dealing with martingales here), there is a
generalization of the central limit theorem, known as the martingale CLT, stating under
which assumptions B = 1/2, even in cases where auto-correlations are strong.
However, I could not find any general framework that deals with accurately extrapolating
confidence intervals beyond the size of your data set, allowing you to perform robust
statistical inference with all sorts of estimators applied to messy data, without using any
statistical model. Traditional re-sampling techniques based on empirical percentiles are
of some use. The novelty of our approach is to bring these re-sampling techniques to a
whole new level, solving problems thought to be unsolvable, for instance getting
confidence intervals much sharper than those obtained with traditional methods, or
getting sharp estimates for B, even in the non-standard case when B is smaller or larger
than 1/2.

https://storage.ning.com/topology/rest/1.0/file/get/2643868653?profile=original
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Martingale_central_limit_theorem
https://en.wikipedia.org/wiki/Resampling_(statistics)

133

17. A Beautiful Probability Theorem

This is another spectacular property of the exponential distribution, and also the first
time an explicit formula is obtained for the variance of the range, besides the uniform
distribution. It has important consequences, and the result is also useful in applications.

Theorem
The range R(n) associated with n independent random variables with an exponential
distribution of parameter l satisfies

Before proving the theorem, note that the first formula is well known, only the second
one is new. The standard proof for the expectation is not considered simple: it is based
on computing the expectation for the maximum (see here) and the fact that the
minimum also has an exponential distribution with known expectation (see here). Our
proof is simpler and also covers the variance.

Proof

The general distribution of the range is known for any distribution, see here. The range
is defined as

In the case of the exponential distribution, the range computed on n random variables
has the following density (see here page 3):

With a simple change of variable, the k-th moment of the range is equal to

Using WolframAlpha (see here and here) one obtains

Thus,

https://www.stat.berkeley.edu/~mlugo/stat134-f11/exponential-maximum.pdf
https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables
https://en.wikipedia.org/wiki/Range_(statistics)
http://scaapt.org/wp2013/wp-content/uploads/2015/09/SCAAPT_range_notes.pdf
https://www.wolframalpha.com/input/?i=integrate+(log+x)+(1-x)%5En+dx+between+0+and+1
https://www.wolframalpha.com/input/?i=integrate+(log+x)%5E2+(1-x)%5En+dx+between+0+and+1
https://storage.ning.com/topology/rest/1.0/file/get/2646179331?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646267833?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646268851?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646278721?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646233753?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646244636?profile=original

134

The two symbols H(n-1) and ψ1(n) represent the harmonic numbers and the Trigamma
function, respectively. To complete the proof, use the fact that

∎

There are a number of interesting consequences to this result. First, the expectation of
the range grows indefinitely and is asymptotically equal to log n. Also, the variance of

the range grows slowly and eventually converges to 2/6. This is in contrast to the
uniform distribution: its range is bounded, and its variance tends to zero as fast as 1/n2,
see section 2.3 in chapter 16.

This result is pretty deep. It is almost like the range, for the exponential distribution, is
made up of a weighted sum of independent exponential variables with same
parameter λ, with the kth term added into the sum contributing with a weight equal to
1/k.

But perhaps most importantly, we found the two extreme cases to a new statistical
theorem (see chapter 16, section 1) stating that the length of any confidence interval
attached to an estimator is asymptotically equal to A/nB, with B between 0 and 1. This
length is usually proportional to the standard deviation of the estimator in question. In
practice, in almost all cases, B = 1/2. However, here we have:

 For the range, if the variables are independently and uniformly distributed,
then B = 1.

 For the range, if the variables are independent with exponential distribution,
then B = 0.

For normal variables, Var[Range] = O(1/n) and E[Range] = O((log n)1/2), thus B = 1/2
(see here and here.) These results are summarized in the table below:

Order of magnitude for the expectation and Stdev of the range

Finally, the same technique could be used to compute higher moments, or to compute
the variance of the range for other probability distributions. It could also help with
studying the convergence of the re-scaled range and its associated Hurst exponent, see
section 6.1in chapter 16 for details.

http://mathworld.wolfram.com/HarmonicNumber.html
https://en.wikipedia.org/wiki/Trigamma_function
https://en.wikipedia.org/wiki/Trigamma_function
https://stats.stackexchange.com/questions/229073/variance-of-maximum-of-gaussian-random-variables
https://math.stackexchange.com/questions/89030/expectation-of-the-maximum-of-gaussian-random-variables
https://storage.ning.com/topology/rest/1.0/file/get/2646296096?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2663504778?profile=original

135

Connection with order statistics and the Renyi Representation

Joe Blitzstein (teaching probability at Harvard University) pointed out (see here) that my
theorem is a particular case of a general result that applies to exponential distributions,
known as the Renyi representation. This general result is illustrated in the picture below
and in this document.

This also brings something very interesting: since my proof relies on the fact that the
sum of the inverse of the squares is Pi^2/6 and since Renyi’s argument is entirely
probabilistic, it is thus possible to prove, using probabilistic arguments alone, that the
sum of the inverse of the squares is Pi^2/6. I will look at higher moments to see if there
are some other facts about mathematical constants or integrals, that can be proved
(thanks Renyi!) using probabilistic arguments alone. With some chance, I might even
discover a new relationship.

Finally, another way to prove the result is to use the fact (see here) that

https://statistics.fas.harvard.edu/people/joseph-k-blitzstein
https://www.quora.com/What-is-the-variance-of-the-range-for-exponential-distributions
https://storage.ning.com/topology/rest/1.0/file/get/2647075955?profile=original
https://en.wikipedia.org/wiki/List_of_definite_integrals#Definite_integrals_involving_logarithmic_functions
https://storage.ning.com/topology/rest/1.0/file/get/2647079173?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2647962026?profile=original

136

18. Deep Math Gaming Platform

I describe here the ultimate number guessing game, played with real money. It is a new
trading and gaming system, based on state-of-the-art mathematical engineering, robust
architecture, and patent-pending technology. It offers an alternative to the stock market
and traditional gaming. This system is also far more transparent than the stock market,
and cannot be manipulated, as formulas to win the biggest returns (with real money) are
made public. Also, it simulates a neutral, efficient stock market. In short, there is nothing
random, everything is deterministic and fixed in advance, and known to all users. Yet it
behaves in a way that looks perfectly random, and public algorithms offered to win the
biggest gains require so much computing power, that for all purposes, they are useless
-- except to comply with gaming laws and to establish trustworthiness.

We use private algorithms to determine the winning numbers, and while they produce
the exact same results as the public algorithms (we tested this extensively), they are
incredibly more efficient, by many orders of magnitude. Also, it can be mathematically
proved that the public and private algorithms are equivalent, and we actually proved it.
We go through this verification process for any new algorithm introduced in our system.

In section 4.1, we offer a competition: can you use the public algorithm to identify the
winning numbers computed with the private (secret) algorithm? If yes, the system is
breakable, and a more sophisticated approach is needed, to make it work. I don't think
anyone can find the winning numbers (you are welcome to prove me wrong), so the
award will be offered to the contestant providing the best insights on how to improve the
robustness of this system. And if by chance you manage to identify those winning
numbers, great, you'll get a bonus! But it is not a requirement to win the award.

Content

 Description, Main Features and Advantages
 How it Works: the Secret Sauce

o Public Algorithm
o The Winning Numbers
o Using Seeds to Find the Winning Numbers
o ROI Tables

 Business Model and Applications
o Managing the Money Flow
o Virtual Currency

 Challenge and Statistical Results
o Data Science / Math Competition
o Controlling the Variance of the Portfolio
o Probability of Cracking the System

 Designing 16-bit and 32-bit Systems
o Layered ROI Tables

137

o Smooth ROI Tables
o Systems with Winning Numbers in [0, 1]

1. Description, Main Features and Advantages

Rather than trading stocks or other financial instruments, participants (the users)
purchase numbers. Sequences of winning numbers are generated all the time, and if
you can predict the next winning number in a given sequence, your return is maximum.
If your prediction is not too far from a winning number, you still make money, but not as
much. Our system has the following features:

 The algorithms to find the winning numbers are public and regularly updated.
Winning is not a question of chance: all future winning numbers are known in
advance and can be computed using the public algorithm.

 The public algorithm, though very simple in appearance, is not easy to implement
efficiently. In fact, it is hard enough that mathematicians or computer scientists
do not have advantages over the layman, to find winning numbers.

 To each public algorithm, corresponds a private version that runs much, much
faster. We use the private version to compute the winning numbers, but both
versions produce the exact same numbers.

 Reverse-engineering the system to discover any of the private algorithms, is
more difficult than breaking strong encryption.

 The exact return is known in advance and specified in public ROI tables. It is
based on how close you are to a winning number, no matter what that winning
number is. Thus, your gains or losses are not influenced by the transactions of
other participants.

 The system is not rigged and cannot be manipulated, since winning numbers are
known in advance.

 The system is fair: it simulates a perfectly neutral stock market.
 Participants can cancel a transaction at any time, even 5 minutes before the

winning number is announced.
 Trading on margin is allowed, depending on model parameters.
 The money played by the participants is not used to fund the company or pay

employees or executives. It goes back, in its entirety, to the participants.
Participants pay a fee to participate.

Comprehensive tables of previous winning numbers are published, even well before a
new sequence (based on these past numbers) is offered to players. It helps participants
to design or improve their strategies to find winning numbers. Actually, past winning
numbers are part of the public data that is needed to compute the next winning
numbers, both for participants and the platform operators.

Various ROI tables are available to participants, and you can even design your own
ones. If you are conservative, you can choose one offering a maximum return of 10%
(for finding the exact value of a winning number), a 54% chance of winning on any
transaction, and a maximum potential loss of 4%. This table is safe enough that we will

138

allow you to "trade" on margin. Another interesting ROI table offers a maximum return of
330%, and the same 54% chance of winning on any transaction, with a maximum
potential loss of 4%. Keep in mind that this return is what you can make (or lose) in one
day, on one sequence. New winning numbers are issued every day for each life
sequence, so your return (negative or positive) gets compounded if you play frequently.

If you are a risk taker, you may like a table offering a maximum return of 500%, a 68%
chance of winning on any transaction, and a maximum potential loss of 60%. Or another
table with a maximum return of 600%, a 80% chance of winning, but a maximum
potential loss of 100%. To download all the sample ROI tables discussed in this
presentation, click here.

All the sequences currently offered on the market consist of 8-bit numbers: each
winning number (a new one per day per sequence) is an integer between 0 and 255.
We will soon offer 16-bit numbers. By design, all ROI tables (even if you use a
customized one) offer an average return of 0%. This is true regardless of the sequence
you are playing with: sequences and ROI tables are independent.

The participant can test various strategies: for instance:

 Try various ROI tables
 Play every day until you experience your first win (this may not happen for a long

time)
 Play every day until you experience your first loss (this may not happen for a

long time)
 Play until you have achieved a pre-specified goal, or exit (similar to a stop order

on the stock market) if your losses reaches some threshold (some participants
might want to continue hoping to recoup some losses)

 Increase or decrease how much you spend depending on your results
 Look if you can find patterns in the winning numbers, exploit them

Below, we explain how this works, using a real-life example.

2. How it Works: the Secret Sauce

Here is an example of a sequence being tested in our lab. It shows how the winning
numbers are computed, for the sequence in question. The purpose is to illustrate the
mechanics, applied to one of our 8-bit systems. The 32-bit version offers more flexibility,
as well as potential returns that can beat those of a state lottery jackpot. Our sample 8-
bit sequence is defined by the public algorithm below.

2.1. Public Algorithm

Start with initial values x0 and y0 that are positive integers, called seeds. Then for t = 0,
1, 2, and so on, compute xt+1 and yt+1 iteratively as follows:

http://datashaping.com/lottery-dss.xlsx

139

If 4x(t) + 1 < 2y(t) Then

 y(t+1) = 4y(t) - 8x(t) - 2

 x(t+1) = 2x(t) + 1

Else

 x(t+1) = 2x(t)

 y(t+1) = 4y(t).

2.2. The Winning Numbers

The future winning numbers for a particular sequence, start at a specific machine-
generated iteration T that no one knows, not even the platform operator nor its software
engineers. Typically, T > 30,000,000 and can be chosen randomly. The iterations
represent the time. The future winning numbers are always integers between 0 and 255,
and they occur only at iterations t = T, T+8, T+16, T+24, and so on. Their value at
iteration t is xt - 256 xt-8. The reason for skipping 7 out of 8 numbers is to make sure that
winning numbers are not auto-correlated.

Past winning numbers are those occurring at iterations t = T-8, T-16, T-24, and so on.
The last 2,000 of them are published before the sequence is available (life) on the
platform, allowing participants to predict future winning numbers, using the public
algorithm or by other means, and make (or lose) money. For our above test sequence,
the 2,000 past winning numbers in question, ordered chronologically, are available in
this text file.

For each sequence, one new winning number is published each day. So, the time unit
used here is 3 hours since one day is 8 x 3 hours. To win the maximum amount, one
must correctly predict the winning number attached to a future day. Good and fair
approximations also result in a gain, albeit lower. These gains and losses are explicitly
specified beforehand, in very precise ROI tables, see below. Finally, by design, the
winning numbers are not auto-correlated; they appear independently and uniformly
distributed (more so than many software-generated pseudo-random numbers), and do
not exhibit any known or visible pattern. In short, they look totally arbitrary, yet
generated using a rudimentary formula.

2.3. Using Seeds to Find the Winning Numbers

Most participants are likely to do random trials to find or approximate winning numbers.
The few who want to use the public algorithm need extra information to compute
winning numbers, and even then, their chance of finding such numbers is virtually zero,
due to the tremendous amount of computations required. In short, you need to know the
seeds, and when to stop your computations. The stopping rule is simple: you stop when
you have found numbers that match the past winning numbers publicly available. Then
you know for sure that your next number will be a winning one.

We offer information about the seeds in two different ways:

http://www.datashaping.com/winningNumbers2000.txt
http://www.datashaping.com/winningNumbers2000.txt

140

 You can request seeds that work. The working seeds that we provide are integer
numbers consisting of many digits. In our particular case, the following seeds
work: x0 and y0. You can download them as text files, by clicking on these two
links. Both x0 and y0 contain about 250,000 digits in base 10.

 Or you can use the information provided with the public algorithm: the fact that
there is a set of seeds (and only one) leading to the winning numbers, and
consisting of positive integers lower than 1,000.

We guarantee the following:

 With the wrong seeds, you won't find the winning sub-sequence (matching public
past winning numbers) in your lifetime, no matter how much computing power
you use.

 With the right seeds, you will find the winning sub-sequence (matching public
past winning numbers) only once, and in less than 32 trillion iterations.

So we offer you a way to find the next winning numbers, and you know in advance how
much you will win when finding them, using the ROI table. The question is: how many
years would the most powerful computers in the world need, to make all these

computations? By contrast, as of January 2019, only 31.4 trillion digits of are known,
and computing them require several months using a lot of computing power, together
with very clever mathematical engineering bearing some resemblance to our private
algorithms. And checking that all these digits (not just the first few trillion) are correct, is
another big problem. Here, if you make any tiny mistake in your computations, you will
miss the past sequence of winning numbers.

Of course, you could be a mathematical genius, and somehow figure out what the
private algorithm is, to make your computations far more efficiently. This is highly
unlikely to happen. There is a considerable amount of very advanced, unpublished
mathematical research that has been done to make our systems robust. Also, we
regularly change the type of sequences that we use in our system, every few months or
so. And we work with white hat hackers (paid to hack our system) in order to identify
potential vulnerabilities.

Finally, seeds that lead to unpredictable winning numbers (simulating an efficient
market) are known as good seeds. Of course, all the sequences that we offer are based
on seeds highly believed to be good ones, and that have been run through a battery of
statistical tests. Using sequences based on bad seeds would not hurt the players, quite
the contrary, but it would make our system easier to crack and cause problems with the
ROI tables, thus hurting us.

Proving that specific seeds are good or bad, is one of the most challenging, unsolved
mathematical problems of all times. If solved, we would know for sure whether the digits

of a number such as , are evenly distributed or not. These mathematical concepts
have been studied for some time; see recent material on this topic, here and here.

http://www.datashaping.com/seed1.txt
http://www.datashaping.com/seed2.txt
https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud
https://www.datasciencecentral.com/profiles/blogs/fascinating-new-results-in-the-theory-of-randomness
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

141

2.4. ROI Tables

The ROI tables tell you how much money you will make or lose when submitting a
number. Your ROI is a function of the distance between your submitted number z and
the actual winning number x. The distance, also called error, is computed as follows:
d(x, z) = min(|x - z|, 256 - |x - z|). It is always an integer value between 0 and 128. A
pre-determined ROI is attached to each of the 129 potential error values. These ROI's
characterize the type of risk that you are willing to take, and can be customized by each
user, as long as the theoretical expected return (automatically computed in the ROI
spreadsheet) is zero.

You will find these values in the ROI tables, available in spreadsheet format, here. Look
at the second row in the spreadsheet, between column K and EI. The spreadsheet also
contains 1,000 user-submitted numbers (simulations) with the ROI computed for each
submitted number. Other summary statistics of interest are available in the spreadsheet:
highest and lowest potential payout, chances of winning, and more.

3. Business Model and Applications

Accredited investors, hedge funds, stock trading brokers, stock exchange companies,
cryptocurrency operators, government organizations (for instance, state lotteries and
agencies interested in creating a lottery at the federal level) as well as game developers
and companies in the gaming industry, are welcome to contact us. Investors potentially
interested in participating in a first round of funding to create and scale this platform,
and who can bring clients and/or a CEO of their choosing, are also invited. We
traditionally work smart and fast, with very small efficient teams in a lean environment,
with people located all over the world.

This short presentation only features the tip of the iceberg. The possibilities are endless,
including the implementation of:

 ROI tables that favor participating brokers over players (or the other way around),
 16 or 32 bit systems offering spectacular potential returns yet no potential big

loss, see section 5
 Short-selling,
 Sequences that are cross-correlated or auto-correlated, offered to VIP clients to

help them gain a competitive advantage,
 Sequences with variable ROI tables, sometimes favoring the players, and

sometimes favoring the operators,
 Allowing participants to schedule purchases ahead of time, and to upload

guessed numbers in bulk
 Automated black-box trading (we create your daily guesses -- they consist of

pseudo-random numbers; you choose your ROI tables).

http://www.datashaping.com/lottery-dss.xlsx

142

Some of these features allow players to sometimes slightly beat the official and neutral
odds of winning, offering a true positive return on average for some short periods of
time, at the expense of the operators. For the organization implementing these features,
this can be seen as marketing costs to attract new customers. Other potential
applications includes Blockchain and cryptocurrency technology, strong encryption,
patent and security laws, and state-of-the-art, innovative research in statistical science,
computer science, and number theory. Finally, the system can also be used for
simulated trading, to test various strategies with various ROI tables.
Let's now look at how the money flows.

3.1. Managing the Money Flow

Managing the money involves subtracting or adding dollars to user accounts after each
completed transaction. On a given day, how do we know whether on average, gains
and losses will balance out, since we don't control the numbers entered by the
participants?

Actually, we don't know. Sometimes the balance is slightly negative, sometimes slightly
positive. However, by using fair ROI tables and good seeds, we are guaranteed to be
flat on average. You can even compute the daily volatility resulting from the daily
winning and losing transactions. Example: with 1,000 transactions in a single day, each
one consisting of a $20 bet, the most conservative ROI table introduced in this
presentation produces a theoretical standard deviation of $24, over a volume of
$20,000. The most aggressive one produces a standard deviation of $314, still entirely
manageable. These theoretical numbers have been confirmed by simulations, and are
included in each ROI table, for internal use. When offering customized ROI tables, you
might want to put a cap on the standard deviation being allowed. See section 4.2 for
more details.

3.2. Virtual Currency

Rather than actual dollars, the operator could use a virtual currency. The currency is
issued by the operator (it could even be tokens), while the real money is held by an
escrow company. Since on average no real (nor virtual) money is made by the operator
on the gains and losses of the participants (assuming the system is fair,) no tax should
be paid by the operator on the deposits made by the participants, and no tax deduction
allowed for the money distributed to participants. This is made easier using of a virtual
currency. Of course, if users pay a fee to participate, the operator will have to pay taxes
on this source of revenue.

Participants are expected to pay taxes on their gains, and in an ideal word, deduct
losses. The "tax event", for the participant, occurs when the escrow company disburses
the money, if it comes with a gain or a loss. This could take place after any bet or at any
time that is convenient for the participant. The operator also deposits extra money on
the escrow company, to cover the maximum cash float and keep a positive balance at
all times. The cash float is the difference between aggregated gains and losses across

143

all participants. The cash float typically represents less than 3% of the value of the
portfolio of bets managed by the operator.

4. Challenge and Statistical Results

We discuss here two important statistical results that make this system works. But first,
let's talk about the competition announced at the very beginning.

4.1. Data Science / Math Competition

We plan to organize a competition focusing on the public algorithm. The goal is to
compute the next 200 winning numbers, in the right chronological order, using

 the public algorithms described in section 2.1,
 the two public seeds x(0) and y(0) provided in section 2.3.
 and the 2,000 past winning numbers provided in section 2.2.

You can use the methodology described in this article, or any other means. The award
will be offered to participants providing the best insights on how to improve the
robustness of our system. So it is not required to find the 200 next winning numbers to
earn the award. But if you do find them, we offer a bonus. We will announce the
competition on Data Science Central. To not miss the announcement, you can sign-
up to receive our newsletter.

4.2. Controlling the Variance of the Portfolio Value

Any guess regarding a winning number results in a gain or a loss depending on how
close your guess z is to the winning number x. The metric used to measure the
proximity between x and z is

d(x, z) = min(|x - z|, 256 - |x - z|)

All winning numbers are integers between 0 and 255. If the participants made random
guesses, then the distance d(x, z) would be a random variable, say D, with the following
distribution:

 P(D = 0) = 1/256,
 P(D = 128) = 1/256,
 P(D = k) = 2/256 if k is strictly between 0 and 128.

The money that you put on a number (your guess) is called principal, similarly to the
money invested in a stock, in the stock market. Once the winning number is announced,
your principal increases or decreases depending on how good your guess is. Your
principal is actually multiplied by a factor G(d(x, z)) which is a function of the distance
between the number you picked up, and the winning number.

https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter
https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter

144

The multipliers G(0), G(1), G(2) and so on, up to G(128), are known in advance and
specified in the ROI table that you use. The ROI tables are fair, in the sense that the
average gain for the player, is zero. In order to achieve this goal, ROI tables are
designed so that

If the top multipliers offered are very high -- the highest being G(0) for a correct guess --
then, even though the system is fair (unbiased), the variance for the gain for a single
guess, is also high. This variance, assuming E(gain) = 0 and the participant puts $1 per
guess, is equal to

The total value of the portfolio that we manage, defined as the aggregated principal
across all guesses, is flat over time but experiences daily fluctuations. To compute its
variance, use the previous formula, and multiply it by both the number of guesses and
the dollar amount attached to them. The standard deviation values mentioned in section
3.1 (about money management) is the square root of this variance, assuming we have
1,000 guesses, each with a $20 price tag.

With 1,000 daily guesses each with the same price tag, the most extreme standard
deviations for the portfolio, expressed as a percentage of the portfolio value, are:

 Minimum: 0%. ROI table where nobody wins, nobody loses, that is, if G(k) = 1
for all k.

 Maximum (worst case): 51%. ROI table where participants win only when they
correctly guess the winning number (the chance is 1/256), and in that case their
principal is multiplied by a factor 256. Otherwise they lose everything. That
is, G(0) = 256 and all other G(k) are set to 0.

These percentages decrease as the number of guesses increases. In practice, we stick
to ROI tables with a theoretical standard deviation that is less than 3% of the portfolio
value. This guarantees our survival in case of extreme events, such as a very big client
winning big time on a single guess and claiming her gain right away, or a "bank run".

4.3. Probability of Cracking the System

The sequences used in our system generate numbers that look random. The
successive past winning numbers published to help you find the next one -- even
though it is a small list of K = 2,000 integers between 0 and 255 -- look just as random.
Without using working seeds x0 and y0 that are known to lead to the solution (albeit in a
very large number of iterations, manipulating numbers with many millions of digits most
of the time), the chance of finding in any given sequence, the K successive numbers
matching the K past winning numbers, in less than M iterations (say M = 30 million), is
about

https://storage.ning.com/topology/rest/1.0/file/get/2002421234?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1981619735?profile=original

145

See here for details. Even if you try a million set of seeds, knowing that one and only
one of them leads to the solution in less than M iterations, it will take you a staggering
amount of time to find it.

If a participant uses the wrong sequence, starting with one of the allowed sets of seeds
other than the one that is guaranteed to work, and by some incredible chance the
sequence also contains the K past winning numbers in the first M iterations, even if the
participant submit a number that is not a winning number, we would still have to pay her
as if she had found the winning number. The chance of this happening is virtually zero.

5. Designing 16-bit and 32-bit Systems

So far we discussed 8-bit systems only. As the name indicates, a b-bit system is where
the winning numbers are b-bit integers. In a b-bit system, the public iterative algorithm in
section 2.1 is still the same with the following adaptations (here b is the number of bits):

 New winning numbers occur at iterations t = T, T + b, T + 2b, T + 3b, and so on.
 Past, public winning numbers occur at iterations t = T - b, T - 2b, T - 3b, and so

on.
 The formula for the winning numbers changes from xt - 256 xt-8, to xt - 2

b xt-b.

A b-bit ROI table has 1 + 2b-1 multipliers G(0), G(1), G(2), and so on, up to G(2b-1).
Also, G(k+1) is chosen to be either equal to or less than G(k), so that participants know
that the more accurate their guess, the higher the return.

5.1. Layered ROI Tables

Below is an example of a fair, layered 32-bit ROI table. If your guess is within 19 points
of the winning number (it will happen to about 39 people out of 4.3 billion) then your
principal is multiplied by a factor one million. About 48.7% of the guesses are not
winners, and they erode your principal by 30%. The lowest ROI you get if you are a
winner is 15%, and 50.7% of all guesses fall in that category. About one in two hundred
(0.54%) results in a 900% ROI. One in 100,000 would boost your principal by a factor
1,000.

https://math.stackexchange.com/questions/3184670/what-is-the-probability-that-a-sequence-of-m-random-letters-contains-a-sub-seq
https://storage.ning.com/topology/rest/1.0/file/get/1983037467?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2080685525?profile=original

146

An even more skewed table could be designed, guaranteeing an average return strictly
above zero to the player. If the positive return is driven entirely by the multiplier offered
for correctly guessing the winning number (and otherwise, excluding a perfect guess,
the average return is just a very tiny bit below zero) you might be able to entice more
players to participate, especially sophisticated, big ones. If the odds of winning the
maximum is less than one in 4 billion in a single bet, it will take so much time and
money to win the big prize, that the operator has time to accumulate gains and grow
them slightly faster than inflation, so that when the big winning event takes place,
enough funds are available to pay the big winner.

5.2. Smooth ROI Tables

It is possible to create smooth ROI tables, with a continuous, slow decline in the
multiplier rather than sharp drops as in the above table. One of the most natural
functions that comes to mind is the geometric function G(k) = A/Bk, with the
parameters A and B chosen so that the table is fair both to the player and to the
operator. It is illustrated below, using the 8-bit system. We are working on producing
similar tables for the 32-bit system.

The smooth tables offer one advantage: no participant will be disappointed for missing a
massive payout by only a few points. In the above table (8-bit), G(k) = 1.7685/1.0100k.
The table is fair. Note that only 44% of the guesses are winners. The highest multiplier
is only 1.77. Also, you can lose as much as 50%. Yet you could argue that this table is
far more equitable than those previously discussed.

https://storage.ning.com/topology/rest/1.0/file/get/2023450934?profile=original

147

5.3. Systems with Winning Numbers in [0, 1]

The theory can be extended to winning numbers that are real numbers in [0, 1]. For
instance, one can use the seed x0 = log 3 - log 2 with the sequence xt+1 = { 2xt } where
the brackets represent the fractional part function.

Then, xt = At log 3 + Bt log 2 + Ct where At, Bt, and Ct are integers. The geometric ROI
function (above picture) becomes G(k) = p/qk, with p, q > 1, and k a real number in [0,
1]. It has the following features:

 The maximum multiplier is p
 The minimum multiplier is p/q
 The system is fair if p(q - 1) = q log q
 If the system is fair, the probability of winning is (q - 1)/(q log2 q)
 d(x, z) = min(|x - z|, 1 - |x - z|).

All the numbers xt are winning numbers, either past or future. The public information
could consist of

 The formula xt+1 = { 2xt }
 The last 2,000 winning numbers xT-1, ..., xT-2000, computed with 20 correct digits
 The exact values of At, Bt and Ct for some secret t between 0 and T
 The two constants log 3 and log 2.

We can replace the third item in the above list, by the value xt computed with one million
correct digits, for some secret t between 0 and T. In that case, there is no need to
mention log 3 and log 2.

You can replace log 3 and log 2 with two (or more) irrational numbers that are

conjectured to be linearly independent over the set of rational numbers. For instance,
and 51/2, or the values of

 The probability than an integer is not divisible by a cube
 The only solution between 0.5 and 1, of sin x + sin(2x sin x) = sin 3x.

Very few people know how to efficiently obtain millions of digits for these values -- which
is the first step required to find the winning numbers. Finally, as long as x0 is a good
seed, the numbers generated by the sequence xt will look random, after proper
decorrelating [see how to decorrelate in section 3.2.(a) in appendix B]. The concept of
good and bad seed is illustrated in appendix B and in my book on stochastic processes,
available here.

Details on how to use multivariate sequences and de-correlating can be found in
chapter 13. This system was presented at the INFORMS annual meeting (2019). You
can access the PDF document here.

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/2201550388?profile=original

148

19. Decay-adjusted Rankings

This is a classic business problem. In most online rankings, the most popular books,
authors, articles, restaurants and so on are always among those that have been around
for a long time. New stars have no chance to beat old-timers, and must wait for a long
time before showing up at the top. Here we address this issue and correct for the bias,
allowing you to make fair value comparisons between old and new items. The example
used here is about popular articles posted on Data Science Central. While time is a
major source of bias, there are many other factors artificially inflating or deflating
rankings. We review these factors, and propose a solution to create meaningful
rankings.

In the process, we created a new, more robust scoring method. This scoring, based on
a decay function, could be incorporated in recommendation engines.

1. Introduction

The data covers almost three years’ worth of DSC (Data Science Central) traffic,
extracted from Google Analytics: more than 50,000 posts, and more than 6 million page
views (almost half of it in 2014 alone), across four channels: DSC, Hadoop360,
BigDataNews, and AnalyticBridge.

Some articles have been filtered out as they belong to a cluster of similar articles
(education, books, etc.) Finally some very popular pages are not included because the
creation date is not available or because they should not be listed (my own profile page,
the sign-up page, the front page, etc.) The new scoring model is described in section 4.

2. Top DSC blogs posted between 2008 and 2014

The number in parentheses represents the rank if instead of using our popularity score,
we had used standard methodology. The date represents when the blog was created.
By just looking at these fields, you might be able to guess what our new scoring engine
is about. The data used for these computations was collected in October 2014.

1. 17 short tutorials all data scientists should read and practice (2) - 2/15/2014
2. How to Become a Data Scientist (39) - 8/27/2014
3. DSC weekly digest (1) - 6/20/2013
4. 38 Seminal Articles Every Data Scientist Should Read (34) - 8/15/2014
5. 10 types of regressions. Which one to use? (22) - 7/21/2014
6. Data Science Cheat Sheet (36) - 8/1/2014
7. 16 analytic disciplines compared to data science (31) - 7/14/2014
8. Data science book (6) - 11/23/2013
9. 66 job interview questions for data scientists (4) - 2/13/2013
10. One Page R: A Survival Guide to Data Science with R (14) - 2/14/2014
11. Six categories of Data Scientists (11) - 1/16/2014

https://www.datasciencecentral.com/profiles/blogs/17-short-tutorials-all-data-scientists-should-read-and-practice
https://www.datasciencecentral.com/profiles/blogs/how-to-become-a-data-scientist
https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter
https://www.datasciencecentral.com/profiles/blogs/30-seminal-articles-every-data-scientist-should-read
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/profiles/blogs/data-science-cheat-sheet
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/66-job-interview-questions-for-data-scientists
https://www.datasciencecentral.com/profiles/blogs/one-page-r-a-survival-guide-to-data-science-with-r
https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists

149

12. Data scientist core skills (7) - 8/27/2013
13. Update about our Data Science Apprenticeship (5) - 3/10/2013
14. Our Data Science Apprenticeship is Now Live (38) - 5/22/2014
15. What your state is the worst at? (3) - 1/31/2011
16. How to detect spurious correlations, and how to find the real ones (41) - 5/22/2014
17. The best kept secret about linear and logistic regression (32) - 3/13/2014
18. 6000 Companies Hiring Data Scientists (24) - 12/29/2013
19. More than 100 data science, analytics, big data, visualization books (19) - 11/6/2013
20. Fast clustering algorithms for massive datasets (9) - 2/23/2013
21. Batch vs. Real Time Data Processing (17) - 8/13/2013
22. From the trenches: 360-degree data science (40) - 3/27/2014
23. Salary history and career path of a data scientist (37) - 2/19/2014
24. Data scientists making $300,000 a year (8) - 11/29/2012
25. Data Science eBook - 2nd Edition (15) - 5/19/2013
26. Practical illustration of Map-Reduce (Hadoop-style), on real data (35) - 1/25/2014
27. Salary surveys for data scientists and related job titles (23) - 10/10/2013
28. 16 resources to learn and understand Hadoop (44) - 4/18/2014
29. Big data sets available for free (33) - 12/30/2013
30. BI vs. Big Data vs. Data Analytics By Example (21) - 8/25/2013
31. Hadoop vs. NoSql vs. Sql vs. NewSql By Example (27) - 9/8/2013
32. Data Scientists vs. Data Engineers (20) - 7/2/2013
33. The Curse of Big Data (16) - 1/5/2013
34. Jackknife logistic and linear regression for clustering and predict... (46) - 3/19/2014
35. What MapReduce can't do (18) - 1/31/2013
36. The 8 worst predictive modeling techniques (13) - 9/13/2012
37. Berkeley course on Data Science (10) - 3/4/2012
38. Why Companies can't find analytic talent (43) - 1/17/2014
39. New, fast Excel to process billions of rows via the cloud (28) - 4/16/2013
40. How much does a data scientist make at Facebook? (25) - 3/12/2013
41. Fake data science (29) - 2/11/2013
42. Logit vs Probit Regression (12) - 2/19/2009
43. R Tutorial for Beginners: A Quick Start-Up Kit (42) - 10/24/2013
44. How to detect a pattern? Problem and solution (26) - 9/28/2011
45. Job titles for data scientists (45) - 6/3/2013
46. New, state-of-the-art random number generator: simple, strong and fast (30) - 9/11/2011

3. Interesting Insights

These top pages represent 21% of the traffic (back then). The front page amounts to
another 9%. Here are some of the highlights:

 For top popular articles, page views peak in the first three days, but popularity
remains high for many years. In short, page view decay (over time) is very low,
see figure 1 below.

 Page view decay is very low for highly popular, generic articles that are time-

insensitive, the type of articles that we try to write. Non popular articles or time-
sensitive announcements have a very fast decay, typically exponential decay and
short half-life.

https://www.datasciencecentral.com/profiles/blogs/data-scientist-core-skills
https://www.datasciencecentral.com/group/data-science-apprenticeship/forum/topics/update-about-our-data-science-apprenticeship
https://www.datasciencecentral.com/group/data-science-apprenticeship/forum/topics/our-data-science-apprenticeship-is-now-live
http://www.analyticbridge.com/profiles/blogs/what-your-state-is-the-worst
https://www.datasciencecentral.com/profiles/blogs/tutorial-how-to-detect-spurious-correlations-and-how-to-find-the-
https://www.datasciencecentral.com/profiles/blogs/the-best-kept-secret-about-linear-and-logistic-regression
https://www.datasciencecentral.com/profiles/blogs/6000-companies-hiring-data-scientists
https://www.datasciencecentral.com/profiles/blogs/more-than-100-data-science-analytics-big-data-visualization-books
http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
https://www.datasciencecentral.com/profiles/blogs/batch-vs-real-time-data-processing
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
https://www.datasciencecentral.com/profiles/blogs/a-data-scientist-salary-history
https://www.datasciencecentral.com/profiles/blogs/data-scientists-making-300-000-a-year-wall-street-journal
https://www.datasciencecentral.com/profiles/blogs/data-science-ebook-2nd-edition-table-of-content
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/salary-surveys-for-data-scientists-and-related-job-titles
http://www.hadoop360.com/blog/16-resources-to-learn-and-understand-hadoop
https://www.datasciencecentral.com/profiles/blogs/big-data-sets-available-for-free
https://www.datasciencecentral.com/profiles/blogs/bi-vs-big-data-vs-data-analytics-by-example
https://www.datasciencecentral.com/profiles/blogs/hadoop-vs-nosql-vs-sql-vs-newsql-by-example
https://www.datasciencecentral.com/profiles/blogs/data-scientists-vs-data-engineers
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
https://www.datasciencecentral.com/profiles/blogs/jackknife-logistic-and-linear-regression
http://www.analyticbridge.com/profiles/blogs/what-mapreduce-can-t-do
http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques
https://www.datasciencecentral.com/profiles/blogs/berkeley-course-on-data-science
http://www.analyticbridge.com/profiles/blogs/why-companies-can-t-find-analytic-talent
https://www.datasciencecentral.com/profiles/blogs/new-fast-excel-to-process-billions-of-rows-via-the-cloud
http://www.analyticbridge.com/group/salary-trends-and-reports/forum/topics/how-much-does-a-data-scientist-make-at-facebook
http://www.analyticbridge.com/profiles/blogs/fake-data-science
http://www.analyticbridge.com.com/group/analyticaltechniques/forum/topics/logit-vs-probit-regression
https://www.datasciencecentral.com/profiles/blogs/r-tutorial-for-beginners-a-quick-start-up-kit
http://www.analyticbridge.com/profiles/blogs/how-to-detect-a-pattern-problem-and-solution
https://www.datasciencecentral.com/profiles/blogs/job-titles-for-data-scientists
http://www.analyticbridge.com/profiles/blogs/new-state-of-the-art-random-number-generator-simple-strong-and-fa
https://en.wikipedia.org/wiki/Half-life

150

 You don't notice any decay at all in figure 1. The reason is because decay is
hidden by general traffic growth on DSC. The general growth more than
compensate for the natural decay.

 Notice a change in subjects that are popular between new material (post 2012)
and old material (earlier). You can notice the drastic change only if you use a
sound popularity algorithm, as described in section 4.

 Many of the most popular articles are new (once you adjust for the time bias,
using the methodology described in section 4). Part of it is because we have a
better understanding of the type of articles that our readers are interested in, as
well as how to successfully reach out to new users. Part of it is because of
growth. An article posted today will immediately receive more than twice the
volume of traffic it would have received on day one, if posted 2.5 years ago.

 We have used two data sources, always a good idea in any data science project:
Google Analytics, which filters out robots, and Ning page counts, which does not.
On average Ning numbers are 30% above Google Analytics - which we translate
in the fact that about 30% of the traffic is by robots (Google crawlers etc.) Robot
traffic has a time lag of a few months (on average) compared with human traffic.

 Google Analytics has one drawback: it counts two versions of a same page - with
only the query string in the two URLs being different - as two different pages. A
bit of post-processing can quickly fix this issue. This issue explains why
sometimes the discrepancy between Ning and Google Analytics is as high as
60%, as opposed to the average 10-30% range.

 Many popular articles have been posted in last 2 weeks, but I decided not to
include them (unless page view count is so high that they naturally appear in our
list, after correcting for time bias, as explained in section 4). The reason not to
include them is because of high page view volatility for new articles.

 We had to do some time adjustments as our Google Analytic data goes back to
2012 only, while Ning goes back to 2007. Non-experts working on the same
project are likely to not even notice the issue, let alone fixing it.

151

Figure 2: Page view decay (or absence of decay!) for 4 top blogs listed above

4. New Scoring Engine

Let's say that you measure the page view count for a specific article, and your data
frame is between t = t0 and t = t1. Models like this typically involve exponential decay of
rate r, meaning that at time t, the page view count velocity is f(r, t) = exp(-rt). With this
model, the theoretical number of page views between t0 and t1 is simply

P = g(r, t1) - g(r, t0),

where g(r, t) = (1 - exp(-rt)) / r.

If t0 is set to zero, then g(r, t0) = 0, regardless of r. On a different note, the issue we try
to address here (adjusting for time bias) is known as left- and right-censored data in
statistical science: right-censored because we don't have data about the future and left-
censored because we don't have data prior to 2012.

To adjust for time bias, define the new popularity score as S = Q / P, where Q is the
observed page view count during the time period in question. When r = 0 (no noticeable
decay, which is the case here) and t0 = 0, then P = t. Note that the only two metrics
required to compute the popularity score S, for a specific article, are: time elapsed since
creation date, and page view count during the time frame in question, according to
Google Analytics, after aggregating identical pages with different URL query strings.

152

Note: To make sure that we were not missing popular articles posted recently, we
collected the data using two overlapping time frames: one data set for 2012-2014, and
one just for 2014, using CSV exports from Google Analytics. Several articles that did not
show up in the 2012-2014 data set (because their raw page view count was below our
threshold of about 10,000 page views), actually had top scores S when adjusted for
time, and could only be found by using the 2014 data. Another way to eliminate this
issue is to get statistics for all articles (not just the ones with lots of traffic) for the whole
time period. That's the automated approach, and in our case it would have required
writing extra pieces of code, and possibly Google API calls, to download time stamps on
Ning (via web crawling) and the entire Google Analytic data for the 50,000 articles - not
worth the effort, especially since I allowed myself only a couple of hours to complete this
project.

5. Good versus perfect model

Using the basic model with r = 0 (in section 4) makes a big difference with traditional
rankings (the base model), as you can see when comparing our rankings to traditional
rankings, in our list of top articles in section 2 (sorted according to our popularity score
with r = 0). It allows you to detect trends about what is getting popular over time.

Note that refining the model, estimating a different r for each article, testing the
exponential decay assumption, and adjusting for growth, may be time-prohibitive, and it
makes your model subject to over-fitting, and may jeopardize the value (ROI) of the
project.

Data science is not about perfectionism, but about delivering on time and within budget.
In this case, if I spend one month on this project (or outsource to people who work with
me), it's time wasted on something that could yield far more value than the little
incremental gain obtained by seeking perfection. Yet ignoring the decay is equally bad,
it makes this whole project worthless. The data scientist must instinctively find what
level of perfection is needed, in his models. Data is always imperfect anyway.

6. Next steps

One interesting project is to group pages by categories and aggregate popularity
scores, and create popularity scores for categories. Other potential improvements
include:

 Estimating r rather than using r = 0
 Estimating r for each article (risk of over-fitting)
 Scoring bloggers rather than blogs
 Testing the exponential decay assumption
 Adjusting scores to take traffic growth into account (favoring new blogs over

old ones)

Another area of research is to understand why page view counts closely follow a Zipf
distribution.

https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons
https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons

153

20. Building a Website Taxonomy

We built a taxonomy of data science websites in 2014, by analyzing our member
database (100,000 members back then), extracting websites that our members
mentioned or liked, and for each web site, identifying

 When it is first mentioned by one of our members
 The number of times it was mentioned
 Keywords found when visiting the front page with a web crawler, using a pre-

selected list of seed keywords.

1. Seed Keywords

Seed keywords were used to identify, for each website, whether one or more of the
keywords in our list was found on the front page, using a web crawler. This helps
categorize websites - the final goal being the creation of a data science website
taxonomy. The seed keywords that we used (hand-picked) were popular data science
related keywords:

 analytics
 data science
 database
 hadoop
 predictive modeling
 big data
 business intelligence
 machine learning
 data mining
 text mining
 operations research
 statistics.

2. General Methodology

We used a web crawler to browse all the URLs, after identifying and cleaning the
websites fields (URLs listed by members), in our member database. Click here to get
the script used to summarize the data, as well as a sample of raw data. The ultimate
goal was to create a niche search engine for data science, better than Google, and a
categorization of these websites. Because this is based on data submitted by users, the
raw data is quite messy and requires both cleaning and filtering. Details are found in my
script - it's a good example of code used to clean relatively unstructured data.

Here we categorize the websites in four major clusters:

http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites

154

 Websites mentioned at least 3 times, containing at least one of the seed
keywords in our list

 Websites mentioned less than three times, containing at least one of the seed
keywords in our list

 Websites that we were unable to crawl, mentioned at least twice

 Websites containing no seed keywords from our list, and mentioned at least 4
times

We provide direct clickable links for domains in category 1 (above and below) only. The
choices of these various parameters is to guarantee robustness in our results, filter out
noise, and for internal security reasons: listing hundreds of little know websites (with
clickable links) can get you penalized by Google, can result in many requests for link
removal, and many links can die over time, require regular crawling for maintenance.

3. Top 2,500 Data Science Websites

Below are the links to the top data science websites. Keep in mind that this dates back
to 2014.

 Top 2,500 Websites - top of the top
 Top 2,500 Websites - mentioned only a few times -- Page 1 | Page 2
 Top 2,500 Websites - not crawlable
 Top 2,500 Websites - not containing seed keywords

The field between parentheses represents the year when the website in question was
first mentioned - it does not represent when the website was created, though it's a good
proxy to tell how old the website is. The member database goes as far back as 2007.
The list of keywords attached to each website represents which seed keywords were
found on the front page, when crawling the website. The number of stars (1, 2 or 3)
represents how popular the website is: it's an indicator of how many members
mentioned it. Of course, brand new websites might not have 3 stars yet.

Below is an extract from the list:

https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-top-of-the-top
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times-page-1
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times-page-2
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-not-crawlable
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-not-containing-seed-keywords

155

4. Data and Source Code

Source code (two scripts including a web crawler / parser / summarizer, and code to
produce final HTML pages), as well as raw, intermediate and final data (samples,
screen shots), and details about the 3-step procedure used to publish these listings, can
be found here.

5. Detailed Methodology

Our methodology, to build our semi-categorized website listing, has the following
additional features:

 All webpages were stored as strings (after download), all in lower case. The seed
keywords were also in lower case.

 Within each sub-group in each of the four major categories, websites are
displayed in random order: using a stars system (rather than detailed score)
makes for more robust, accurate results. Sorting websites by score (score =
number of members mentioning the website in question) would result in various
drawbacks: website owners complaining about their score, and sometimes for
good reasons!

 My script takes about 20 minutes to run on one machine to crawl 2,800 websites.
I only read the first 64K of each page, and the http requests times out after 1
second. It would be much faster if multi-threaded.

 The fourth major category of websites (those containing no seed keywords, and
mentioned at least 4 times) is interesting nevertheless: it shows which non-
analytic (general, mainstream) websites our members also visit.

http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites

156

 Some of the websites where no seed keywords were found are actually analytic
websites, and the lack of analytic keywords might be caused either by a glitch in
our script, or in the way the webpage is encoded (iFrames, heavy Javascript,
Flash and other page creation techniques giving a headache to our webcrawler,
and indeed to all webcrawlers including Google). These represent only a small
percentage (< 5%) of all websites. Maybe crawling a few webpages, not just the
frontpage (for each website returning no seed keywords) could fix the issue. This
implies deep crawling, following internal links found on the frontpage.

Uncrawlable websites, bad domains

 As many as 800 out of 2,800 original all websites could not be crawled. I re-run
the crawler on these websites a few hours later, increasing the value of the time-
out parameter, and using a different user agent string in the code (that is,

the $ua->agent argument for those familiar with the web crawling LWP::UserAgent
library). I then re-run it a few more times the same day, and eventually managed
to reduce the number of un-crawlable websites to about 300. Maybe trying
another day, with a different IP address, following the robot.txt protocol (crawling

robots.txt on each failed website) might further reduce the number of failed
crawls. However, about 250 of the uncrawlable websites were just simply non-
existent, mostly because of typos in member fields (user-entered information) in
our database.

 Some of the uncrawlable websites result from various redirect mechanisms that
cause my script not to work, or sometimes because it redirects to an https
address (rather than http).

 I extracted the error information for all uncrawlable websites. Typically, the "500
Bad Domain" error means that the domain does not exist (rarely, it is a redirect
issue). Sometimes adding www will help (changing mydomain.com to
www.mydomain.com).

 Some of the "bad domains" listed by only 1 or 2 members were actually irrelevant
and dead websites posted by spammers. So this analysis allowed us to find a
few spammers, and eliminate them!

6. Possible Improvements

There are various ways to improve my methodology and the quality of the results. Here
I mention a few:

 Order results by year (showing most recent websites first)
 Perform some real clustering on these websites, using the stars, year and

keyword metrics available in my listings.
 Create your own seed keywords list, by extracting all one- and two-tokens

keywords found on these 2,500 webpages (nice seed keywords to add are deep
learning, Python, data and visualization)

157

 Break down websites into two groups: those containing data or analytic in the
domain name, versus those who don't

 Browse multiple webpages per website (identify internal pages with web crawler)
 Browse multiple external pages per website, to grow your list of 2,500 websites

to a much bigger list (make sure the new websites added are analytic-related,
use the seed keywords list for this purpose). You can go two levels deep in your
external crawling.

 Create and use a segmented seed keywords list (keywords related to
visualization, big data, infrastructure, storage, databases, analytics and so on;
this will help with website clustering)

 Run the crawler on Hadoop or at least use some distributed architecture
 Run the crawler in batch mode. Allow your script to easily resume if it stops for

whatever reasons (Internet goes off etc.) One way to do this is to save the results
for each website, one at a time, immediately after crawling it, and produce a log
history of all websites that have been crawled, as your script progresses over the
website list. This way, you can resume your crawling with a single command, at
any time.

 Use recent data only. Some old websites have three stars because they were
popular back then, but have now little traffic.

 Handle https as well as http requests
 Look at keyword density. Rather than checking if data science is found on a

webpage, look at how many times it is found.

Another similar project -- creating a taxonomy of the most popular data scientists -- can
be found here. It is based on keywords found in their LinkedIn profiles.

https://www.datasciencecentral.com/profiles/blogs/types-of-data-scientists

158

21. Predicting Home Values

This topic was the subject of a $1.2 million Kaggle competition sponsored by Zillow, see
here. Here we show how Zillow could improve his model.

We have published in the past about home value forecasting, see here, and also
here and here. In this chapter, I provide specific advice for the competition in question.
More specifically, I provide here high-level advice, rather than about selecting specific
statistical models or algorithms, though I also discuss algorithm selection in the last
section. I believe that designing sound (usually compound) metrics, assessing data
quality and taking it into account, as well as finding external data sources to get a
competitive edge and for cross-validation, is even more important than the purely
statistical modeling aspects.

1. The data

In my neighboring, all homes are valued close to $1.0 million. There are however,
significant differences: some lots are much bigger, home sizes vary from 2,600 to 3,100
square feet, and some houses have a great view. These differences are not well
reflected in the home values, even though Zillow has access to some of this data.

Regarding my vacation home 90 miles North, there are huge variations (due mostly to
home size and view) and the true (real) value ranges from $500k to $1.5 million. The
market is much less fluid. But some spots are erroneously listed at $124k: if you look at
the aerial picture below (available from Zillow by entering the address), some lots do not
have a home, while in reality the house was built and sold two years ago. This outdated
data might affect the estimated value of neighboring houses, if Zillow does not
discriminate between lots (not built) and homes: you would think that the main factor in
Zillow's model is the value of neighboring homes with known value (e.g. following a
recent sale.)

So the first questions are:

 How do I get more accurate data?
 How can I rely on Zillow data to further improve Zillow estimates?

We answer these questions in the next section.

2. Leveraging available data, getting additional data

It is possible that Zillow is currently conservative in its home value estimates, putting too
much emphasis on the average value in the close neighborhood of the target home, and

https://www.kaggle.com/c/zillow-prize-1
https://www.datasciencecentral.com/profiles/blogs/predicting-house-sales
https://www.datasciencecentral.com/profiles/blogs/exercise-how-do-school-ratings-correlate-with-home-prices
http://www.analyticbridge.com/profiles/blogs/here-s-what-your-home-will-be-worth-in-12-months

159

not enough in the home features. If this is the case, an easy improvement consists of
increasing value differences between adjacent homes, by boosting the importance of lot
area and square footage in locations that have very homogeneous Zillow value
estimates.

Getting competitor data about home values, for instance from Trulia, and blending it
with Zillow data, could help improve predictions. Such data can be obtained with a web
crawler. Indeed, with distributed crawling, one could easily extract data for more than
100 million homes, covering most of the US market. Other data sources to consider
includes

 Demographics, education level, unemployment and household income data per
zip code

 Foreclosure reports
 Interest rates if historical data is of any importance (unlikely to be the case here)
 Crime data and school ratings
 Weather data, correlated with home values
 MLS data including number of properties listed (for sale) in any area
 Price per square foot in any area

3. Potential metrics to consider

Many statisticians are just happy to work with the metrics found in the data. However,
deriving more complex metrics from the initial features (not to mention obtaining
external data sources and thus additional features or 'control' features), can prove very
beneficial. The process of deriving complex metrics from base metrics is like building
complex molecules using basic atoms.

In this case, I suggest computing home values at some aggregated level called bin or
bucket. Here, a bin is possibly a zip code, as a lot of data is available at the zip code
level. Then for each individual home, compute an estimate based on the bin average,
and other metrics such as recent sales price for neighboring homes, trend indicator for
the bin in question (using time series analysis), and home features such as school
rating, square footage, number of bedrooms, 2 or 3 cars garage, lot area, view or not,
fireplace(s), and when the home was built. Crime stats, household income and
demographics are already factored in at the bin level.

Some decay function should be used to lower the impact of sales price older than a few
months old, especially in hot markets. If possible, having an idea of the home mix in the
neighborhood in question (number of investment properties, family homes, vacation
homes, turnover, and rentals) can help further refine the predictions. Seasonality is also
an important part of the mix. If possible, include property tax data in your model.

Differences between listed price and actual price when sold (if available,) can help you
compute trends at the zip code level. Same with increases or decreases in 'time in
market' (time elapsed between being listed, and being sold or pulled from the market.)

http://info.trulia.com/press-releases?item=121593
http://www.mls.com/

160

4. Model selection and performance

With just a few (properly binned) features, a simple predictive algorithm such as HDT
(Hidden Decision Trees - a combination of multiple decision trees and special
regression, see chapter 2) can work well, for homes in zip codes (or buckets of zip
codes) with 200+ homes with recent historical sales price. This should cover most urban
areas. For smaller zip codes, you might consider bundling them by county. The strength
of HDT is its robustness and (if well executed) its ability to work for a long time period
with little maintenance. This technique also allows you to easily compute CI (confidence
intervals) for your estimate, based on bin (zip code) values.

However, chances are that performance, to assess the winner among all competitors,
will be based on immediate, present data, just like with any POC (proof of concept.) If
that is the case, a more unstable model might work well to win the $1.2 million prize. It
is critical to know how performance will be assessed, and to do proper cross-validation
no matter what model you use. Cross-validation consists of estimating the value of
homes with known (recent) sales price that are not in your training set, or even better,
located in a zip code outside your training set. It would be a good idea to use at least
50% of all zip codes in your training set, for cross-validation purposes, assuming you
have access to this relatively 'big data'. And having a substantial proportion of zip codes
with full 5-year worth of historical data (not just sampled homes) would be great: it
would help you assess how well you can make local predictions based on a sample
rather than on comprehensive data. If you only have access to a sample, make sure
that it is not biased, and discuss the sampling procedure with the data provider.

It is important to know how the performance metrics (used to determine the winner)
handle outlier data or volatile zip codes. If it is just a straight average of square of
errors, you might need a bit of chance to win the competition, in addition to having a
strong methodology -- though being good at predicting the value of expensive homes
will also help in this case. Regardless, I would definitely stay away from classic linear
models, unless you make them more robust by putting constraints on model parameters
(as in the Lasso or pseudo regression, see chapter 1.)

Finally it helps to have domain expertise to win such competitions -- at least to build
scalable solutions that will work for a long time.

161

22. Growth Hacking

In this chapter, we discuss various strategies used to generate exponential traffic
growth, while preserving traffic quality, and user loyalty. Our growth hacking engine is a
combination of

 Raw data science: getting the right data sets, leveraging them,
 Playing with various tools and API's: designing an automated machine-to-

machine communication service between Hootsuite and Twitter / LinkedIn based
on insights automatically distilled from the following data sources: (1) data
obtained via the Google Analytics API (traffic statistics about 50,000 live DSC
articles), and (2) data collected via a web crawler written in Python

 A blend of high-level (strategic) data science and low-level (tactical or
operational) data science. In the end, relatively little coding is involved in the
process. Domain expertise and smart innovation play a critical role.

 Optimizing parameters of the statistical process used to select articles, create
tweets, and schedule them, using experimental design and A/B testing

 Artificial intelligence: detection and removal of articles that are time-sensitive,
automated creation of relevant hash-tags for selected tweets, and creation of a
taxonomy of all our articles using simple indexing classification scheme

 Smart analytic-driven advertising on Twitter, using a good list of data science
thought leaders worth following, as our core data set for advertising purposes.
The creation of this list is an interesting data science project in itself.

 Smart analytical and ROI-driven advertising on Google, as well as LinkedIn
hacks, to get new members

The results are best illustrated in the graph below representing @AnalyticBridge, the
largest data science profile on Twitter, as well as in this article.

https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/forum/topics/interactive-visualization-of-growing-data-science-big-data-profil
https://www.twitter.com/analyticbridge
https://www.datasciencecentral.com/profiles/blogs/the-growth-of-data-science-in-the-last-two-years

162

1. Growth Hacking: Part I

Here we describe a strategy consisting of tweeting your top articles over a long period
of time, to generate incremental traffic. After testing it for one week, we have
experienced a 10% growth in traffic. This strategy works well for getting new users, and
we believe that it can triple your traffic when fully optimized, though it might reduce user
engagement. To get new and loyal subscribers, another strategy is needed: read
section 2. This works in fast-growth environments, though you can fine-tune the
parameters if applying it to no-growth web sites.

1.1. Strategy

Our DSC network has more than 50,000 live articles at any time, and growing by more
than 2,000 new articles per year. Our intern Livan analyzed our Google Analytics
statistics, and found more than 2,000 articles each with more than 150 page views - and
some with more than 100,000 page views. Back in 2015 when this analysis was
performed, our Twitter account had 60,000 followers (growing by 5,000 new followers
per month), and we also managed a LinkedIn group with 160,000 members (growing by
6,000 new members per month). We asked ourselves the following question: What if we
tweet 25 articles each day, from our list of top 2,000 articles, updated monthly?

The answer, from our first tests, is an immediate 10% traffic boost. We could tweet 100
articles per day from that same list, not just 25. We could tweet from multiple accounts,
not just @AnalyticBridge, and we could also post on LinkedIn or Google+ (now dead).
With Hootsuite, this process can be fully automated. What would be the impact? Of
course there is an optimum: too much tweeting will create dilution. But given the large
number of new followers each day, and the fact that the top 2,000 articles could be
replaced by entirely new articles after one year (because we produce new articles every
day, and we are in the process of automating some postings, such as new books or
new salary surveys), is it a clear indicator that 25 tweets a day is well below the
optimum. And indeed, we have 50,000+ live articles, so we could tap in the whole list,
not just the top 2,000.

Optimizing this tweeting process is discussed later in this chapter. Note that the way
tweets work, it is OK if a user sees a same tweet 2 or 3 times over a one-year time
period, as long as on average, he sees many tweets from us only one or two times. And
given the fact that tweets are short-lived, even with 100 tweets per day (out of a list of
2,000 tweets updated monthly), randomly selected (according to some selection
mechanism slightly favoring, new, or very old, or popular, time-insensitive tweets), we
should be fine, if we proceed carefully, incrementally, with constant adaptation to new
web traffic conditions whenever they occur.

The idea that very old, time-insensitive articles with few (say 150) page views are worth
tweeting again today, is because our traffic grew up by 500 percent over the last several
years, thanks to the techniques described here. So our older articles were not seen by
most of our new visitors. This concept is explained chapter 19 where we discuss traffic

https://www.twitter.com/analyticbridge

163

decay and how to increase the lifetime and yield of old blog posts. For instance, by
having top articles listed in a footer at the bottom of each article. The footer that can be
updated at once across thousands of articles, when needed, using an shtml include
directive in the webpage code, or an iframe to load the adaptive footer stored in one
web location.

1.2. Methodology

The process consists of five steps:

 Step 1: Producing/updating each month a list of top DSC articles based on our
Google Analytics data, including for each article, the total number of page views.
Currently, we focus on articles with 150+ page views. If we want to extract much
bigger lists, we would need to use the Google Analytics API for data extraction.

 Step 2: Scraping DSC (using an home-made web scraper written in Python) to
identify in the list created in Step 1, the articles that are still live (not deleted), and
for each live article, identify creation date, channel (AnalyticBridge.com,
DataScienceCentral.com, BigDataNews.com, DataViZualization.com,
Hadoop360.com) and title

 Step 3: Data cleaning: removing time-sensitive articles, adding hash tags to titles
 Step 4: Statistical modeling: creating a score for each article, based on page

views, creation date, and a random number (see details below)
 Step 5: The scores attached to each article are based on new simulated random

numbers produced every day. Each day, select the top 25 articles based on
score, and add them to Hootsuite. Schedule the 25 tweets during the day, over
a 4 hour time window corresponding to our peak in US traffic. Hootsuite will
automatically generate the shortened URL's to be added in the tweets.

The score can be used to slightly favor (over-tweet) articles that are more recent, or
popular. But it is random enough that any article has some chance to eventually be
tweeted one day. The score reflects the fact that not all articles are created equal.

The final implementation will consist of a fully automated machine-to-machine
communication service (between Google Analytics, Hootsuite, and Twitter), powered by
robust black-box analytics, automated machine learning (hash tag creation, detection of
time-sensitive articles) and automated, adaptive statistical scoring.

The number of tweets can be slightly adjusted each day (increased, decreased, or
change in scoring parameters) as a response to performance. Performance is
measured in terms of daily clicks arising from this activity (the stats are readily available
from Hootsuite analytics), and the resulting average session duration for traffic coming
from Twitter (available from Google Analytics).

164

1.3. Details about the scoring algorithm

This algorithm is used to score articles based on page views count (denoted as P),
creation date (denoted as T for time), and a random number denoted as R (uniform
deviate on [0, 1]). Note that older articles tend to have more page views, so P and T are
not independent. The score S is computed as follows:

S = (b + R) Pa / (T - Offset)c

The parameter a, b, c are chosen so that the top 25 articles selected each day (for
tweeting) have, on average, a median P (historical page views count) about twice as
high as the median P computed across all 2,000 articles. This way, we slightly favor
popular articles, but not too much. Details are in the spreadsheet described below.
Offset is chosen so that T = Offset, for our oldest article. You should use the median for
P, not the average, because it has a Zipf distribution. Note that page view decay occurs,
especially for not popular article, though decay is masked by growth for popular articles,
see chapter 19.

1.4. Data Sets, Excel spreadsheet

You can download our Excel spreadsheet with 2,000 articles, featuring the following
fields, for each article:

 Title
 URL
 Creation Date
 Page View Count
 Channel
 Randomized Score (column I)

The parameters a, b, and c are in cells J2, J3, and K2 respectively. A low value for J3
will produce more random scores. Cross correlations are displayed in cells L1:O4, and
the median score for top 25 articles, and for all 2,000 articles, are displayed in cells M8
and M7 respectively.

Note that the cross-correlations are not very useful: even when the correlation between
P and S is as low as 0.04, the median P for the top 25 articles (those with highest S) is
twice as much as the overall median score S computed on all articles. This is because
traditional correlation is a poor indicator in this context, sensitive to the numerous
outliers in the P values, since P has a Zipf rather than Gaussian distribution.

You can also download a full data set that contains the full text (not just the title) for
each article. It is used for clustering articles (see section 3).

1.5. Python Source Code

Our intern Livan wrote some Python code to process Google Analytics reports,
and scrape DSC articles to extract relevant fields (creation date, channel, and

https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons
http://storage.ning.com/topology/rest/1.0/file/get/2808296888?profile=original
https://www.datasciencecentral.com/page/member

165

title.) Download Python code (rename this text file with a .py extension after
downloading).

1.6. Next Steps

We can make this system more powerful by

 Automatically removing time-sensitive articles, by detecting tokens in the URL
such as event, conference, or weekly-digest

 We could deploy the system not just on Twitter, but on our large LinkedIn group
or on multiple Twitter accounts

 Deduping duplicate URL's (sharing same path but different query strings)
 Use top 50,000 articles rather than 2,000
 Automate some of the content production (new books announcements and salary

surveys are easy to automatically produce), to boost our number of tweet-able
articles

2. Growth Hacking: Part II

This section quickly describes the other fundamental component required to make our
system (described in section 1) work. It is the creation and growth of at least one
massive Twitter account, with highly relevant, high value followers, and use of
automated tweeting systems. There is a feedback loop in the sense that having a lot of
valuable content to tweet, helps generate large volume of good traffic to your website,
and helps boost your Twitter growth, which in turn further fuels the traffic growth for your
website.

Here, a significant part of our growth (150 new Twitter followers per day) is generated
via Twitter advertising: we spend a little more on Twitter than on Google AdWords. With
Twitter, it is possible to target US-based profiles (and their followers) that are similar to
pre-selected profiles, and you can upload a list of pre-selected profiles when starting
your advertising campaigns. Our list has hundreds if not thousands of pre-selected data
science profiles. Such lists are easy to find, and regularly published on various
websites. But ours also includes top profiles - indeed the very largest, most relevant
ones - that are missing in the traditional published lists, as well as people who re-tweet
or like our tweets.

The growth and volume of our two main Twitter profiles @analyticbridge and
@datasciencectrl, is displayed in the figure below.

http://storage.ning.com/topology/rest/1.0/file/get/2808297081?profile=original
https://www.twitter.com/analyticbridge
https://www.twitter.com/datasciencectrl

166

Below is a zoom in on the bottom right corner.

Since 2015, the landscape has changed, but not that much, and we still dominate. The
strategy described in section 1 delivers more than 1,000 extra clicks per day to our
network, at the current low levels (25 tweets per day).

We also use LinkedIn and Google AdWords, but for a different goal: generating new
members, US-based in the case of AdWords. But we have encountered a number of
issues with AdWords (low conversion), thus we have reduced our budget, optimized our
Adwords strategies (adding negative keywords and conversion tracking, more on this
coming soon), and shifted money to Twitter and to acquire high quality content. Read
my article on 360-degree data science to understand how we blend domain expertise,
business hacks, machine learning, engineering, and modern statistical science, to

https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
http://storage.ning.com/topology/rest/1.0/file/get/2808297200?profile=original

167

efficiently solve business problems in general. And in particular, to discover how we
optimize our bidding strategies for Google keywords (how much to pay for a keyword).

3. Growth Hacking: Part III

Another part of our growth hacking strategy consists of creating new channels, for
instance:

 DataViZualization
 DataPlumbing
 BigDataNews
 Hadoop360

One of the challenges is to populate these channels with new content. While we use
syndicated feeds for this purpose, we also want to add our own content. One way to do
so is to perform a clustering of all our articles, and assign them a category: visualization,
data plumbing, big data, Hadoop and so on. Once the articles are categorized, we can
publish (re-post) some popular articles from DSC on the appropriate sub-channels.

Here we describe a very simple and highly scalable NLP (natural language processing)
technique, called indexation, to perform this clustering task. It works as follows.

Algorithm: categorizing / clustering articles

 Step 1: Create a data dictionary (see section 8 in chapter 25) of all one-token
and two-token keywords found in all articles (both in the title and in the body of
the article). This assumes that you crawled all your articles to extract all the text.

 Step 2: Filter / clean results. Ignore keywords with less than 5 occurrences.
Check all n-grams of a keyword (data science and science data) and eliminate n-
grams with low frequency, for each keywords

 Step 3: Look at top 300 entries, called seed keywords. Manually assign seed
keywords to top categories. For instance, the top category data plumbing will
have the following seed keywords: data engineer, data architect, data
warehouse, Hadoop, Spark, data lakes, IoT and many more. Don't forget to have
a top category called Unknown.

 Step 4. Based on keywords found in the title and body of an article, assign the
article in question to the top category that has the biggest overlap with the article,
in terms of seed keywords. Note that keywords found in the title might be
assigned a higher weight than those found in the body. Likewise, a different
weight can be attached to each seed keyword, in each top category.

I call this technique indexation because it is very similar to the creation of a search
engine; another word that could be used is tagging algorithm. See also chapters 6 and
20.

http://www.datavizualization.com/
http://www.dataplumbing.com/
http://www.bigdatanews.com/
http://www.hadoop360.com/

168

Instead of using this algorithm, you can just use customized Google Search for your
website, and once installed, search for data plumbing to find articles in your website,
that are a good fit for the data plumbing category or channel. We've actually
implemented it on DSC. We switched to an internal home-made search engine once
Google starting displaying (mostly irrelevant or competing) ads in the search results.

Potential improvement

Also add 3-token keywords in your dictionary. For 3 tokens keywords, you have 3!
(factorial 3) = 6 n-grams. Usually, only one or two of these 6 n-grams will show up in the
articles, for any keyword (data science central will show up, but central science
data won't).

4. Conclusions

This DSC growth engine illustrates that data science is not just about programming.
Indeed, here, programming is a small part of the project, compared with designing
algorithms that efficiently make API's communicate with each other, based on data
automatically gathered, with insights automatically extracted, and automatically
leveraged. It also shows the limitation of traditional statistical science, with correlations
(see the sub-section about the scoring engine) that are useless, and replaced by
something else.

It certainly shows that there are different types of data scientists, and that indeed, data
science is greater than the sum of its parts. It also shows how business and domain
expertise are critical. For instance, if you don't know about the Twitter advertising
capabilities or the Hootsuite or BufferApp platform, you will never even think of doing
this kind of stuff, no matter how much you know about coding and algorithms, thus
missing on a big opportunity. If you work in a bigger organization, of course finding and
convincing the right person to start a project like this one, is a challenge, no matter how
much business savvy you are. But my experience is that big organizations tend to hire
specialists rather than people like me.

https://www.google.com/cse
https://www.datasciencecentral.com/forum/topics/most-popular-data-science-keywords-on-dsc
https://www.datasciencecentral.com/forum/topics/most-popular-data-science-keywords-on-dsc
https://www.datasciencecentral.com/profiles/blogs/the-2-types-of-data-scientists-everyone-should-know-about
https://www.datasciencecentral.com/profiles/blogs/data-science-putting-it-together-it-s-greater-than-the-sum-of-the
https://www.datasciencecentral.com/profiles/blogs/data-science-putting-it-together-it-s-greater-than-the-sum-of-the

169

23. Time Series and Growth Modeling

Time series models are studied throughout this book: chapters 12 and 13, section 2 in
chapter 28, section 12 in chapter 25, appendix A and B. Here our perspective is purely
business related and focused on growth modeling, especially to make sound predictions
in the presence of growth. It is more important to understand what drives growth and its
internal mechanics, than using sophisticated models, in order to make sound forecasts.

Many times, complex models are not enough (or too heavy), or not necessary, to get
great, robust, sustainable insights out of data. Deep analytical thinking may prove more
useful, and can be done by people not necessarily trained in data science, even by
people with limited coding experience. Here we explore what we mean by deep
analytical thinking, using a case study, and how it works: combining craftsmanship,
business acumen, the use and creation of tricks and rules of thumb, to provide sound
answers to business problems. These skills are usually acquired by experience more
than by training, and data science generalists (see here how to become one) usually
possess them.

This chapter is targeted to data science managers and decision makers, as well as to
junior professionals who want to become one at some point in their career. Deep
thinking, unlike deep learning, is also more difficult to automate, so it provides better job
security. Those automating deep learning are actually the new data science wizards,
who can think out-of-the box. Much of what is described in this chapter is also data
science wizardry, and not taught in standard textbooks nor in the classroom. By reading
this tutorial, you will learn and be able to use these data science secrets, and possibly
change your perspective on data science. Data science is like an iceberg: everyone
knows and can see the tip of the iceberg (regression models, neural nets, cross-
validation, clustering, Python, and so on, as presented in textbooks.) Here I focus on the
unseen bottom, using a statistical level almost accessible to the layman, avoiding jargon
and complicated math formulas, yet discussing a few advanced concepts.

1. Case Study: The Problem

The real-life data set investigated here is a time series with 209 weeks’ worth of
observations. The data points are the number of daily users, averaged per week, for a
specific website, over some time period. The data was extracted from Google Analytics,
and summarized in the picture below. Some stock market data also shows similar
patterns.

https://www.datasciencecentral.com/profiles/blogs/why-you-should-be-a-data-science-generalist

170

The data and all the detailed computations are available in the interactive spreadsheet
provided in the last section. Below is an extract.

1.1. Business questions

We need to answer

 Whether there is growth over time, in the number of visiting users,
 Whether it can be extrapolated to the future (and how),
 What kind of growth do we see (linear, or faster than linear)
 Whether can we explain the dips, and avoid them in the future.

As in any business, growth is driven by a large number of factors, as every department
tries its best to contribute to the growth. There are also forces going against the growth,
such as reaching market saturation, market decline or competition. All the positive and
negative forces combine together and can create a stable, predictable growth pattern,
whether linear, exponential, seasonal, or a combination. This can be approximated by a

https://storage.ning.com/topology/rest/1.0/file/get/1289462185?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1289744842?profile=original

171

Gaussian model, by virtue of the central limit theorem. However, in practice, it would be
much better to identify these factors to get a much better picture, if one wants to make
realistic projections and measure the cost of growth.

Before diving into original data modeling considerations (data science wizardry) in
section 3, including spreadsheets and computations, we first discuss general questions
(deep analytical thinking) that should be addressed whenever such a project arises.
This is the purpose of the next section.

2. Deep Analytical Thinking

Any data scientist can quickly run a model and conclude that there is a linear growth in
the case discussed in section 1, and make projections based on that. However, this
may not help the business if the projections, as we see so frequently in many projects,
work for only 3 months or less. A deeper understanding of the opposite forces at play,
balancing out and contributing to the overall growth, is needed to sustain the growth.
And maybe this growth is not good after all. That's where deep analytical thinking
comes in play.

Of course, the first thing to ponder is whether this is a critical business question, coming
from an executive wondering about the health of its business (even and especially in
good times,) or whether it is a post-mortem analysis related to a specific, narrow,
tactical project. We will assume here that it is a critical, strategic question. In practice,
data scientists know about the importance of each question, and treat them accordingly
with the appropriate amount of deep thinking and prioritization. What I discuss next
applies to a wide range of business situations.

2.1. Answering hidden questions

It is always good for a data scientist, to be involved in business aspects that are data
related, but go beyond coding or implementing models. This is particularly true with
small businesses, and it is one aspect of data science that is often overlooked. In bigger
companies, this involves working with various teams, as a listener, challenger, and in an
advisory role. The questions that we should ask are broken down below in three
categories: business, data, and metrics related.

Business questions:

 Is your company pursuing the correct type of growth? Is it growing in the right
segments? Is the growth shifting in the wrong direction? Do we now attract an
audience that is not converting well (low ROI) or with high churn rate (low
customer lifecycle value, high cost of user acquisition.) The data scientist is well
positioned to access the relevant data and analyze it to answer this question.

 Is top management too much focused on bad growth? That is, growing for the
sake of it to show to shareholders? There is good growth and bad growth. In
many businesses, some bad growth (growth for the sake of it) is needed to

172

impress clients, shareholders, employees, and because growth numbers from
competitors are also fueled partly by bad growth. That is why you want to show
that your company is growing as fast as your competition. Good growth, to the
contrary, is focused on long terms outcomes. However, now that granular data
from most companies is widely available or can be purchased and analyzed by
experts, it is becoming more difficult to fake the growth. Anyway, when analyzing
statistics, you must be able to discriminate between good and bad growth.

 What external factors impact the bottom line metrics? Competition and market
trends are two of them. Knowing that a competitor just received a new round of
funding and is spending it on advertising, can be very valuable to gain insights.
Or in our example, the big dip corresponds to holiday traffic in December.

 What internal factors are at play and "influencing" your data? It could be
increased marketing efforts by your company, a website that was made much
more efficient, some business acquisition or new products, the definition of a
metric that was changed internally (with impact on measured numbers). The data
scientist should be informed about these events, and indeed, proactively ask
questions when data trends are seen but cannot be explained. Even when data
sounds stable, it could be the effect of two sources, one negative, and one
positive, canceling out. Always be curious about what is happening in your
company, with your competitors and the market in general.

Data questions:

 Are we gathering data from external sources, to validate internal data? In our
case, data from Google Analytics can be wrong. Having an external source will
help you pinpoint discrepancies and understand what is exactly measured by the
various sources. A tool such as Alexa not only provides an alternate source of
measurements, but it also provides data points about competition.

 Is some data duplicated, missing, corrupt, or not available? Are you working with
the IT and BI team to collect the right data, get it properly summarized,
accessible via dashboards or straight from databases, and archived
appropriately, locally or externally? Do you maintain a data log that lists all
changes to data over time?

 Do you know the biggest mechanisms introducing biases and errors in your
data? In our case, Google Analytics is sensitive to smart bots generating artificial
traffic, to websites not being tracked or tagged properly, and to new advertising
campaigns being launched, introducing shifts in geolocation and traffic quality.
Address all these issues with the right people in your company. Sometimes it
requires having access to additional data.

173

Question about the metrics:

 Are you collecting the most useful metrics? What important metrics are missing
or would be useful to have? Do we you enough granularity? Do you focus on the
right metrics? New users might be more important than total users. Page view
numbers are easily manipulated by third parties and thus less reliable. Session
duration may be meaningless if users spend a lot of time watching videos on
your website. A lot of traffic from US is not good if it is from demographic
segments not bringing any value. High traffic numbers might not be good if users
complain about the poor quality of your content.

 Finding proxy metrics when the exact ones are not available. For instance, zip
code data could be used instead of income. When creating web forms, adding
mandatory fields could result in more useful databases and better targeting,
though changes also impact the data and create back-compatibility issues,
making comparisons difficult when analyzing time series.

 A simple question such as the one discussed in section 1, is too generic. You
must analyze growth in various segments, and sometimes, you may discover
segments that need to shrink rather than grow. For instance, a website that
accepts credit card transactions, written in English, might not be appropriate for
countries where credit card use is non-existent, or in locales that can sue you
because your content is in English rather than in the local, mandatory language.

 Should you use a longer time window (if available) to get a better picture,
assuming the data is consistent over time? Or monthly rather than weekly data?
How frequently should this analysis be done? Can it be automated if done
frequently enough? Should it be included in dashboard reporting? Which charts
to use to communicate the insights visually, with maximum impact and value to
the stakeholder?

In the next section, we focus on the modeling aspects, offering different perspectives on
how to better analyze the type of data discussed in our case study.

3. Data Science Wizardry

We focus on the problem and data presented in section 1, providing better ad-hoc
alternatives (rarely used in a business setting) to regression modeling. This section is
somewhat more technical.

Even without doing any analysis, the trained eye will recognize a linear trend for the
growth, in the time series. Even with the naked eye, you can further refine the model
and see three distinct patterns: a steady growth initially, followed by a flat plateau, and
then the growth becoming fairly steep at the end. The big dip is caused by the holiday
season. At this point, one would think that a mixed, piece-wise model, involving both

174

linear and super-linear growth, represents the situation quite well. It takes less than 5
seconds to come to that conclusion.

The idea to represent the time series as a mixed stochastic process -- a blend of linear
and exponential models, depending on the time period -- is rather original and
reminiscent of mixture models (see chapter 11). Model blending is also discussed in
chapter 2. However, in this section, we consider a simple parametric model. But rather
than traditional model fitting, the technique discussed here is based on simulations, and
should appeal to engineering and operations research professionals. It has the
advantage of being easy to understand yet robust.

The idea is as follows, and it will become clearer in the illustration that follows:

3.1. Generic algorithm

 Step 1. Simulate 100 realizations, also called instances, of a stochastic process
governed by a small number of easy-to-interpret parameters, each realization
with 209 data points as in the original data set, with same starting and end values
as in the observed data (or same mean and variance.) The parameters are set to
fixed values.

 Step 2. Compute the estimated values (averaged over the 100 simulations) of
some business quantities of interest, for instance the number of weeks followed
by an increase in users, the average week gap between two increases, the
average dip depth and width or number of dips (same with spikes), auto-
correlations and so on. These quantities are called indicators.

 Step 3. Compute the error between the indicator values computed on the
observed time series, and those estimated on the simulations.

 Step 4. Repeat with a different set of parameters until you get a fit that is good
enough.

A potential improvement, not investigated here, is to consider parameters that change
over time, acting as if they were priors in a Bayesian framework. It is also easy to build
confidence intervals for the indicators, based on the 100 simulations used for each
parameter set. This makes sense with bigger data sets, and it can be done even without
being a statistical expert (a software engineer can do it.)

3.2. Illustration with three different models

I tested the following models (stochastic processes) to find a decent fit with the data,
while avoiding over-fitting. Thus the models used here have few, intuitive parameters. In
all cases, the models were standardized to provide the desired mean and variance
associated with the observed time series. The models described below are the base
models, before standardization.

175

Model #1:

This is a random walk with unequal probabilities, also known as a Markov chain. If we
denote the average daily users at week t as Xt, then the model is defined as follows: Xt+1
= Xt - 1 with probability p, and Xt = Xt + 1 with probability 1 - p. Since we observe
growth, the parameter p must be between 0 and 0.5. Also, it must be strictly above 0 to
explain the dips, and strictly below 0.5 otherwise there would be no growth and no
decline (on average), over time. Note that unlike a pure random walk (corresponding
to p = 0.5), this Markov chain model produces deviates Xt that are highly auto-
correlated. This is fine because, due to growth, the observed weekly numbers are also
highly auto-correlated. A parameter value around p= 0.4 yields the lag-1 auto-
correlation found in the data.

Model #2:

This model is a basic auto-regressive (AR) process, defined as Xt+1 = qXt + (1-q)Xt-1
+ Dt, with the parameter q between 0 and 1, and the Dt's being independent random
variables equal to -1 with probability p, and to +1 with probability 1 - p. It also provides a
similar lag-1 auto-correlation in the { Xt } sequence, but in addition, now the sequence Yt
= Xt+1 - Xt also exhibits a lag-1 auto-correlation. Indeed, there is also in the data, a lag-1
auto-correlation in the { Yt } sequence. A parameter value around q = 0.8 together
with p = 0.4, yields that auto-correlation. Note that with the Markov chain (our first
model), that auto-correlation (in the { Yt } sequence) would be zero. So the AR process
is a better model. An even better model would be an AR process with three
parameters.

Model #3:

The two previous models can only produce linear growth trends. In order to introduce
non-linear trends, we introduce a new model which is a simple transformation of the AR
process. It is defined as Zt = exp(rXt), where { X(t) } is the AR process. In addition to the
parameters p and q, it has an extra parameter r. Note that when r is close to zero, it
behaves almost as an AR process (after standardization), at least in the short term.

3.3. Results

The picture below shows the original data (top left), one realization of a Markov chain
with p = 0.4 (top right), one realization of an AR process with p =0.4 and q = 0.6 (bottom
left), and one realization of the exponential process with p = 0.4, q = 0.6 and r = 0.062.
By one realization, we mean any one simulation among the 100 required in the
algorithm.

176

The picture below features the same charts, but with another realization (that is, another
simulation) of the same processes, with the same parameter values. Note that the dips
and other patterns do not appear in the same order or at the same time, but the
intensity, length of dips, overall growth, and auto-correlation structures are similar to
those in the first picture, especially if you extend the time window from 209 weeks to a
few hundred weeks, for the simulations: they are in the same confidence intervals. If
you try many simulations and compute these statistics each time, you will have a clear
idea of what these confidence intervals are.

Overall -- when you look at 100 simulations, not just two -- the exponential model with a
small value of r provides the best fit for the first 209 weeks, with a nearly linear growth

https://storage.ning.com/topology/rest/1.0/file/get/1304468760?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1304538024?profile=original

177

at least in the short term. However, as mentioned earlier, a piece-wise model would be
best. The AR process, while good at representing a number of auto-correlations, seems
too bumpy, and dips are not deep enough; a 3-parameter AR process can fix this issue.
Finally, model calibration should be performed on test data, with model performance
measured on control data. We did not perform this cross-validation step here, due to the
small data set. One way to do it with a small data set is to use odd weeks for the test,
and even weeks for the control. This is not a good approach here, since we would miss
special week-to-week auto-correlations in the modeling process.

Download the spreadsheet, with raw data, computations, and charts. Play with the
parameters!

4. A few data science hacks

Here I share a few more of my secrets.

The Markov chain process can only produce a linear growth. This fact might not be very
well known, but if you look at Brownian motions (the time-continuous version of these
processes) the expectation and variance over time is well studied and very peculiar, so
it can only model a narrow range of time series. More information on this can be found
in the first chapters of my previous book, here. In this chapter, we overcome this
obstacle by using an exponential transformation.

Also growth is usually non-sustainable long-term, and can create bubbles that
eventually burst -- one thing that your model may be unable to simulate. One way to
mitigate this effect is to use models with constrained growth, in which growth can only
go so far and is limited by some thresholds. One such model is presented in my
previous book, see chapter 3 here.

Finally, model fitting is usually easier when you do it on the integrated process (see
chapter 2 in my previous book.) The integrated process is just the cumulative version of
the original process, easy to compute, and also illustrated in my spreadsheet. The data /
model fit, measured on the cumulative process, can be almost perfect, see picture
below representing the cumulative process associated with some simulations performed
in the previous sub-section.

https://storage.ning.com/topology/rest/1.0/file/get/1306143210?profile=original
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1305578712?profile=original

178

In the above chart, the curve is extremely well approximated by a second-degree
polynomial. Its derivative provides the linear growth trend associated with our data. This
concept is simple, though I have never seen it mentioned anywhere:

 Use cumulative instead of raw data
 Perform model fitting on the cumulative data
 The derivative of the function (best fit) attached to the cumulative process,

provides a great fit with the raw data.

The cumulative function acts as a low-pass filter on the data, removing some noise and
outliers.

Below is another picture similar to those presented earlier, but with a different set of
parameter values. It shows that despite using basic models, we are able to
accommodate a large class of growth patterns.

And below is the cumulative function associated with the chart in the bottom right corner
in the above picture: it shows how smooth it is, despite the chaotic nature of the
simulated process.

In some other simulations (not illustrated here, but you can fine tune the model
parameters in the spreadsheet to generate them) the charts present spikes like Dirac
distributions and are very familiar to physicists and signal processing professionals.

https://storage.ning.com/topology/rest/1.0/file/get/1305754462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1305798660?profile=original

179

24. Designing Better Algorithms

In this chapter, using a few examples and solutions, I show that the "best" algorithm is
many times not what data scientists or management think it is. As a result, too many
times, misfit algorithms are implemented. Not that they are bad or simplistic. To the
contrary, they are usually too complicated, but the biggest drawback is that they do not
address the key problems. Sometimes they lack robustness, sometimes they are not
properly maintained (for instance they rely on outdated lookup tables), sometimes they
are unstable (they rely on a multi-million rule system), sometimes the data is not
properly filtered or inaccurate, and sometimes they are based on poor metrics that are
easy to manipulate by a third party seeking some advantage (for instance, click counts
are easy to fake.) The solution usually consists in choosing a different approach and a
very different, simple algorithm - or no algorithm at all in some cases.

1. Five Case Studies

Here I provide a few examples, as well as an easy, low-cost, robust fix in each case.

Many times, the problem is caused by data scientists lacking business understanding
(they use generic techniques, and lack domain expertise) combined with management
lacking basic understanding of analytical, automated, optimized (semi-intelligent, self-
learning) decision systems based on data processing. The solution consists of
educating both groups, or using hybrid data scientists (I sometimes call them business
scientists) who might not design the most sophisticated algorithms, but instead the most
efficient ones given the problems at stake - even if sometimes it means creating ad-hoc
solutions. This may result in simpler, less costly, more robust, more adaptive, easier to
maintain, and generally speaking, better suited solutions.

 Click fraud detection: This is an old problem, yet publishers using affiliates to
generate traffic (including Google and its network of partners) still deliver vast
amounts of fraudulent clicks. While these companies have become much smarter
about pricing (very lowly) these worthless clicks, better and easier solutions exist.
For instance, pricing per keyword per day rather than per click, or targeting
specific people/audiences to make it difficult to create fake traffic (and at the same
time increasing relevancy and thus ROI both for the advertiser and the ad
network.) For instance, both Facebook and Twitter allow you to target friends of
friends, or profiles similar to pre-specified people. The issue with the pay-per-click
algorithms (specifically, fraud detection) is not so much the fact that the algorithms
miss a lot of fraud, but rather caused by the business model which is flawed by
design. My solution consists of changing the business model.

 Ad matching or relevancy algorithms: We've all seen too many times ads that
are irrelevant to us - it is a waste of money for the advertiser and the ad network.
Ad matching algorithms (or generally speaking, relevancy algorithms) aim at

https://www.datasciencecentral.com/profiles/blogs/vertical-vs-horizontal-data-scientists
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization

180

optimally serving the right ads (or content) to the right user on the right page at the
right time. When several ads compete for a spot and can all be displayed, they
need to be displayed in the right order (on a specific page, to a specific user.)
Such algorithms can greatly be improved by assigning categories both to pages,
users and ads, in order to optimize the match, even in the absence of a search
query. This is described in this article, and modern techniques rely on tagging or
indexation algorithms. (see chapter 4.) Such indexation algorithms are
conceptually very simple and robust, and can quickly create taxonomies on big
data, to help solve the problem. Another search engine algorithm that can benefit
from substantial improvements is content attribution: assign the content to the
original source (by displaying it at the top in search results), rather than to an
authorized copy or worse, to a plagiarist. Click here for details; the solution might
be as easy as pre-sorting index entries (for a same keyword and identical content)
by time stamps. More on search engine technology here.

 Optimum pricing: Just like using the same drug for all patients (to cure a specific
ailment) is a poor strategy, using the same price (for a specific product) for all
customers may not be the best solution. Optimum pricing varies based on time,
sales channel, and customer. I described this concept in an article on hotel rooms
pricing.

 Fake reviews detection: Product and book reviews are notoriously biased as
authors get reviews from friends, and blackmailers try to get your money to post
good reviews about your product, or otherwise will write bad reviews. Read this
article for details. The bulk production of fake reviews is indeed a striving
business in its own (if executed properly with the right algorithms as described
here.) It negatively impacts all websites (such as Amazon) that rely on product
reviews to increase sales and attract users: it is a trust issue. The concept itself is
subject to conflicts of interests - good reviews supposedly increasing sales, are
thus encouraged or given more weight. So here we are facing a business flaw
rather than poor detection algorithms. The solution is having professionals write
the reviews and then the problem of fake reviews almost disappears - no need for
an algorithm to handle it. If however you really want to implement user-based
product reviews on your e-store, here is the way to do it right: as in the relevancy
algorithm described above, assign categories to each user, each product and
each reviewer. When there is a strong match (the user, the reviewer and the
product categories all match) assign a high score to the product review in
question. Eliminate reviews that are too short. First-time reviewers might be
assigned a lower score. Then compute a weight for each star rating assigned to a
product, by summing up all the individual scores for the star rating in question,
possibly putting more emphasis on recent ratings. The global rating is the
weighted sum of star ratings, for the product in question. This is far better than a
flat average of the star ratings regardless of the quality of the review or reviewer,
which is what Amazon is still doing.

http://www.analyticbridge.com/profiles/blogs/online-advertising-a-solution-to-optimize-ad-relevancy
https://www.datasciencecentral.com/forum/topics/how-and-why-to-talk-to-google-s-attribution-algorithm
https://www.datasciencecentral.com/profiles/blogs/building-better-search-tools-problems-and-solutions
http://www.analyticbridge.com/forum/topics/how-are-hotel-room-rates-determined
http://www.analyticbridge.com/forum/topics/how-are-hotel-room-rates-determined
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://techcrunch.com/2016/04/26/amazon-cracks-down-on-fake-reviews-with-another-lawsuit/
https://techcrunch.com/2016/04/26/amazon-cracks-down-on-fake-reviews-with-another-lawsuit/
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon

181

 Image recognition (Facebook ads): This is indeed a funny algorithm. As a
Facebook advertiser promoting data science articles, most images in my ads are
charts and do not contain text. For whatever business reason (probably an archaic
rule invented long ago and never revisited) Facebook does not like postings (ads
in particular) in which the image contains text. Such ads get penalized: they are
displayed less frequently, and cost more per click; sometimes they are just
rejected. Most of my ads are erroneously flagged as containing text, see Figure 1
for a typical example. Note that the Facebook algorithm (to detect text in images)
processes a large number of ads in near real time, thus it must be rudimentary
enough to make decisions very fast -- although it is very easy to use a distributed,
Map-Reduce architecture to process these ads. The solution to this issue: get rid
of your algorithm entirely, instead use a much better relevancy metric (rather than
whether or not the image contains text): click-through rate. The computation is
straightforward, though you might need an algorithm to detect and filter out
fraudulent or robotic clicks. More on the text detection algorithm in the section
below, where a simple, efficient solution is offered to advertisers facing this
problem. Of course you could tell me to put arbitrary, irrelevant pictures of people,
mountains, vegetables, or lakes in all my ads, to pass muster, but that is not the
point -- it might backfire and data scientists are genuinely interested in ... charts.
Read the next section for more details. Another faulty algorithm that I will analyze
in a future article is the one used to detect posts (on Twitter or Facebook) that
violate editorial policies against hate speech, bullying or raunchy language. This
algorithm is so bad that it caused Walt Disney to pass on buying Twitter. I wouldn't
be surprised if it relies on the Naive Bayes technique - still currently in use in many
(poor) spam detection algorithms.

1.1. More about the Facebook ad processing system

The first four cases have been discussed in various articles highlighted above, so here I
focus on the last example: the image recognition algorithm used by Facebook to detect
whether an image contains text or not, to assess ad relevancy -- and best illustrated in
Figure 1. This algorithm eventually controls to a large extent, the cost and relevancy
associated with a specific ad. I will also briefly discuss a related algorithm used by
Facebook, one that also needs significant improvement. I offer solutions both for
Facebook (to nicely boost its revenue yet boost ROI for advertisers at the same time),
as well as solutions for advertisers facing this problem, assuming Facebook sticks with
its faulty algorithms.

http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques

182

Figure 1: Facebook image recognition algorithm thinks the above image contains text!

Solution for advertisers

For each article that you want to promote on Facebook, starts with a small budget,
maybe as small as $10 spread over 7 days, and target a specific audience. Do it for
dozens of articles each day, adding new articles all the time. Regularly check articles
that exhausted their ad spend; boost (that is, add more dollars of ad spend) to those
that perform well. Performance is measured as the number of clicks per dollar of ad
spend. All this can probably be automated using an API.

Solution for Facebook

Eliminate the algorithm that is supposed to detect text in images associated with ads.
Instead focus on click-through rate (CTR) like other advertising platforms (Google,
Twitter.) Correctly measure impressions and clicks to eliminate non-human traffic, in
order to compute an accurate CTR.

Predicting reach based on ad spend

Facebook provides statistics to help you predict the reach for a specific budget (ad
spend) and audience, but again, the algorithm doing this forecast is faulty, especially
when you try to "add budget" prior to submitting your ad. Google also provides forecasts
that in my experience are significantly off. I believe the problem is that for small buckets
of traffic, the strength of this forecast is very weak. While confidence intervals are
provided, they are essentially meaningless. The solution to this problem is to either

http://storage.ning.com/topology/rest/1.0/file/get/2808319634?profile=original

183

provide the strength of the forecast (I call it predictive power, see chapter 4),
or not provide a forecast at all: the advertiser can use the solution offered in the
previous paragraph to optimize her ad spend. And if Facebook or Google really want to
provide confidence intervals for their forecasts, they should consider this model-free
technique (see also chapters 15 and 16) that does not rely on the normal distribution: it
is especially fit for small buckets of data that have arbitrary, chaotic behavior.

2. Why so many Machine Learning Implementations Fail?

You would think that machine learning simply does not work, at least not as advertised.
Here, I actually claim that this is not the case, further explaining what the issues might
be, and in short, that machine learning might not be the culprit.

It seems that the issues appear in situations that are not critical - such as an ad badly
targeted, a racist tweet that goes undetected, or a piece of fake news that goes viral.
You don't hear stories about planes falling down because of poor auto-pilot systems,
themselves powered by faulty machine learning algorithms.

So I classified machine learning (ML) implementations in four categories:

 Implementations that work well: for instance, automated cars, automated piloting
(planes)

 Implementations that work for a while: high-frequency trading, with too much
reliance on automation.

 Implementations that work more or less: Google search, ad targeting (by top
companies), home price or weather forecasts, fraud detection.

 Implementations that do not work: spell check (absolutely atrocious for multi-
lingual people), fake news detection, fake reviews detection, detection of illegal
tweets.

I believe most implementations fall in the third category. Of course, we only see the
fourth category (just like when you read the news: you only hear about people who die,
not about people who get born.)

2.1. The fake news issue

I am not even sure that fake news detection is not working. Sure, fake news runs wild
on Facebook, Google and everywhere. But they do generate traffic, and thus dollars, at
least in the short term. There are two factors at play here:

 Politicians and other people placing fake news in automated news feed systems -
- I call it news feed hijacking; if they use machine learning algorithms to avoid
detection, and they beat Facebook, then it is not a failure of machine learning; it
shows that the fraudsters have better machine learning tools.

 Facebook must decide between too many false positives (a real piece of news
identified by error as fake), or false negatives (an undetected piece of fake

https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det

184

news.) Because false negatives are associated with increased revenue, they
might be favored by the algorithm.

But maybe the biggest challenge here is how to define fake news in the first place. If not
properly defined, it cannot be identified. It is indeed a very fuzzy concept.

2.2. When machine learning is used as a scapegoat

Here are a few reasons why we run into these problems.

 Internal business politics at Facebook, resulting in great algorithms not being
used or used improperly.

 Algorithms/business rules (embedded into algorithmic systems) that are not
revisited as needed, or at the mercy of unqualified people for maintenance
(software engineers not working with data scientists.)

 Teams not collaborating effectively (e.g. data scientists vs software engineers vs
business people.)

 Algorithms tested and prototyped on small data (say on 1% of all ads) thus
missing a lot.

 Those criticizing only see the bad stuff, not the good stuff, yet overall these
"flawed" algorithms produce good enough value for shareholders.

 Even in my article where I criticize some Facebook algorithms, I still consider and
use Facebook as the best advertising platform for us.

 Some of this might be dictated by top executives. Most of what I see on
Facebook is unidirectional (politically speaking) as if there is a political agenda. It
is as if Facebook tries to influence people. It could be caused by Bay Area
software engineers having their algorithms favoring posts or ads that they tend to
agree with, with or without executives knowing about it.

 Even in the example where Facebook's machine learning technology for being
unable to recognize pictures containing text, despite receiving threatening
messages about my ads not running because being (erroneously) flagged as
containing pictures with embedded text, indeed my ads are sometimes delivered
without any problems, as if the message is ignored by the system itself.

3. Twenty four tips for better data science

Here I share a few general ideas to make data science more efficient and bring
increased value and return.

 Leverage external data sources: tweets about your company or your competitors,
or data from your vendors (for instance, customizable newsletter eBlast statistics
available via vendor dashboards, or via submitting a ticket)

 Nuclear physicists, mechanical engineers, and bioinformatics experts can make
great data scientists.

185

 State your problem correctly, and use sound metrics to measure yield (over
baseline) provided by data science initiatives.

 Use the right KPIs (key metrics) and the right data from the beginning, in any
project. Changes due to bad foundations are very costly. This requires careful
analysis of your data to create useful databases.

 Fast delivery is better than extreme accuracy. All data sets are dirty anyway. Find
the perfect compromise between perfection and fast return.

 With big data, strong signals (extremes) will usually be noise. See workaround in
chapter 27.

 Big data has less value than useful data.

 Use big data from third party vendors, for competitive intelligence.

 You can build cheap, great, scalable, robust tools pretty fast, without using old-
fashioned statistical science. Think about model-free techniques, explored in
chapters 15 and 16.

 Big data is easier and less costly than you think. Get the right tools! Here's how
to get started.

 Correlation is not causation. Chapter 27 discusses this issue. Read also this
blog and this book.

 You don't have to store all your data permanently. Use smart compression
techniques, and keep statistical summaries only, for old data. Don't forget to
adjust your metrics when your data changes, see section 7 in chapter 25.

 A lot can be done without databases, especially for big data.
 Always include EDA and DOE (exploratory analysis / design of experiment) early

on in any data science projects. Always create a data dictionary (section 8 in
chapter 25.). See also the life cycle of any data science project (see section 13 in
chapter 28.)

 Data can be used for many purposes:

o quality assurance

o to find actionable patterns (stock trading, fraud detection)

o for resale to your business clients

o to optimize decisions and processes (operations research)

o for investigation and discovery (IRS, litigation, fraud detection, root cause
analysis)

o machine-to-machine communication (automated bidding systems,
automated driving)

o predictions (sales forecasts, growth and financial predictions, weather)

 Don't dump Excel. Embrace light analytics.
 Data + models + gut feelings + intuition is the perfect mix. Don't remove any of

these ingredients in your decision process.

 Leverage the power of compound metrics: KPI’s (key performance indicators)
derived from database fields. These KPI’s have a far better predictive power (see
chapter 4) than the original database metrics. For instance your database might
include a single keyword field but does not discriminate between user query and
search category (sometimes because data comes from various sources and is

https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
http://www.analyticbridge.com/group/books/forum/topics/causality-models-reasoning-and-inference
https://www.datasciencecentral.com/group/research/forum/topics/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult

186

blended together). Detect the issue, and create a new metric called keyword type
- or data source. Another example is IP address category, a fundamental metric
that should be created and added to all digital analytics projects.

 When do you need true real time processing? When fraud detection is critical, or
when processing sensitive transactional data (credit card fraud detection, 911
calls). Other than that, delayed analytics (with a latency of a few seconds to 24
hours) is good enough.

 Make sure your sensitive data is well protected. Make sure your algorithms can
not be tampered by criminal hackers or business hackers (spying on your
business and stealing everything they can, legally or illegally, and jeopardizing
your algorithms, translating in revenue loss). An example of business hacking
can be found in section 3 in this article.

 Blend multiple models together to detect many types of patterns. Average these
models. See chapter 2.

 Ask the right questions before purchasing software.
 Run Monte-Carlo simulations before choosing between two scenarios.

 Use multiple sources for the same data: your internal source, and data from one
or two vendors. Understand the discrepancies between these various sources, to
have a better idea about what the real numbers should be. Sometimes big
discrepancies occur when a metric definition is changed by one of the vendors,
or changed internally, or data has changed (some fields no longer tracked). A
classic example is web traffic data: use internal log files, Google Analytics and
another vendor (say Accenture) to track this data.

https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool

187

25. Useful Machine Learning Tricks

We propose simple solutions to important challenges that all data scientists face almost
every day. In short, this chapter provides a toolbox for the handyman, useful for busy
professionals in any field.

This chapter contains the following sections:

 Eliminating sample size effects
 Sample size determination
 Automatically detecting the number of clusters
 Fixing issues in regression models
 Performing joins on mismatched data
 Scale invariant techniques
 Blending data sets with non-compatible fields
 Automated exploratory data analysis
 Simple solution to feature selection problems
 Coefficient of Correlation for Non-Linear Relationships
 Choosing a regression model
 Growth modeling with Excel
 Interesting charts
 Simplified logistic regression

1. Eliminating sample size effects

Many statistics, such as correlations or R-squared, depend on the sample size, making
it difficult to compare values computed on two data sets of different sizes. Based on re-
sampling techniques, you can use this easy trick, to compare apples with other apples,
not with oranges.

Many statistics, such as correlations or R-squared, depend on the sample size, making
it difficult to compare values computed on two data sets of different sizes. Here, we
address this issue.

Below is an example with 20 observations. The last 10 observations (the second half of
the data set) is a mirror of the first 10, and the two correlations, computed on each
subset, are identical and equal to 0.30. The full correlation computed on the 20
observations is 0.85.

188

One would expect that since they represent the same association, these correlations
should be identical. Of course, by doubling the number of observations (from 10 to 20)
you get more statistical significance, and it strengthens the correlation. So from a
statistical point of view, it makes sense that the correlation changes (increases) when
adding new observations, if the new observations have the same behavior as the
previous ones.

But it makes it impossible to make meaningful comparisons between data sets of
different sizes. One way around this is to compute correlations on subsets of 10 points.
There are 92,378 different ways to select 10 distinct observations out of 20, and thus
92,378 potential correlation values. If you average these values, you will get a number
that you can truly be compared with that from a data set of size 10, yet it involves all the
20 observations.

In this case we simply averaged the 10 correlation values computed on all 10 subsets
consisting of 10 consecutive observations. The final correlation, you can call it the re-
sampled correlation, is equal to 0.67. Now you are no longer comparing apples and
oranges.

Using the same data generation mechanism (that is, the same statistical model), I
performed ten tests, each time with 20 observations, with the second half of the data set
having the same correlation as the first half. This correlation is listed in the third column
in the table below. The second column represents the correlation computed on the
whole data set (20 observations) while the last (fourth) column represents the re-
sampled correlation.

https://storage.ning.com/topology/rest/1.0/file/get/2744937327?profile=original

189

The data, computations, and chart, is available in this spreadsheet. The data set
consists of two variables stored in columns C and D. The same methodology could be
applied to any coefficient, for instance the R-squared or the regression coefficients in a
linear model. More about re-sampling techniques can be found in chapter 15.

2. Sample size determination

We propose a generic methodology, also based on re-sampling techniques, to compute
any confidence interval and for testing hypotheses, without using any statistical theory.
Also, it is easy to implement, even in Excel. The trick is based on the following new
theorem:

Theorem: The width L of any confidence interval is asymptotically equal (as n tends to
infinity) to a power function of n, namely L = A / nB where A and B are two positive
constants depending on the data set, and n is the sample size, with B in [0, 1].

The model-free methodology is explained in details I chapter 15. In short, B can be
estimated via re-sampling, and even improved. Usually, B = 1/2, and for common
estimators, we have

https://storage.ning.com/topology/rest/1.0/file/get/2744968405?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2743455037?profile=original

190

This allows you determine n in order to achieve a desired width L for your confidence
interval. For some estimators, B may not be 1/2. For instance, if your estimator is the
range (maximum minus minimum computed on your observations), its expectation and
standard deviation are provided in the table below (source: see chapter 17).

Order of magnitude for the expectation and Stdev of the range

3. Automatically detecting the number of clusters

We are dealing here with non-supervised clustering. This modern version of the elbow
rule also tells you how strong the global optimum is, and can help you identify local
optima too. It can also be automated.

Determining the number of clusters when performing unsupervised clustering is a tricky
problem. Many data sets don't exhibit well separated clusters, and two human beings
asked to visually tell the number of clusters by looking at a chart, are likely to provide
two different answers. Sometimes clusters overlap with each other, and large clusters
contain sub-clusters, making a decision not easy.

For instance, how many clusters do you see in the picture below? What is the optimum
number of clusters? No one can tell with certainty, not AI, not a human being, not an
algorithm.

191

How many clusters here? (source: see here)

In the above picture, the underlying data suggests that there are three main clusters.
But an answer such as 6 or 7, seems equally valid.

A number of empirical approaches have been used to determine the number of clusters
in a data set. They usually fit into two categories:

 Model fitting techniques: an example is using a mixture model (see chapter 11) to
fit with your data, and determine the optimum number of components; or use
density estimation techniques, and test for the number of modes (see chapter 14.)

Sometimes, the fit is compared with that of a model where observations are
uniformly distributed on the entire support domain, thus with no cluster; you may
have to estimate the support domain in question, and assume that it is not made
of disjoint sub-domains; in many cases, the convex hull of your data set, as an
estimate of the support domain, is good enough.

 Visual techniques: for instance, the silhouette or elbow rule (very popular.)

In both cases, you need a criterion to determine the optimum number of clusters. In the
case of the elbow rule, one typically uses the percentage of unexplained variance. This
number is 100% with zero cluster, and it decreases (initially sharply, then more
modestly) as you increase the number of clusters in your model. When each point
constitutes a cluster, this number drops to 0. Somewhere in between, the curve that
displays your criterion, exhibits an elbow (see picture below), and that elbow determines
the number of clusters. For instance, in the chart below, the optimum number of clusters
is 4.

https://www.datasciencecentral.com/profiles/blogs/data-science-wizardry
https://storage.ning.com/topology/rest/1.0/file/get/1405294997?profile=original

192

The elbow rule tells you that here, your data set has 4 clusters (elbow strength in red)

A good reference on the topic is this article. Some R functions are available too, for
instance fviz_nbclust. However, I could not find in the literature, how the elbow point is
explicitly computed. Most references mention that it is mostly hand-picked by visual
inspection, or based on some predetermined but arbitrary threshold. In the next section,
we solve this problem.

3.1. Automating the elbow rule

This is another example showing how data science can automate some tasks
performed by statisticians, in this case in the context of exploratory data analysis. The
solution is actually pretty simple, and applies to many problems not even related to
clustering, that we will discuss later. Also, it is not limited to using the percentage of
unexplained variance (Y- axis) to plot the elbow curve, but other criteria such as
entropy, or error resulting from model fitting, work equally well. Indeed the solution
provided here was designed to be integrated in black-box decision systems. The only
requirement is that the elbow curve most be positive (above the X-axis) and
decreasing.

In the next sections, we provide the context and formula to compute the elbow point,
and to automate the procedure.

3.2. Elbow strength (with spreadsheet illustration)

The formula to compute the elbow strength (the core concept in this article) is illustrated
using the table below (corresponding to the figure in the beginning of this article) and
available in our interactive spreadsheet (download the spreadsheet here).

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.rdocumentation.org/packages/factoextra/versions/1.0.5/topics/fviz_nbclust
https://storage.ning.com/topology/rest/1.0/file/get/1410450551?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1405610723?profile=original

193

The Delta 1 column in the table represents the differences between k and k + 1 clusters,
measured on the criterion metric (the second column.) Delta 2 represents the difference
computed on Delta 1, that is, the second-order differences. The strength (rightmost
column) at line k (k is the number of clusters) is computed as the difference between
Delta 2 and Delta 1, at line k +1. It is shown only if it is positive.

3.3. Number of clusters

The optimum number of clusters is the value of k that maximizes the strength. That's it!
The strength tells, for a specific k, if there is a potential elbow at level k (corresponding
to k clusters), and how strong the elbow signal is at that level. Sometimes the strongest
signal is not the first one, though this is usually the case in many instances. Below is an
example where this is not the case.

The above picture exhibits a situation where the data could conceivably have 2 or 3
clusters. However, the assumption of 3 clusters (instead of 2) is much more plausible,

https://storage.ning.com/topology/rest/1.0/file/get/1406430886?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1406639430?profile=original

194

based on the height of the red bars. Rather than using the strength of the elbow, I
actually used the relative strength: it is the strength, divided by k(the number of
clusters). The relative strength dampens the strength of the elbow for large values of k,
as these are usually less meaningful.

3.4. Testing

Three types of tests are worth doing to further assess the value of this method.

 Test with various elbow curves: we created curves, with multiple elbows or barely
any elbow, to check the results produced by our procedure. We did not find
counter-examples. Some of the test curves are included in our spreadsheet.
Interestingly, if the shape of the elbow curve is like 1 / k, then two clusters are
detected, which conforms to intuition. If is is decreasing at a much smaller pace,
then the curve is too smooth to produce red bars, and no elbow is detected. This
also conforms to intuition.

 Test on real data: these tests can be more difficult to interpret, since in many
cases, nobody can tell the number of clusters, unless clusters are well separated
or known a-priori.

 Test with simulated data: it is easy to generate data with a known number of
clusters, see here. Then one can use a criterion, such as percentage of
unexplained variance, and look at the elbow curve, to check when it correctly
predicts the number of clusters. Below is an example of simulated clusters.

Simulated cluster structure to test the elbow rule (see here for source code)

3.5. Stopping rule for clustering algorithms

One open question is how the methodology performs when the data has more than two
dimensions. The issue is not with the elbow curve itself, but with the criterion being
used. Finally, when large clusters are found in a data set (especially with hierarchical
clustering algorithms) it is a good idea to apply the elbow rule to any big cluster (split the

https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
https://storage.ning.com/topology/rest/1.0/file/get/1409453151?profile=original

195

big cluster into smaller clusters), in addition to the whole data set. In practice, once you
hit the first red bar (or if there is another red bar just after the first one, and bigger than
the first one), you can stop refining and splitting your clusters: you have reached an
empirical optimum.

3.6. Other applications

The elbow rule can be used in various applications, not just to detect the number of
clusters. We used it to detect how many decimals are correctly computed when
using high precision computing libraries in Perl and Python, for a specific problem. You
can check it out in my book on applied stochastic processes (available here) page 48. I
also discuss the elbow rule in my optimum data binning procedure, see chapter 11. In
time series, the elbow is sometimes referred to as a change point, signaling a change in
the slope, and the elbow method can be used to identify these change points.

In fact, the elbow method can be used in any algorithm that has a stopping rule, where
the criterion used to measure performance improvement at each new iteration, is a
positive decreasing function. In particular, it can be used to detect how deep a decision
tree should be (when to stop splitting nodes), or in numerical algorithms to detect when
the accuracy level reached is good enough, and no longer steadily improving when
adding more iterations.

An application of the elbow rule described here can be found here.

4. Fixing issues in regression models

What should you do if the model assumptions are violated? If your data has serial
correlation, unequal variances and other similar problems, this simple trick will remove
the issue and allows you to perform more meaningful regressions, or to detect flaws in
your data set.

You cannot trust a linear or logistic regression performed on data if the error term
(residuals) are auto-correlated. There are different approaches to de-correlate the
observations, but they usually involve introducing a new matrix to take care of the
resulting bias. See for instance here.

Requirements for linear regression

A radically different and much simpler approach is to re-shuffle the observations,
randomly. If it does not take care of the issue (auto-correlations are weakened but still

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
http://www.mdpi.com/2504-4990/1/2/42/
https://en.wikipedia.org/wiki/Generalized_least_squares
https://storage.ning.com/topology/rest/1.0/file/get/2707751284?profile=original

196

remain significant, after re-shuffling) it means that there is something fundamentally
wrong about the data set, perhaps with the way the data was collected. In that case,
cleaning the data or getting new data is the solution. But usually, re-shuffling - if done
randomly - will eliminate these pesky correlations.

The trick

Reshuffling is done as follows:

 Add one column to your data set, consisting of pseudo random numbers, for
instance generated with the function RAND in Excel.

 Sort the entire data set (all the columns, plus the new column containing the
pseudo random numbers) according to the values in the newly added column.

Then do the regression again, and look at improvements in model performance. R-
squared may not be a good indicator, but techniques based on cross-validation
should be used instead.

Actually, any regression technique where the order of the observations does not matter,
will not be sensitive to these auto-correlations. If you want to stick to standard, matrix-
based regression techniques, then re-shuffling all your observations 10 times (to
generate 10 new data sets, each one with the same observations but ordered in a
different way) is the solution. Then you will end up with 10 different sets of estimates
and predictors: one for each data set. You can compare them; if they differ significantly,
there is something wrong in your data, unless auto-correlations are expected, as in time
series models (in that case, you might want to use different techniques anyway, for
instance techniques adapted to time series, see here.).

Testing for auto-correlations in the observations

If you have n observations and p variables, there is no global auto-correlation coefficient
that measures the association between one observation and the next one. One way to
do it is to compute it for each variable (column) separately. This will give you p lag-1
auto-correlation coefficients. Then you can look at the minimum (is it high in absolute
value?) or the maximum (in absolute value) among these p coefficients. You can also
check lag-2, lag-3 auto-correlations and so on. While auto-correlation between
observations is not the same as auto-correlation between residuals, they are linked, and
it is still a useful indicator of the quality of your data. For instance, if the data comes
from sampling and consists of successive blocks of observations, each block
corresponding to a segment, then you are likely to find auto-correlations, both in the
observations and the residuals. Or if there is a data glitch and some observations are
duplicated, you can experience the same issue.

https://www.datasciencecentral.com/profiles/blogs/new-approach-to-linear-algebra-in-machine-learning

197

5. Performing joins on mismatched data

This 40 year old trick allows you to perform a join when your data is infested with typos,
multiple names representing the same entity, and other similar issues. In short, it
performs a fuzzy join.

While much of data cleaning is performed before loading data in a database (especially
for one-time, ad hoc analyses), there is a way to do it, continuously (like once a week or
once a day), once the data is in its final database. It consists of adding look-up tables to
help with the messy fields.

When I was working at eBay, there was a database of clients from around the world.
Some clients had names in a foreign language, containing accents and special
characters. Somehow, it made some SQL joins very tricky. We created a lookup table of
names, matching different spelling of a company name, to a standardized name and
client ID. Think about names such as M.I.T and MIT that represent the same entity but
can be spelled differently. It also helps dealing with duplicate records. This old trick
allows you to do fuzzy matching, and the size of the lookup tables (updated daily) was
manageable.

What do you think of this idea? Of course the best solution is to use this system,
together with traditional cleaning techniques, if possible. But in systems where data is
automatically uploaded and updated on a daily basis, lookup tables are very helpful.

http://storage.ning.com/topology/rest/1.0/file/get/2656755733?profile=original

198

6. Scale invariant techniques

Sometimes, transforming your data, even changing the scale of one feature, say from
meters to feet, have a dramatic impact on the results. Sometimes, you want your
conclusions to be scale-independent. This trick solves this problem.

The impact of a change of scale, for instance using years instead of days as the unit of
measurement for one variable in a clustering problem, can be dramatic. It can result in a
totally different cluster structure. Frequently, this is not a desirable property, yet it is
rarely mentioned in textbooks. I think all clustering software should state in their user
guide, that the algorithm is sensitive to scale.

We illustrate the problem here, and propose a scale-invariant methodology for
clustering. It applies to all clustering algorithms, as it consists of normalizing the
observations before classifying the data points. It is not a magic solution, and it has its
own drawbacks as we will see. In the case of linear regression, there is indeed no
problem, and this is one of the few strengths of this technique.

6.1. Scale-invariant clustering

The problem may not be noticeable at first glance, especially in Excel, as charts are by
default always re-scaled in spreadsheets (or when using charts in R or Python, for that
matter). For simplicity, we consider here two clusters, see figure below.

Original data (left), X-axis re-scaled (middle), scale-invariant clustering (right)

The middle chart is obtained after re-scaling the X-axis, and as a result, the two-clusters
structure is lost. Or maybe it is the one on the left-hand side that is wrong. Or both.
Astute journalists and even researchers actually exploit this issue to present misleading,
usually politically motivated, analyses. Students working on a clustering problem might
not even be aware of the issue.

On the right-hand chart, we replaced each value for each axis, by their rank in the data
set: it solves the problem, as re-scaling (or even applying any monotonic, non-linear
transformation) preserves the order statistics (the ranks). Another way to do it is by
normalizing each variable, so that the variance for each variable, after normalization, is
equal to 1. Using the ranks is a better, more robust, noise-insensitive approach though,

https://api.ning.com/files/KQrLHdI57cnTyNYq8KtAwxNist6FMJBkGkPJNjkYzUIZ1vp1P7faC9mRapaI-zjrpcViuUOLcBWJqhJfA7iahmdy6pgU4ccJ/Capture.PNG

199

especially if the variables have a relatively unimodal distribution (with no big gaps), as in
the above figure.

The main issue with scale-invariant clustering appears in the context of supervised
classification. When adding new points to the training set, the augmented training set
needs to be re-scaled again. There is no distance or similarity metric (the core metric
used in clustering algorithms, be it K-NN, centroid or hierarchical clustering) that will
consistently preserve the initial clustering structure after adding new points and re-
scaling. See exercise in the last paragraph for a (failed) attempt to build such a
distance. However, see my article on scale-invariant variance, which leads to a very
weird kind of "variance" concept.

6.2. Scale-invariant regression

By design, linear regression is, in some way, scale-invariant. The fact is intuitive and
certainly very easy to prove, and it is illustrated in our spreadsheet (see next section.) In
short, if you multiply one or more dependent variable by a factor (which amounts to re-
scaling them) then the corresponding regression coefficients will be inversely re-scaled
by the same factor. To put it differently, if one dependent variable is measured in
kilometers, and its attached regression coefficient is (say) 3.7, then if you change the
measurement from kilometers to meters, its regression coefficient will change from 3.7
to 3.7 / 1000. This makes perfect sense, yet I don't remember having learned this fact in
college classes nor textbooks.

Note that this works only if the re-scaling is linear. If you use a logarithm transformation
instead, then this property is lost. Some authors have developed rank-
regression techniques to handle non-linear re-scaling, using the same approach as in
the previous section on clustering.

6.3. Excel spreadsheet with computations

To download the spreadsheet with the computations, click here. Probably the most
interesting feature of the spreadsheet is to help you learn how to do linear regression in
Excel, and how to produce scatter-plots with multiple clusters as in the above figure.

It is interesting to note that the 5 points in the above figure were all generated using
random deviates on [0, 1] with the Excel function RAND(). Despite being "random",
these points seem to exhibit a structure made of two clusters. This is a typical result:
random points always exhibit some patterns (in particular, weak clustering, holes, weak
linear structures and twin points.) See for instance section 7 in chapter 28. It is possible
to test if these structures found in any data set are weak enough, yet not too weak,
given the size of the data set, to assess whether it is a result of natural patterns found in
randomness, or not. The easiest way to test this is by using Monte-Carlo simulations. If
the points were too evenly distributed, they would not be the result of a random
distribution.

https://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248265/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248265/
https://api.ning.com/files/3CXp1I4JAHMANoCX9O2MRLNAwcMreGwFRvZetvZXFaE*5gu4ZcoP*xJh6mnVJm4KZNbVOtYTRT5kAat13vApMKgmrA7J1TeI/ScaleInvariantClusteringLinearregression4.xlsx
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-

200

So in the above figure, the two apparent clusters are an artifact or an optical illusion,
and cannot be explained by any causal model. Repeat this experiment a thousand
times, and you will find similar clusters in a majority of your simulations.

Exercise

Let's try to create a scale-invariant distance d between two points x = (x1, x2) and y =
(y1, y2) using this formula:

Prove the following:

and is thus not scale-invariant. It is proportional to the infinity norm distance. How does
it generalize to more than two variables? Note that the the supremum in the first formula
is attained either with (a, b) = (1, 0) or (a, b) = (0, 1). The case (a, b) = (1, 1)
corresponds to the classic Euclidean distance.

7. Blending data sets with non-compatible fields

Add consistency to your metrics! We are all too familiar with metrics that change over
time and result in inconsistencies when comparing the past to the present, or when
comparing different segments with incompatible measurements. This trick will allow you
to design systems where again, apples are compared to other apples, not to oranges.

Here we describe a simple methodology to produce predictive scores that are
consistent over time and compatible across various clients, to allow for meaningful
comparisons and consistency in actions resulting from these scores, such as offering a
loan. Scores are used in various contexts, such as web page rankings in search
engines, credit score, risk score attached to loans or credit card transactions, the risk
that someone might become a terrorist, and more. Typically a score is a function of a
probability attached to some particular future event. They are built using training sets.

The reasons why scores can become meaningless over time is because data evolves.
New features (variables) are added that were not available before, the definition of a
metric is suddenly changed (for instance, the way income is measured) resulting in new
data not compatible with prior data, and faulty scores. Also, when external data is
gathered across multiple sources, each source may compute it differently, resulting in
incompatibilities: for instance, when comparing individual credit scores from two people
that are costumers at two different banks, each bank computes base metrics (income,
recency, net worth, and so on) used to build the score, in a different way. Sometimes
the issue is caused by missing data, especially when users with missing data are very
different from those with full data attached to them.

https://api.ning.com/files/ljeCieAKH-4lIiV67w2FUZUv6IKpUiXJ3qsrPby2svHN-chuNxPQBXggvvnifFkgDHsF3ZVLlXbJfBjDDtMghQioUcz61ilV/Capture.PNG
https://api.ning.com/files/ljeCieAKH-6G3sIzEs2WIZNlCSGNZPzsK0Tq5JmHE8fqw7HzPXq25LfAwM4JQupraEsATWHf9NesXVZkYBVIvzmCy*hKceqs/Capture.PNG

201

Methodology

The idea to solve this problem is pretty simple. Let's say that you have two sets of data
A and B, for instance corresponding to two different time periods: before, and after a
change in the way the data is gathered or the scores are computed. Accordingly, you
have two types of scores: S(A), computed on A, and T(B), computed on B. You proceed
as follows.

 Compute the scores T(A) on A, using the scoring system T.
 Calibrate T on A; let Z be the calibrated score. Z might be a simple

transformation (mapping) of T, so that Z(A) and S(A) have same mean (or
median) and same variance. You can calibrate using more than two parameters,
for instance, you might also want the kurtosis and/or skewness to be preserved.

 The new score to use moving forward, also called re-scaled score, is Z. It is
compatible with the previous score S.

 Keep a log of all the changes happening to your score over time (for instance,
the change from S to T, followed by transforming T into Z. This is similar to
versioning in software development.

You can make it more robust if there is a transition period between A and B, when both
scores S and T can be computed on overlapping data. This is the case if the score S
can still be computed (in parallel with T) exactly up to 3 months after the score T was
introduced.

An example of how this works in practice is given in chapter 2, in a very similar context.
In that article, I discuss a scoring algorithm that blends two sub-scoring procedures, for
increased performance: one based on robust decision trees (applying to a subset of the
data set, say A), and one based on robust regression (see chapter 1.) Some data (say
B) cannot be properly scored using the decision trees, and must be scored with the
regression. You then apply the regression-based scoring to the whole data set, and
then re-scale the score derived from the regression, so that it produces scores
compatible with those generated with decision trees, on A. Moving forward, whether you
have to use decision trees or regression, you get a consistent score everywhere. A
detailed implementation with Excel spreadsheet and source code is available in chapter
3.

For more on this scoring technology, with application to scoring internet traffic
(measuring its quality depending on the traffic source) read my technical article
(PDF), here. Score preservation is discussed pages 22-26. Or you might want to check
my patent on this topic, here.

8. Automated exploratory data analysis

Creating a data dictionary is the first exploratory step when dealing with a new data set.
Here we explain how to do it. A data dictionary offers the following advantages:

https://storage.ning.com/topology/rest/1.0/file/get/1143470722?profile=original
https://patents.justia.com/patent/20150161661

202

 Identify areas of sparsity and areas of concentration in high-dimensional data
sets

 Identify outliers and data glitches
 Get a good sense of what the data contains, and where to spend time (or not) in

further data mining

What is a data dictionary?

A data dictionary is a table with 3 or 4 columns. The first column represents a label: that
is, the name of a variable, or a combination of multiple (up to 3) variables. The second
column is the value attached to the label: the first and second columns actually
constitute a name-value pair. The third column is a frequency count: it measures how
many times the value (attached to the label in question) is found in the data set. You
can add a 4-th column that tells the dimension of the label (1 if it represents one
variable, 2 if it represents a pair of two variables etc.)

Typically, you include all labels of dimension 1 and 2 with count > threshold (e.g.
threshold = 5), but no or only very few values (the ones with high count) for labels of
dimension 3. Labels of dimension 3 should be explored after having built the dictionary
for dim 1 and 2, by drilling down on label/value of dim 2 that have a high count.

Example of dictionary entry

Look at the following entry:

category~keyword | travel~Tokyo | 756 | 2

In this example, the entry corresponds to a label of dimension 2 (as indicated in column
4), and the simultaneous combination of the two values (travel, Tokyo) is found 756
times in the data set.

The first thing you want to do with a dictionary is to sort it using the following 3-dim
index: column 4, then column 1, then column 3. Then look at the data and find patterns.

How do you build a dictionary?

Browse your data set sequentially. For each observation, store all label/value of dim 1
and dim 2 as hash table keys, and increment count by 1 for each of these label/value. In

Perl, it can be performed with code such as $hash{"$label\t$value"}++.

If the hash table grows very large, stop, save the hash table on file then delete it in
memory and resume where you paused, with a new hash table. At the end, merge hash
tables after ignoring hash entries where count is too small.

203

9. Simple solution to feature selection problems

We discuss a new approach for selecting features from a large set of features, in an
unsupervised machine learning framework. In supervised learning such as linear
regression or supervised clustering, it is possible to test the predicting power of a set of
features (also called independent variables by statisticians, or predictors) using metrics
such as goodness of fit with the response (the dependent variable), for instance using
the R-squared coefficient. This makes the process of feature selection rather easy.

Here this is not feasible. The context could be pure clustering, with no training sets
available, for instance in a fraud detection problem. We are also dealing with discrete
and continuous variables, possibly including dummy variables that represent categories,
such as gender. We assume that no simple statistical model explains the data, so the
framework here is model-free, data-driven. In this context, traditional methods are
based on information theory metrics to determine which subset of features brings the
largest amount of information.

A classic approach consists of identifying the most information-rich feature, and then
grow the set of selected features by adding new ones that maximize some criterion.
There are many variants to this approach, for instance adding more than one feature at
a time, or removing some features during the iterative feature selection algorithm. The
search for an optimal solution to this combinatorial problem is not computationally
feasible if the number of features is large, so an approximate solution (local optimum) is
usually acceptable, and accurate enough for business purposes.

Review of popular methods

We focus here on the metric used to assess how information-rich a feature (or a set of
features) is, as this is the key to find the best features in your data set. Features may be
be correlated, or redundant. The same is true with observations.

A fairly comprehensive review on this topic can be found here. The simplest, probably
oldest metric to measure the quantity of information associated with a feature, is the
Shannon entropy, see here. It can be extended to measure the quantity of information
associated with a set of features, see this article on joint entropy. However, this applies
to discrete features only. It has also been generalized to continuous features: it is then
called differential entropy. However this metric is scale-dependent, and model-
dependent. Though in practice, in a model-free context, any statistical distribution can
be replaced by the empirical distribution computed on the observations, or using the
observed empirical percentiles.

Another popular metric is the Akaide information criterion. It was introduced in 1973, in
what became one of the most popular scientific articles of all times -- in the top 100
citation index as of 2014. However, it is related to the likelihood function, and thus
model-dependent. Related and somewhat equivalent to this criterion is the Kullback-
Leibler divergence, but again having the same issue of being model-dependent.

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Joint_entropy
https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

204

In my more recent article on fast combinatorial feature selection (see chapter 5 and
my Wiley book, page 224) I propose a data-driven, synthetic metric, called the
predictive power of a feature.

New idea for feature selection

The idea is to add an artificial dependent variable (the response) to your data set, and
perform feature selection as if you were dealing with a linear regression problem. That
is, the criterion to select the features, would be based on a metric such as the residual
error or R-squared, rather than using some kind of entropy metric. In short, you turn
your problem into a problem of model fitting in a predictive analytics setting, which is
easier. Another benefit is that the residual error or R-squared is not sensitive to changes
in scale (re-scaling some variables) in your data set. Categorical variables such as
gender can be replaced by dummy variables taking two values: 0 and 1. It also easily
allows for cross-validation, selecting the features based on a subset of observations
(the training set) and testing performance on the remaining data (the control set.)

All the regression coefficients could be set to 1 in the full model (involving all the
features) to build the artificial response. Goodness-of-fit (e.g. R-square) is measured
when an actual regression is performed on a subset of features. Features can be added
one at a time as long as the goodness-of-fit metric continue to improve significantly
when adding new features (by selecting features most efficiently accomplishing this
goal), until you reach a pre-set, usually small number of "optimal" features.

Or you could test a large number of randomly generated regression coefficients for the
response (via Monte Carlo simulations), and focus on those sets of regression
coefficients that provides the best (or good enough) fit on a small set of features, still
using the same goodness-of-fit criterion at each iteration, when selecting a new feature.

Testing on a dataset with known theoretical entropy

We illustrate here the concept explained in the previous section, on an artificial data set
with known theoretical entropy attached to each feature. For simplicity, the data set has
only two features. The data set consists of the first n = 47 digits of two numbers X1
and X2, expressed in two different bases: the digits of X1 in base b1, and the digits of X2
in base b2. The theoretical entropy attached to each feature is proportional to the
logarithm of the base used for the feature in question. Using a number of digits (the
number of observations) n larger than 50 causes accuracy issues (wrong digits) unless
one uses high precision computing. This is discussed in details in my book Applied
Stochastic Processes, Chaos Modeling, and Probabilistic Properties of Numeration
Systems: see chapter 11.

We selected two numbers and bases causing some noticeable correlation between the
two features, in order to better simulate a realistic data set. Auto-correlations within
each feature were also strong. Our parameters are:

https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

205

X1 = log(3/2) , X2 = 2-1/2, b1 = 1.7, b2 = 2.0.

Note that by using very large bases, you could produce observations (digits) that are
very long, simulating actual continuous data, as opposed to binary data in this example.
But then, you face again the accuracy issue (correctly computing the digits) described
above.

Even with this small dataset, the classical Shannon entropy computed on the dataset, is
equivalent to the theoretical entropy, in terms of deciding which feature is best. We also
created an artificial response Y as discussed in the previous section, namely

Y = a1 Feature1 + a2 Feature2

with the regression coefficients a1 and a2 set to 1.

We then computed the correlations c1 between Y and Feature1, and c2 between Y and
Feature2. In most cases (we tested with various numbers and various bases) the
highest correlation corresponds to the feature with the highest entropy, thus proving
compatibility with an entropy-based approach on a data set with no dependent variable.
In the few cases where this was not true, it was because the bases b1 and b2 were very
close to each other, and the entropy values almost identical for the two features. Even
in that case, the two correlations were also very close to each other. In that case,
picking one feature over the other does not make a difference. Moreover, the approach
discussed here is model-free, data-driven. Also unlike data reduction techniques such
as PCA (principal component analysis) or data compression, this approach preserves
the original features: it does not transform and recombine them, making it easier for
interpretation purposes.

You can download the spreadsheet with the simulated data set and all computations,
here.

10. Coefficient of Correlation for Non-Linear Relationships

What is the best correlation coefficient R(X, Y) to measure non-linear dependencies
between two variables X and Y? Let's say that you want to assess whether there is a
linear or quadratic relationship between X and Y. One way to do it is to perform a
polynomial regression such as Y = a + bX + cX2, and then measure the standard
coefficient of correlation between the predicted and observed values. How good is this
approach?

Note that the proposed correlation coefficient R(X, Y) is not symmetric. One way to get
a symmetric version, is to use the maximum between | R(X, Y) | and | R(Y, X) |. It will be
equal to 1 if and only if there is an exact polynomial or inverse polynomial relationship
between X and Y.

https://api.ning.com/files/6gAXkIKqqEpxI7GqnEvtvtDlXmCT*KA7APl1YMM8Cxg74qBc43sNS0fh*nNrrkotulgCSlf*Ui3vXPGhSDbqZhmQ3MqaTjU1/pi3.xlsx

206

Note: For the model Y = a + bX + cX2, the "inverse polynomial" model would be
X = a' + b'Y + c'Y2. So, R(X, Y) is computed on the first regression, while R(Y, X) is
computed on the second (reversed, also called dual) regression.

Discussion

An issue with my approach is the risk of over-fitting. If you have n observations
and n coefficients in the regression, my correlation will always be 1.

There are various ways to avoid this problem, for instance:

 Use a polynomial of degree 2 maximum, regardless of the number of
observations.

 Use much smoother functions than polynomials, for instance functions that have
one extremum (maximum or minimum) at most, and growing not faster than a
linear function. Even in that case, use a small number of coefficients in the
regression, maybe log(log n) where n is the number of observations.

The correlation coefficient in question can also be used for model selection: The best
model would provide the correlation closest to 1.

11. Choosing a regression model

Should you use linear or logistic regression? In what contexts? There are hundreds of
types of regressions. Here is an overview for data scientists and other analytic
practitioners, to help you decide on what regression to use depending on your context.
Many of the referenced articles are much better written (fully edited) in my data science
Wiley book.

 Linear regression: Oldest type of regression, designed 250 years ago;
computations (on small data) could easily be carried out by a human being, by
design. Can be used for interpolation, but not suitable for predictive
analytics; has many drawbacks when applied to modern data, e.g. sensitivity to
both outliers and cross-correlations (both in the variable and observation
domains), and subject to over-fitting. A better solution is piecewise-linear
regression, in particular for time series.

 Logistic regression: Used extensively in clinical trials, scoring and fraud
detection, when the response is binary (chance of succeeding or failing, e.g. for a
new tested drug or a credit card transaction). Suffers same drawbacks as linear
regression (not robust, model-dependent), and computing regression coefficients
involves using complex iterative, numerically unstable algorithm. Can be well
approximated by linear regression after transforming the response (logit
transform). Some versions (Poisson or Cox regression) have been designed for a
non-binary response, for categorical data (classification), ordered integer
response (age groups), and even continuous response (regression trees).

https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques

207

 Ridge regression: A more robust version of linear regression, putting constraints
on regression coefficients to make them much more natural, less subject to over-
fitting, and easier to interpret. Click here for source code.

 Lasso regression: Similar to ridge regression, but automatically performs variable
reduction (allowing regression coefficients to be zero).

 Ecologic regression: Consists in performing one regression per strata, if your
data is segmented into several rather large core strata, groups, or bins. Beware
about the curse of big data in this context: if you perform millions of regressions,
some will be totally wrong, and the best ones will be overshadowed by noisy
ones with great but artificial goodness-of-fit: a big concern if you try to identify
extreme events and causal relationships (global warming, rare diseases or
extreme flood modeling). See also chapter 27.

 Regression in unusual spaces: click here for details. Example: to detect if
meteorite fragments come from a same celestial body, or to reverse-engineer
Coca-Cola formula.

 Logic regression: Used when all variables are binary, typically in scoring
algorithms. It is a specialized, more robust form of logistic regression (useful for
fraud detection where each variable is a 0/1 rule), where all variables have been
binned into binary variables.

 Bayesian regression: see entry in Wikipedia. It's a kind of penalized likehood
estimator, and thus somewhat similar to ridge regression: more flexible and
stable than traditional linear regression. It assumes that you have some prior
knowledge about the regression coefficients and the error term - relaxing the
assumption that the error must have a normal distribution (the error must still be
independent across observations). However, in practice, the prior knowledge is
translated into artificial (conjugate) priors - a weakness of this technique.

 Quantile regression: Used in connection with extreme events, read Common
Errors in Statistics page 238 for details.

 LAD regression: Similar to linear regression, but using absolute values (L1 space)
rather than squares (L2 space). More robust, see also our L1 metric to assess
goodness-of-fit (better than R2) and our L1 variance (one version of which is
scale-invariant).

 Pseudo linear regression: This regression technique described in chapter 1 is
also used as general clustering and data reduction technique. It solves all the
drawbacks of traditional regression. It provides an approximate, yet very
accurate, robust solution to regression problems, and work well with
“independent” variables that are correlated and/or non-normal (for instance, data
distributed according to a mixture model with several modes). Ideal for black-box
predictive algorithms. It approximates linear regression quite well, but it is much
more robust, and work when the assumptions of traditional regression (non-
correlated variables, normal data, homoscedasticity) are violated.

http://www.analyticbridge.com/profiles/blogs/2004291:BlogPost:3920
https://stats.stackexchange.com/questions/866/when-should-i-use-lasso-vs-ridge
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
http://www.analyticbridge.com/forum/topics/linear-regression-on-an-usual-domain-hyperplane-sphere-or-simplex
https://en.wikipedia.org/wiki/Bayesian_linear_regression
http://www.analyticbridge.com/group/books/forum/topics/book-common-errors-in-statistics-4th-edition
http://www.analyticbridge.com/group/books/forum/topics/book-common-errors-in-statistics-4th-edition
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
https://www.datasciencecentral.com/group/research/forum/topics/a-synthetic-variance-designed-for-hadoop-and-big-data

208

Other Solutions

 Data reduction can also be performed with our feature selection algorithm
(chapter 5.)

 It's always a good idea to blend multiple techniques together to improve your
regression, clustering or segmentation algorithms. An example of such blending
is described in chapter 2.

 Categorical independent variables such as race are sometimes coded using
multiple (binary) dummy variables.

Before working on any project, read the lifecycle of a data science project (section 13,
chapter 28.)

12. Growth modeling with Excel

You don't need a sophisticated model nor advanced machine learning techniques to
quickly get a high level picture and trends for bottom-line business metrics. Not only the
concepts explained here are easy to grasp, but while being high level, it nevertheless
includes granular effects. The methodology presented here was used in business
contexts in the past, when I was working with enterprise executives, particularly finance
people, to assess the overall health of their business, and the short and long term
impacts of new initiatives to boost growth. .

The model is available as an Excel spreadsheet, driven by four main parameters, as
illustrated below. The growth can be in revenue, users, or any other fundamental metric.
Time periods are measured in days when assessing the impact of an advertising
campaign, or in months when assessing revenue growth caused by a new initiative. It
typically involves the following dynamic:

 New growth occurs at each time period, for instance new users.
 It accumulates over time: new users become regular users, some of them

eventually disappear -- this can be factored in in the growth curve.
 There is usually a time lag between an action and a reaction: the effect of TV

advertising campaigns may peak after a while (not immediately) and eventually
decay.

You can play with these factors separately in the spreadsheet, and even having your
data science team track them separately: these are the model components. If the
growth is due to more than one action (for instance multi-channel advertising), you
might want to use attribution modeling techniques to separate the different sources and
avoid double counting: see here for details. Some parameters may change over time,
as you approach market saturation, of return on advertising may slow down over time if
the campaigns and targeting are left unchanged: see the saturation parameter in the
spreadsheet. Finally, some parameters can be adjusted for seasonality or holidays.

https://www.analyticbridge.datasciencecentral.com/profiles/blogs/attribution-modeling/

209

Explanation

The two main columns are A and B, representing time and total revenue per time
period. At each time period (columns E, F, and so on) new users are added, resulting
from advertising efforts. They appear over the course of several time periods (for
instance, cells E5 to E23 for the first batch of new users, corresponding to day 1 of your
advertising campaign) and the number decays exponentially over time.

There is some erosion (saturation) in the advertising effectiveness: this is why E5 > F6
> G7 and so on. In addition, the revenue is delayed: this explains why columns C and D
are different. But the sums over columns C and D are identical. Finally, there is attrition,
which is incorporated in column B.

https://storage.ning.com/topology/rest/1.0/file/get/2854390268?profile=original

210

Growth curve corresponding to the above table (X-axis is the time period)

Parameters

The parameters are chosen to match the growth curve with actual data (past data, or
training data.) Then the growth numbers are automatically computed for the future, as in
the spreadsheet. You should work with BI analysts or data scientists to make sure that
all the numbers and projections are sound. The parameters are found in the Parameter
tab in the spreadsheet, and you can fine-tune them to automatically adjust the chart.
The parameters are:

 Saturation: To model decline in advertising effectiveness, over time.
 Decay: Advertising done during one time period has impact over several time

periods, with a decaying effect.
 Attrition: Proportion of users dying during any time period.
 Time lags: Revenue resulting from one column (advertising done during a

specific time period) is spread over several rows (it is time-delayed).

The campaign to boost your metric starts at period 1 (row 5 in the spreadsheet.) You
can download the spreadsheet here. See also chapter 23. For a more technical
presentation (fitting a growth curve with the logistic distribution), see a SAS article here.
Our spreadsheet can model a large spectrum of growth scenarios, more than usually
available in statistical packages.

13. Interesting charts

Hexagonal binning communicates the same insights as a contour plot. What is
interesting is the choice of hexagonal buckets (rather than squares) to aggregate data.
In fact, any tessellation would work, in particular Voronoi tessellations.

https://storage.ning.com/topology/rest/1.0/file/get/2854422375?profile=original
https://blogs.sas.com/content/iml/2018/10/10/fit-growth-curve-sas.html
https://www.google.com/search?q=tessellation&biw=1255&bih=668&source=lnms&tbm=isch&sa=X
http://mathworld.wolfram.com/VoronoiDiagram.html
https://storage.ning.com/topology/rest/1.0/file/get/2854435190?profile=original

211

3-D Voronoi tessellation

The reason for using hexagons is that it is still pretty simple, and when you rotate the
chart by 60 degrees (or a multiple of 60 degrees) you still get the same
visualization. For squares, rotations of 60 degrees don't work, only multiples of 90
degrees work. Is it possible to find a tessellation such that smaller rotations, say 45 or
30 degrees, leave the chart unchanged? The answer is no. Octogonal tessellations
don't really exist, so the hexagon is an optimum.

Hexagonal binning plots (source: here)

https://www.google.com/search?q=octagonal+tessellation
https://datavizproject.com/data-type/hexagonal-binning/
https://storage.ning.com/topology/rest/1.0/file/get/2855422186?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2855432732?profile=original

212

Implementation in R

The three plots described here (Voronoi diagram, hexagonal binning and contour plots)
are available in the ggplot2 package.

 Hexagonal binning: ggplot function with the parameter stat_binhex, see here

 Contour plot: ggplot function with the parameter geom_density2 or stat_contour,
see here (also works with contour)

 Voronoi diagram: ggplot with the parameter geom_segment, see here

Applications

Voronoi diagrams can be used for nearest neighbor clustering or density estimation, the
density estimate attached to a point being proportional to the inverse of the area of the
Voronoi polygon containing it.

Example of contour map (see chapter 26)

14. Simplified logistic regression

Logistic regression is typically used when the response Y is a probability or a binary
value (0 or 1). For instance, the chance for an email message to be spam, based on a
number of features such as suspicious keywords or IP address. In matrix notation, the
model can be written as

https://ggplot2.tidyverse.org/reference/geom_hex.html
https://www.r-statistics.com/2016/07/using-2d-contour-plots-within-ggplot2-to-visualize-relationships-between-three-variables/
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
https://letstalkdata.com/2014/05/creating-voronoi-diagrams-with-ggplot/
https://storage.ning.com/topology/rest/1.0/file/get/2855467134?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2871490159?profile=original

213

where X is the observations matrix, b is the parameter vector that needs to be
estimated, and e is a white noise. The first order approximation around zero, in the
above Taylor series expansion, yields

4Y - 2 = bX + e.

If instead of the logistic function, you use a different one, you would still get the same
first-order approximation in general. Replacing 4Y - 2 by Z, we are left with a standard
linear regression. When the response is binary (1 = spam, 0 = not spam), the technique
can be further refined by introducing an extra parameter q called the threshold. The final
estimate for a particular observation (an email with its set of attributes) is set to 1
(spam) if its Z value is larger than q, and to 0 (normal email) otherwise. By default, q= 0,
but you could choose q to achieve the best classification of your training set (on the test
set used in a cross-validation setting.) The correctness of the method can be measured
for instance as a weighted proportion of false positives and false negatives.

The methodology can easily be extended to more than 2 classes, using multiple
thresholds parameters and proper labeling (for instance: 3 for scam, 2 for spam, 1 for
low priority email, 0 for normal email.) Even though the technique is not model-driven,
confidence intervals can still be built using re-sampling techniques
described here and here. In particular, it is possible to tell whether an email is very
highly likely to be spam, or whether there is some non-conclusive evidence that it might
be spam, based on the distance (its empirical distribution computed via re-sampling)
between the observed Z and the threshold q.

It would be interesting to compare this method with a standard logistic regression, to
see, using a confusion matrix, the differences (if any) in the way the messages are
classified. More importantly, it would be useful to test when the approximated solution is
not as good as the exact solution.

Other techniques to perform this type of clustering include neural networks, naive
Bayes, and hybrid models (combining multiple techniques, see chapter 2.)

https://www.datasciencecentral.com/profiles/blogs/modern-re-sampling-and-statistical-recipes
https://www.datasciencecentral.com/profiles/blogs/confidence-intervals-without-pain

214

26. Dealing with Outliers

In addition to managing outliers in various machine learning problems, you will learn in
this chapter how to simulate realistic cluster structures, make contour plots and other
visualizations in R, and assess the convergence of an algorithm.

Here, we discuss a general framework to drastically reduce the influence of outliers in
most contexts. It applies to problems such as clustering (finding centroids,) regression,
measuring correlation or R-Squared, and many more. We will focus on the centroid
problem here, as it is very similar and generalizes easily to solving a linear regression.
The correlation / R-Squared issue was discussed in an earlier article and involves only a
change of formula. Clustering and regression are more complex problems involving
iterative algorithms.

This chapter also features interesting material for future data scientists, such as

 Several outlier detection techniques

 How to display contour maps and images corresponding to an intensity function or
heatmap, in R (in just a few lines of code, and very easy to understand) -- see
section 5 below

 How to produce data sets that simulate clustering structures or other patterns

 Distribution of arrival times for successive records in a time series

1. General Framework

We discuss replacing techniques used by statisticians, based on optimizing traditional
L2 metrics such as variance, by techniques based on Lp metrics, which are more robust
when 1 < p < 2. The case p = 2 corresponds to the traditional framework. Throughout
this chapter, p is referred to as the power. The regression and centroid problems being
equivalent, we focus here on finding a centroid using the Lp criterion (denoted as H),
and we show how to modify it for regression problems. Illustrations are in a 2-
dimensional space (d = 2) but easily generalize to any dimension, especially as we are
not using any matrix inversions to solve the problem.

Finding a robust centroid

The focus here is on finding the point that minimizes the sum of the "distances"
to n points in a d-dimensional space, called centroid or center, especially in the
presence of outliers.

The sum of "distances" between an arbitrary point (u, v) and a set S = { (x1, y1) ... (xn,
yn) } of n points is defined as follows:

http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data

215

where e is a very small positive quantity, equal to zero unless p is negative.

The function H has one parameter p called power, and when p = 2, we are facing the
traditional problem of finding the centroid of a cloud of points: in this case, the solution is
the classic average of the n points. This solution is notoriously sensitive to outliers.
When 1 < p < 2, we get a more stable solution, less sensitive to outliers, yet when n is
large (> 20) and the proportion of outliers is small (by definition it is always small!), the
solution is pretty much the same regardless of p (assuming 1 < p < 3).

In short, what we want to build a robust measure of centrality in any dimension, just like
the median which is a robust measure of centrality in dimension d = 1.

Generalization to linear regression problems

The same methodology can be used for regression. With 2 parameters u and v as in Y
= uX + v, the function H becomes

again with e = 0 if p > 0. It generalizes easily to more than 2 parameters u, v.

General outlier detection techniques

Our proposed method smooths out the impact of outliers rather than detecting them. For
outlier detection and removal, you can use one of these methods:

 Using traditional centrality measures and eliminating the points farthest away
from the center, then re-computing the center and proceeding iteratively with
eliminating newly found outliers until stability is reached.

 Using the median both for the x- and y-coordinates, rather than the average.
 The leaving-one-out technique consists of computing the convex hull of your data

set S, then removing one point at a time, and re-computing the convex hull after
removing the point in question. The point resulting in the largest loss of volume in
the convex hull, when removed, corresponds to the strongest outlier.

 Identifying points of lowest density using density estimation techniques (see
section 5 in chapter 28.)

 Nearest neighbor distances: a point far away from its nearest neighbors is
potentially an outlier. Compute all nearest neighbor distances and look for the
most extremes.

216

Another way to attenuate the impact of outliers is to use a weighted sum for H, that is (in
the case of the regression problem) to use the formula

where q(k) is the weight attached to point k. In this case, a point with low density is
assigned a smaller weight.

To read more about outlier detection, click here.

A related physics problem

When p < 0, and especially when p = -2, maximizing or minimizing H becomes an
interesting physics problem of optimizing a potential H. The centroid problem is now
equivalent to finding the point of maximum or minimum light, sound, radioactivity, or
heat intensity, in the presence of an energy field produced by n energy source
points. Both problems are closely related and use the same algorithm to find solutions.

However, the case p < 0 has no practical value to data scientists or statisticians (as far
as I know) and it presents the following challenges:

 If (u, v) is a point of S and p < 0, then H((u,v), S; p) is infinite: we have
singularities. This is dealt with by introducing the very small constant e > 0 in the
definition of H. This quantity is used to address the fact that in the real world, no
source of energy is a point with an area of zero and positive (but finite) intensity.
This artifact of physics models is discussed here.

 If you want to minimize H, there will be an infinite number of solutions, all located
far outside the cloud of points S. Think about finding the point in the universe that
receives the least amount of light from the solar system. So typically one is
interested in finding a maximum, not a minimum (unless you put constraints on
the solution, such as being located inside the convex hull of S.)

 Even if searching for a maximum of H, the convergence may be slow and
chaotic, as you can end up with several maxima (H is no longer a nice, smooth
curve when p < 0.)

2. Algorithm to find centroid when p > 1

There are many algorithms available to solve this type of mathematical optimization
problem. A popular class of algorithms is based on gradient descent and boosting. Here
however, we use what is possibly the simplest algorithm. First it is easy to understand,
still leads to some interesting research, is easy to replicate, and keep the focus on the
concepts and the results associated with the centroids, rather than on a specific
implementation. Second, with modern computers (even on my 10 years old laptop) the
computing power is big enough that naive algorithms perform well. If you are OK with
getting results accurate to two or three digits -- and in real life, many data sets, even

https://www.datasciencecentral.com/page/search?q=outlier
https://physics.stackexchange.com/questions/275340/according-to-the-inverse-square-law-is-the-intensity-at-the-source-always-infin
https://www.datasciencecentral.com/page/search?q=gradient

217

web analytics measured using two different sources, do not have higher accuracy --
then a rudimentary algorithm is enough.

So here I used rudimentary Monte-Carlo to find the centroids. However, in higher
dimensions (d > 3) be careful about the curse of dimensionality. Note that when p < 0,
Monte Carlo is not that bad, as it allows you to visit and circle around several local
minima. It is also easy to deploy in a Map-Reduce environment (Hadoop.) The algorithm
is actually so simple that there is no need to describe it: the short, easy-to-read source
code below (Perl) speaks for itself.

Source code to generate points and compute centroid, using Monte Carlo

Notes about the source code:

 The first n points in the output file centroid.txt are the simulated sample points
(random deviates on [0, 1] x [0, 1]. The last point is the centroid computed on the
sample points.

 Note that $seed (first line of code) is used to initiate the random generator and for

reproducibility purposes. Also, I noticed that a value of $seed lower than 1,000
causes the first random deviate generated to be biased (unusually small.)

 The variable $sum stores, at each iteration $iter, the value of the function H that
we try to minimize.

Below is the source code.

$seed=1000;

srand($seed);

$n=100;

open(OUT,">centroid.txt");

for ($k=0; $k<$n; $k++) {

 $x[$k]=rand();

 $y[$k]=rand();

 print OUT "$x[$k]\t$y[$k]\n"; # one of the n simulated points

}

$power = 1.25; # corresponds to p (the power) in the article

$niter = 200000;

$eps = 0.00001; # the "e" in the H function (see article)

$min=99999999;

for ($iter=0; $iter<$niter; $iter++) {

 $u=rand();

 $v=rand();

 $sum=0;

 for ($k=0; $k<$n; $k++) {

 $dist=exp($power*log($eps+abs($x[$k]-

$u)))+exp($power*log($eps+abs($y[$k]-$v)));

 $sum+=$dist;

 }

 $sum = $sum/$n;

 if ($sum < $min) {

 $min=$sum;

https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality

218

 $x_centroid=$u;

 $y_centroid=$v;

 }

}

print OUT "$x_centroid\t$y_centroid\n";

close(OUT);

Generating point clouds with simulation

In the few lines of the source code (above), we generated points randomly distributed in
the unit square [0, 1] x [0, 1] . In order to simulate outliers or more complicated
distributions that represent real-life problems, one has to use more sophisticated
techniques. Click here to get the source code to easily generate a cluster structure
(illustrated in figure 1 below).

Figure 1: example of simulated clustered point cloud

More complex simulations (random clusters evolving over time) can be found here.
Some simple stochastic processes can be simulated by first simulating random points
(called centers) uniformly distributed in a rectangle, then, around each center,
simulating a random number of points radially distributed around each center. Other
techniques involve thinning, that is, removing some points after over-sampling a large
number of points.

3. Examples and results

A few examples are provided in the next section to validate the methodology. In this
section, rather than validation, we focus on showing its usefulness when 0 < p < 2,
compared to the traditional solution consisting of using p = 2, found in all statistical
packages. Note that the traditional solution (p = 2) was designed not out of practical
considerations such as robustness, but because of its ease of computation at a time
when computers did not exist, and data sets were manually built.

To test the methodology, we created various data sets, introduced outliers, and
computed the centroid using different values of p. The example shown in Figure 2,

http://www.analyticbridge.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
http://www.analyticbridge.com/profiles/blogs/shooting-stars
http://storage.ning.com/topology/rest/1.0/file/get/2808323279?profile=original

219

consisting of five points (bottom left) plus an outlier (top right) illustrates the
performance. The six data points are in blue. The centroids, computed for p = 0.75,
1.00, 1.25, 1.50, 1.75 and 2.00, are in red. The rightmost centroid corresponds to p = 2:
this is the classic centroid. Due to the outlier, it is located outside the convex hull of the
five remaining points, which is awkward. The leftmost centroid corresponds to p = 0.75
and is very close to the traditional centroid obtained after removing the outlier. I also
tried the values p = 0.25 and p = 0.50, but failed to obtain convergence to a unique
solution after 200,000 iterations.

Figure 2: the blue dots represent the data points, the red + the centroid

(computed for 6 values of p)

Note that the scale does not matter. Finally, using p < 2 does not fully get rid of the
influence of the outlier, but instead, it reduces its impact when computing the centroid.
To completely get rid of the outliers, a methodology using medians computed for the x-
and y-axis, is more efficient.

If you are wondering how to produce a scatter plot in Excel with two data sets (points
and centroids) as in Figure 2, click here for instructions: it is easier than you think.

4. Convergence of the algorithm

Figure 3 shows the speed of convergence of the algorithm, using the same source code
as in section 2 with p = 1.4. So you can replicate these results. In this case, the data set
S consists of n = 100 points randomly (uniformly) distributed on [0, 1] x [0, 1].

About 10,000 iterations in the outer loop are needed to reach two digits of accuracy,
and this requires a tiny fraction of a second to compute. This “10,000 iterations” is
actually a rule of thumb for any Monte-Carlo algorithm used to find an optimum with two
correct digits. Note that in Figure 3, only iterations providing an improvement over the
current approximation of the centroid -- that is, iterations where the value of H is smaller

https://superuser.com/questions/770150/plot-multiple-sets-of-x-y-data-on-a-single-chart
http://storage.ning.com/topology/rest/1.0/file/get/2808323584?profile=original

220

than those computed in all previous iterations -- are displayed. A potential research
topic is to investigate the asymptotic behavior of these “records”, in the example below
occurring at iterations 0, 4, 12, 44, 109, 156, and so on.

Figure 3: convergence of the algorithm (p = 1.4)

Since the n = 100 simulated points were randomly (uniformly) distributed in [0, 1] x [0, 1]
it is no surprise that the centroid found by the algorithm, after convergence, is very close
to (0.5, 0.5).

Indeed, we tried values of p equally spaced between 1.25 and 3.50, and in each case,
the centroid found was also very close to (0.5, 0.5), see Figure 4. That includes the
special case p = 2 (it is located somewhere on the chart below) corresponding to the
classic average of the n points. Note that here, no outliers were introduced in the
simulations.

Figure 4: x- and y-coordinates of centroid, obtained with various values of p

http://storage.ning.com/topology/rest/1.0/file/get/2808323746?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808323870?profile=original

221

5. Interesting Contour Maps

The following contour maps in Figure 5, produced with the contour function in R, show
that as p gets closer to 0, the function H becomes more chaotic, exhibiting local minima.
These charts were produced using a data set S consisting of n = 20 points randomly
(uniformly) distributed on [0, 1] x [0, 1]. It is interesting to notice that, despite the random
distribution of the n points, strong patterns emerge when p < 1 (the statistical
significance of these patterns is weak though.)

Figure 5A: Contour map for H, with n = 20 and p =2

https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
http://storage.ning.com/topology/rest/1.0/file/get/2808326436?profile=original

222

Figure 5B: Contour map for H, with n = 20 and p = 0.50

Figure 5C: Contour map for H, with n = 20 and p = 0.15

You can also plot images of H, using the function image in R with a gray palette with

300 levels of grey, using the command image(z, col = gray.colors(300)) where z is

http://stat.ethz.ch/R-manual/R-devel/library/graphics/html/image.html
http://storage.ning.com/topology/rest/1.0/file/get/2808326561?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808336009?profile=original

223

an m x m matrix (in R) representing values of H computed at m x m locations (here m =
100 and n = 20.)

The source code (in R) looks like this:

 data<-read.table("c:/vincentg/math2r.txt",header=TRUE)

 w<-data$H

 z <- matrix(w, nrow = 100, ncol = 100, byrow = TRUE)

 image(z, col = gray.colors(300))

Here the file math2r.txt stores the m x m values of H sequentially in a one-column text
file, row after row. The first row is the header (equal to H.) Note that in order to produce

Figure 5, I used contour(z)rather than image(z, col = gray.colors(300)). In Figure 6

I actually used the function image to display H values for p = 0.5: low values of H
(corresponding to proximity to centroid) are in a darker color, and unlike the case p = 2,
you can notice multiple local minima. Figure 6 is based on the same data as Figure 5B.

The source code to produce the input file math2r.txt can be found here.

Figure 6: H values displayed in an image using R (n = 20 and p = 0.5)

As a bonus, below is Figure 7 corresponding to p = -2, which interestingly is very similar
to p = 0.5 (see Figure 5B.) This value of p has tremendous applications in physics, as it
corresponds to the inverse-square law.

http://storage.ning.com/topology/rest/1.0/file/get/2808336123?profile=original
https://en.wikipedia.org/wiki/Inverse-square_law
http://storage.ning.com/topology/rest/1.0/file/get/2808336631?profile=original

224

Figure 7: this time with p=-2

http://storage.ning.com/topology/rest/1.0/file/get/2808337652?profile=original

225

27. Strong Correlation Metric

The simple strong correlation synthetic metric proposed in this chapter should be used
whenever you want to check if there is a real association between two variables.

In this chapter, the traditional correlation is referred to as the weak correlation, as it
captures only a small part of the association between two variables. In short, our strong
correlation (with a value between 0 and 1) is high (say above 0.80) if not only the weak
correlation is also high (in absolute value), but when the internal structures (auto-
dependencies) of both variables X and Y that you want to compare, exhibit a similar
pattern or correlogram.

Yet this metric is simple and involves just one parameter a (with a = 0 corresponding
to weak correlation, and a =1 being the recommended value for strong correlation). This
setting is designed to avoid over-fitting.

What makes two variables X and Y seem related is usually based on ordinary (weak)
correlation. High strong correlation means that the two variables are really associated
and share similar internal auto-dependencies and structure. To put it differently, two
variables can be highly weakly correlated yet have no causal relationship (or see my
Wiley book pages 165-168) with hidden factors explaining the link. An artificial example
is provided below in figure 3. The strong correlation metric helps alleviate this issue,
though it does not fix it.

1. Definition of strong correlation

Let's define

 Weak correlation c(X, Y) as the absolute value of the ordinary correlation, with
value between 0 and 1. This number is high (close to 1) if X and Y are highly
correlated. I recommend using my rank-based, L1 correlation to eliminate
problems caused by outliers.

 c1(X) as the lag-1 auto-correlation in absolute value for X, that is, if X = (X1 ... Xn)
then c1(X) = c(X1 ... Xn-1, X2 ... Xn).

 c1(Y) as the lag-1 auto-correlation for Y
 d-correlation d(X, Y) = exp{ -a | log c1(X) - log c1(Y)| }, with possible adjustment if

the numerator or denominator is zero; the parameter a must be positive or zero.
Of course, d(X, Y) is in [0, 1], and close to 1 if X and Y have similar lag-1 auto-
correlations.

 Strong correlation r(X, Y) = min(c(X, Y), d(X, Y))

Thus r(X, Y) is between 0 and 1, with 1 meaning strong similarity between X and Y, and
0 meaning either dissimilar lag-1 auto-correlations for X and Y, or lack of old-fashioned
correlation.

https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data

226

2. Comparison with traditional (weak) correlation

When a = 0, weak and strong correlations are identical. Also the strong correlation r(X,
Y) is symmetric and invariant under linear transformations (such as re-scaling)
regardless of a. We simulated more than 10,000 uniformly and independently
distributed random variables Y each with n observations, and computed the correlation
with an arbitrary variable X with pre-specified values. So you would expect all the
correlations to be close to zero. In Figures 1 and 2 below, the horizontal axis represents
c(X, Y) and the vertical axis d(X, Y). Note that r(X, Y) = min(c(X, Y), d(X, Y)).

Figure 1: 10,000 (c(X,Y), d(X,Y) values computed on n = 9 observations.

Figure 2: Same as figure 1, but here with n = 4.

Many weak correlations are still well above 0.60 if you look at Figure 1.But few strong
correlations are above 0.20. Figure 2 is more difficult to interpret visually because n is

http://storage.ning.com/topology/rest/1.0/file/get/2808290831?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808291122?profile=original

227

too small (n = 4), though the conclusion is similar and obvious if you check the results in
the spreadsheet (see next section). In this example, a = 4.

3. Excel spreadsheet with computations and examples

The spreadsheet shows simulation of a variable X with n observations, stored in first
row, with thousands of simulated Y's in the subsequent rows. There are two tabs: one
for n = 4, and one for n = 9. For instance, in the n = 9 tab, column J represents the weak
correlation c(X, Y), column M represents c1(Y), and column N represents the strong
correlation r(X, Y). The parameter a is stored in cell P1, and summary stats are found in
cells Q1:T12. The spreadsheet is a bit unusual in the sense that rows represent
variables, and columns represent observations. Download the spreadsheet (about 20
MB in compressed format.)

Figure 3: The green series is highly “weakly correlated” but weakly
“strongly correlated” to the blue and red series (a = 4)

Confidence intervals for these correlations are easy to obtain, by running 10 times these
simulations and see what min and max you get

4. When to use strong versus weak correlation?

The strong correlation is useful when comparing millions of small, local time series, for
instance in the context of HFT (High Frequency Trading), when you try to find cross-
correlations with time lags among thousands of stocks. Note that a = 4 (as used in my
spreadsheet) is too high in most situations, and I recommend a = 1, which has the
following advantages:

 Simplification of the formula for r(X, Y)

 The fact that d(X, Y) is a raw un-transformed number, and thus likely to be more
comparable with c(X, Y).

In the spreadsheet, when n = 4 and a = 4, about 40% of all weak correlations c(X, Y)
are above 0.60, while only 5% of strong correlations r(X, Y) are above 0.60. All the
simulated Y's are uniform, random, independent variables, so it is a bit surprising to see
so many strong but accidental (spurious) “weak correlations”. It happens because n is
small. Even with n = 9, the contrast between weak and strong correlations are still

http://datashaping.com/spuriouscorrel2.xlsx.gz
http://storage.ning.com/topology/rest/1.0/file/get/2808291474?profile=original

228

significant. The strong correlation metric clearly eliminates a very large chunk of the
spurious correlations, especially when a > 2. But it can eliminate true correlations as
well, thus my recommendation to use a = 1, as a compromise. A high value for a has
effects similar to over-fitting and should be avoided.

5. Generalization

It is possible to take into account and add auto-correlations of lag 1, 2, and so on to
generalize the concept of strong correlation, but it may cause overfitting, except if we
put decaying weights on the various lags.

Also, it would be great to do this analysis on actual data, not just simulated random
noise. Or even on non-random simulated data, using for instance the artificially
correlated data set described in chapter 2 (section 2.) Finally there are other metrics
available to measure other forms of correlations (for instance on unusual domains), see
for instance my article on structuredness coefficient.

6. Other synthetic metrics

The strong correlation is a synthetic metric, and belongs to a family of synthetic metrics
that I created over the last few years. Synthetic metrics are designed to efficiently solve
a problem, rather than being crafted for their beauty, elegancy and mathematical
properties: they are directly derived from data experiments (bottom-up approach) rather
than the other way around (top-down: from theory to application) as in traditional
science. Other synthetic metrics include:

 Synthetic variance
 Predictive power (see chapter 4) related to entropy (that is, information

quantification), used for feature selection.
 Robust correlation defined by an algorithm and closely related to the optimum

variance metric discussed here.
 Structuredness coefficient
 Bumpiness coefficient

http://www.analyticbridge.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
https://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
http://www.analyticbridge.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
http://www.analyticbridge.com/profiles/blogs/three-classes-of-metrics-centrality-volatility-and-bumpiness

229

28. Additional Topics

In this chapter, we briefly cover a number of machine learning topics ranging from
stochastic geometry to pattern recognition and extreme events. The first section is non-
technical but provides valuable information about what data science is about. ML stands
for Machine Learning.

1. Comparing ML, Data Science, AI, Deep Learning, and Statistics

Here, I clarify the various roles of the data scientist, and how data science compares
and overlaps with related fields such as machine learning, deep learning, AI, statistics,
IoT, operations research, and applied mathematics. As data science is a broad
discipline, I start by describing the different types of data scientists that one may
encounter in any business setting: you might even discover that you are a data scientist
yourself, without knowing it. As in any scientific discipline, data scientists may borrow
techniques from related disciplines, though we have developed our own arsenal,
especially techniques and algorithms to handle very large unstructured data sets in
automated ways, even without human interactions, to perform transactions in real-time
or to make predictions.

1.1. Different Types of Data Scientists

To get started and gain some historical perspective, you can read my article about 9
types of data scientists, published in 2014, or my article where I compare data science
with 16 analytic disciplines, also published in 2014.

The following articles, published during the same time period, are still useful:

 Data Scientist versus Data Architect
 Data Scientist versus Data Engineer
 Data Scientist versus Statistician
 Data Scientist versus Business Analyst

More recently (August 2016) Ajit Jaokar discussed Type A (Analytics) versus Type B
(Builder) data scientist:

 The Type A Data Scientist can code well enough to work with data but is not
necessarily an expert. The Type A data scientist may be an expert in
experimental design, forecasting, modelling, statistical inference, or other things
typically taught in statistics departments. Generally speaking though, the work
product of a data scientist is not "p-values and confidence intervals" as academic
statistics sometimes seems to suggest (and as it sometimes is for traditional
statisticians working in the pharmaceutical industry, for example). At Google,

https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists
https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-data-architect
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-data-engineer
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-statistician
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-business-analyst
https://www.datasciencecentral.com/profile/ajitjaokar

230

Type A Data Scientists are known variously as Statistician, Quantitative Analyst,
Decision Support Engineering Analyst, or Data Scientist, and probably a few
more.

 Type B Data Scientist: The B is for Building. Type B Data Scientists share some

statistical background with Type A, but they are also very strong coders and may
be trained software engineers. The Type B Data Scientist is mainly interested in
using data "in production." They build models which interact with users, often
serving recommendations (products, people you may know, ads, movies, search
results). Source: click here.

I also wrote about the ABCD's of business processes optimization where D stands for
data science, C for computer science, B for business science, and A for analytics
science. Data science may or may not involve coding or mathematical practice, as you
can read in my article on low-level versus high-level data science. In a startup, data
scientists generally wear several hats, such as executive, data miner, data engineer or
architect, researcher, statistician, modeler (as in predictive modeling) or developer.
While the data scientist is generally portrayed as a coder experienced in R, Python,
SQL, Hadoop and statistics, this is just the tip of the iceberg, made popular by data
camps focusing on teaching some elements of data science. But just like a lab
technician can call herself a physicist, the real physicist is much more than that, and her
domains of expertise are varied: astronomy, mathematical physics, nuclear physics
(which is borderline chemistry), mechanics, electrical engineering, signal processing
(also a sub-field of data science) and many more. The same can be said about data
scientists: fields are as varied as bioinformatics, information technology, simulations and
quality control, computational finance, epidemiology, industrial engineering, and even
number theory.

In my case, over the last 10 years, I specialized in machine-to-machine and device-to-
device communications, developing systems to automatically process large data sets, to
perform automated transactions: for instance, purchasing Internet traffic or automatically
generating content. It implies developing algorithms that work with unstructured data,
and it is at the intersection of AI (artificial intelligence,) IoT (Internet of things,) and data
science. This is referred to as deep data science. It is relatively math-free, and it
involves relatively little coding (mostly API's), but it is quite data-intensive (including
building data systems) and based on brand new statistical technology designed
specifically for this context.

Prior to that, I worked on credit card fraud detection in real time. Earlier in my career
(circa 1990) I worked on image remote sensing technology, among other things to
identify patterns (or shapes or features, for instance lakes) in satellite images and to
perform image segmentation: at that time my research was labeled as computational
statistics, but the people doing the exact same thing in the computer science
department next door in my home university, called their research artificial intelligence.
Today, it would be called data science or artificial intelligence, the sub-domains being
signal processing, computer vision or IoT.

http://www.kdnuggets.com/2016/08/become-type-a-data-scientist.html
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization
https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/prime-numbers-interesting-distribution-and-density-results
https://www.datasciencecentral.com/profiles/blogs/prime-numbers-interesting-distribution-and-density-results
https://www.datasciencecentral.com/profiles/blogs/8-deep-data-science-articles

231

Also, data scientists can be found anywhere in the lifecycle of data science projects
(see section 13), at the data gathering stage, or the data exploratory stage, all the way
up to statistical modeling and maintaining existing systems.

1.2. Machine Learning versus Deep Learning

Before digging deeper into the link between data science and machine learning, let's
briefly discuss machine learning and deep learning. Machine learning is a set of
algorithms that train on a data set to make predictions or take actions in order to
optimize some systems. For instance, supervised classification algorithms are used to
classify potential clients into good or bad prospects, for loan purposes, based on
historical data. The techniques involved, for a given task (e.g. supervised clustering),
are varied: naive Bayes, SVM, neural nets, ensembles, association rules, decision
trees, logistic regression, or a combination of many. For a detailed list of
algorithms, click here. For a list of machine learning problems, click here.

All of this is a subset of data science. When these algorithms are automated, as in
automated piloting or driver-less cars, it is called AI, and more specifically, deep
learning. Click here for another article comparing machine learning with deep learning. If
the data collected comes from sensors and if it is transmitted via the Internet, then it is
machine learning or data science or deep learning applied to IoT.

Some people have a different definition for deep learning. They consider deep learning
as neural networks (a machine learning technique) with a deeper layer. The question
was asked on Quora recently, and below is a more detailed explanation (source: Quora)

 AI (Artificial intelligence) is a subfield of computer science, that was created in
the 1960s, and it was (is) concerned with solving tasks that are easy for humans,
but hard for computers. In particular, a so-called Strong AI would be a system
that can do anything a human can (perhaps without purely physical things). This
is fairly generic, and includes all kinds of tasks, such as planning, moving around
in the world, recognizing objects and sounds, speaking, translating, performing
social or business transactions, creative work (making art or poetry), etc.

 NLP (Natural language processing) is simply the part of AI that has to do with
language (usually written).

 Machine learning is concerned with one aspect of this: given some AI problem

that can be described in discrete terms (e.g. out of a particular set of actions,
which one is the right one), and given a lot of information about the world, figure
out what is the “correct” action, without having the programmer program it in.
Typically some outside process is needed to judge whether the action was
correct or not. In mathematical terms, it’s a function: you feed in some input, and
you want it to to produce the right output, so the whole problem is simply to build
a model of this mathematical function in some automatic way. To draw a
distinction with AI, if I can write a very clever program that has human-like

https://www.datasciencecentral.com/profiles/blogs/top-10-machine-learning-algorithms
https://www.datasciencecentral.com/profiles/blogs/top-20-uses-of-statistical-modeling
https://www.datasciencecentral.com/profiles/blogs/deep-learning-definition-resources-comparison-with-machine-learni
https://www.quora.com/What-is-the-difference-between-AI-Machine-Learning-NLP-and-Deep-Learning/answer/Dmitriy-Genzel?ref=t_page
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Machine_learning

232

behavior, it can be AI, but unless its parameters are automatically learned from
data, it’s not machine learning.

 Deep learning is one kind of machine learning that’s very popular now. It involves

a particular kind of mathematical model that can be thought of as a composition
of simple blocks (function composition) of a certain type, and where some of
these blocks can be adjusted to better predict the final outcome.

1.3. What is the difference between machine learning and statistics?

This article tries to answer the question. The author writes that statistics is machine
learning with confidence intervals for the quantities being predicted or estimated. I tend
to disagree, as I have built engineer-friendly confidence intervals (see also chapter 16)
that don't require any mathematical or statistical knowledge.

1.4. Data Science versus Machine Learning

Machine learning and statistics are part of data science. The word learning in machine
learning means that the algorithms depend on some data, used as a training set, to fine-
tune some model or algorithm parameters. This encompasses many techniques such
as regression, naive Bayes or supervised clustering. But not all techniques fit in this
category. For instance, unsupervised clustering - a statistical and data science
technique - aims at detecting clusters and cluster structures without any a-priori
knowledge or training set to help the classification algorithm. A human being is needed
to label the clusters found. Some techniques are hybrid, such as semi-supervised
classification. Some pattern detection or density estimation techniques fit in this
category.

Data science is much more than machine learning though. Data, in data science, may
or may not come from a machine or mechanical process (survey data could be
manually collected, clinical trials involve a specific type of small data) and it might have
nothing to do with learning as I have just discussed. But the main difference is the fact
that data science covers the whole spectrum of data processing, not just the algorithmic
or statistical aspects. In particular, data science also covers

 Data integration
 Distributed architecture
 Automating machine learning
 Data visualization
 Dashboards and BI
 Data engineering
 Deployment in production mode
 Dutomated, data-driven decisions

Of course, in many organizations, data scientists focus on only one part of this process.

https://en.wikipedia.org/wiki/Deep_learning
http://www.edvancer.in/machine-learning-vs-statistics/
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det

233

2. Distribution of Arrival Times for Extreme Events

Most of the articles on extreme events are focusing on the extreme values. Very little

has been written about the arrival times of these events. This chapter fills the gap.

We are interested here in the distribution of arrival times of successive records in a time
series, with potential applications to global warming assessment, sport analytics, or high
frequency trading. The purpose here is to discover what the distribution of these arrival
times is, in absence of any trends or auto-correlations, for instance to check if the global
warming hypothesis is compatible with temperature data obtained over the last 200
years. In particular it can be used to detect subtle changes that are barely perceptible
yet have a strong statistical significance. Examples of questions of interest are:

 How likely is it that 2016 was the warmest year on record, followed by 2015, then
by 2014, then by 2013?

 How likely is it, in 200 years’ worth of observations, to observe four successive
records four years in a row, at any time during the 200 years in question?

The answer to the first question is that it is very unlikely to happen just by chance.

Despite the relative simplicity of the concepts discussed here, and their great
usefulness in practice, none of the material below is found in any statistics textbook, as
far as I know. It would be good material to add to any statistics curriculum.

2.1. Simulations

I run a number of simulations, generating 100 time series each made up of millions of
random, independent Gaussian deviates, without adding any trend up or down. The first
few hundred points of one of these time series is pictured in Figure 1.

I computed the median, 25- and 75-percentiles for the first few records, see Figure 1.
For instance, the median time of occurrence of the first record (after the first
measurement) is after 2 years, if your time unit is a year. The next bigger record is
expected 8 years after the first measurement and the next bigger one 21 years after the
first measurement (see Figure 1.) Even if you look at the 25-percentile, it really takes a
lot of years to beat the previous 4 or 5 records in a row. In short, it is nearly impossible
to observe increasing records four years in a row, unless there is a trend that forces the
observed values to become larger over time.

234

Figure 1: Time of arrivals of successive records (in years if you time unit is a year)

This study of arrival times for these records should allow you to detect even very tiny
trends, either up or down, better than traditional models of change point detection
hopefully. However it does not say anything about whether the increase is barely
perceptible or rather large.

Note that the values of these records are a subject of much interest in statistics, known
as extreme value theory. This theory has been criticized for failure to predict the amount
of damage in modern cataclysms, resulting in big losses for insurance companies. Part
of the problem is that these models are based on hundreds of years’ worth of data (for
instance to predict the biggest flood that can occur in 500 years) but over such long
periods of time, the dynamics of the processes at play have shifted. Note that here, I
focus on the arrival times or occurrences of these records, not on their intensity or
value, contrarily to traditional extreme value theory.

Finally, arrival times for these records do not depend on the mean or variance of the
underlying distribution. Figure 1 provides some good approximations, but more tests
and simulations are needed to confirm my findings. Are these median arrival times the
same regardless of the underlying distribution (temperature, stock market prices, and so
on) just like the central limit theorem provides a same limiting distribution regardless of
the original, underlying distribution? The theoretical statistician should be able to answer
this question. I didn't find many articles on the subject in the literature, though this one is
interesting. In the next section, I try to answer this question. The answer is positive.

2.2. Theoretical Distribution of Records over Time

This is an interesting combinatorial problem, and it bears some resemblance to
the Analyticbridge Theorem. Let Rn be the value of the nth record (n = 1, 2,...) and Tn its
arrival time.

For instance, if the data points (observed values) are X0 = 1.35, X1 = 1.49, X2 = 1.43, X3
= 1.78, X4 = 1.63, X5 = 1.71, X6 = 1.45, X7 = 1.93, X8 = 1.84, then the records

https://en.wikipedia.org/wiki/Extreme_value_theory
https://www.jstor.org/stable/1427728
https://www.jstor.org/stable/1427728
http://www.analyticbridge.com/profiles/blogs/the-analyticbridge-theorem-aka
https://api.ning.com/files/2iGC6Dxz*pFYr9Yd7kZ9NJH1iyRdM3ZdIWz5*hLMaBoYACApFfQAwq4HUzve7R60UuX5Ndw25MLIybNxLpUnaFRK4kFCV3Ie/Capturex.PNG

235

(highlighted in bold) are R1 = 1.49, R2 = 1.78, R3 = 1.93, and the arrival times for these
records are T1 = 1, T2 = 3, and T3 = 7.

To compute the probability P(Tn = k) for n > 0 and k = n, n+1, n+2, etc., let's define Tn, m
as the arrival time of the nth record if we only observe the first m+1 observations X0, X1,
..., Xm. Then P(Tn = k) is the limit of P(Tn, m = k) as m tends to infinity, assuming the limit
exists. If the underlying distribution of the values X0, X1, etc. is continuous, then, due to
the symmetry of the problem, computing P(Tn, m = k) can be done as follows:

1. Create a table of all (m+1)! (factorial m+1) permutations of (0, 1, ... , m).
2. Compute N(n, m, k), the number of permutations of (0, 1, ..., m) where the nth

record occurs at position k in the permutation (with 0 < k ≤ m). For instance, if m =
2, we have 6 permutations (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1) and (2, 1,
0). The first record occurs at position k = 1 only for the following three
permutations: (0, 1, 2), (0, 2, 1), and (1, 2, 0). Thus, N(1, 2, 1) = 3. Note that the
first element in the permutation is assigned position 0, the second one is assigned
position 1, and so on. The last one has position m.

3. Then P(Tn, m = k) = N(n, m, k) / (m+1)!

As a result, the distribution of arrival times, for the records, is universal: it does not
depend on the underlying distribution of the identically and independently distributed
observations X0, X1, X2 etc.

It is easy (with or without using my above combinatorial framework) to find that the
probability to observe a record (any record) at position k is 1/(k+1) assuming again that
the first position is position 0 (not 1). Also, it is easy to prove that P(Tn = n) = 1/(n+1)!.
Now, T1 = k if and only if Xk is a record among X0, ..., Xk and X0 is the largest value
among X0, ..., Xk-1. Thus:

P(T1 = k) = 1 / { (k+1)k }

This result is confirmed by my simulations. For the general case, recurrence formulas
can be derived.

2.3. Useful Results

None of the arrival times Tn for the records has a finite expectation. Figure 2 displays
the first few values for the probability that the nth record occurs at position Tn = k, the
first element in the data set being assigned to position 0. The distribution of these arrival
times does not depend on the underlying distribution of the observations.

236

Figure 2: P(Tn = k) at the bottom, (k+1)! P(Tn = k) at the top

These probabilities were computed using a small script that generates all (k+1)!
permutations of (0, 1, ..., k) and checks, among these permutations, those having a
record at position k: for each of these permutations, we computed the total number of
records. If N(n, k) denotes the number of such permutations having n records, then P(Tn
= k) = N(n, k) / (k+1)!.

Despite the fact that the above table is tiny, it required hundreds of millions of
computations for its production.

3. How to Lie with p-Values?

P-values are used in statistics and scientific publications, much less so in machine
learning applications where re-sampling techniques are favored and easy to implement
today thanks to modern computing power. In some sense, p-values are a relic from old
times, when computing power was limited and mathematical / theoretical formulas were
favored and easier to deal with than lengthy computations.

Recently, p-values have been criticized and even banned by some journals, because
they are used by researchers, who cherry-pick observations and repeat experiments

https://api.ning.com/files/*ix1zXEQDKOnz6XApuylcifoyf9s12QZmU1ndw*a-8ApBP8ofSyYt3qqwezd5JYmdb02ZM4OV0nLvL5EYlviWVgRG3tNJPEl/ev4.pl.txt
https://api.ning.com/files/*ix1zXEQDKOuque-oNyjtYTb0uA2a5F-xVFPR1D3iHUolbWKHnNLzfQDuCNk9RZHSEAZuZPq7j3ECYd9bZT3ZsZFRtBjbGa6/Capture.PNG

237

until they obtain a p-value worth publishing to obtain grant money, get tenure, or for
political reasons. Even the American Statistical Association wrote a long article about
why to avoid p-values, and what you should do instead: see here. For data scientists,
obvious alternatives include re-sampling techniques: see chapters 15 and 16. One
advantage is that they are model-independent, data-driven, and easy to understand.

Here we explain how the manipulation and treachery works, using a simple simulated
data set consisting of purely random, non-correlated observations. Using p-values, you
can tell anything you want about the data, even the fact that the features are highly
correlated, when they are not. The data set consists of 16 variables and 30
observations, generated using the RAND function in Excel. You can download the
spreadsheet here.

There is a total of (16 x 15) / 2 = 120 correlations (one for each pair of variables) and as
you compute them one by one, you are bound, sooner rather than later, to find one that
is significant. The most extreme correlation will almost always be above 0.4 in absolute
value if you have 16 variables and 30 observations that are totally random. This is a
statistically significant departure from zero. If you pick up that extreme correlation, now
you can tell that my data set is not random, and that the chance for such a high
correlation to occur is indeed 1/120. This number (1/120) is also your p-value, which is
well below 5%, the threshold usually accepted to prove that the effect in question did
not occur by chance. The truth is that it really did occur by chance: you were just cherry-
picking.

The way the scheme works is by picking the least extreme case that meets your agenda
(circled in red in the above picture), in this case a target p-value below 1%.

If you were to write an article about Excel using this faulty argumentation, you could
claim, based on this experiment, that the random number generator in Excel is wrong
and produces correlated numbers. You could do the same experiment in Python and
come to the same conclusion. Or you could use a genuine hardware-based device that
truly produces randomness, and still come to the same conclusion. Indeed you could

https://www.amstat.org/asa/News/ASA-P-Value-Statement-Viewed-150000-Times.aspx
https://storage.ning.com/topology/rest/1.0/file/get/2858759547?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2858757170?profile=original

238

write a philosophical article about the fact that randomness does not exist. You could
also do the same experiment using the Perl programming language and come to the
same conclusion. In this latter case interestingly, you would be correct: Perl's random
number generator has a major design flaw (it can produce only 32,767 distinct values)
but this little experiment would not be able to reveal this fact. You would be correct
about Perl's faulty random numbers, but you would be correct just by chance, not
because you used a sound methodology to identify the issue.

4. Off-the-beaten-path Machine Learning Topics

You will find here nine interesting topics that you won't learn in college classes. Most
have interesting applications in business and elsewhere. They are not especially
difficult, and I explain them in simple English. Yet they are not part of the traditional
statistical curriculum, and even many experienced data scientists with a PhD degree
have not heard about some of these concepts.

4.1. Random walks in one, two and three dimensions

This is a well-known model, used as a base stochastic process to model the logarithm
of stock prices, yet it has interesting properties (depending on dimension) that few
people know about. In one dimension, it is described as follows: You start at 0 (on the
X-axis) and at each iteration, you increase by +1 with probability 0.5, and decrease by
+1 with probability 0.5. In one or two dimensions, the probability that it will get back to
any previous state at one point, is one. But this is not the case in three dimensions.
Yet the most probable number of sign changes (crossing the X-axis) in a walk is 0,
followed by 1, then 2, etc. The time spent either above or below the X-axis (before a
crossing) is modeled by the arc-sine law: Crossing the X-axis happens rarely. For self-
correcting random walks, click here. For videos produced with R, simulating a 2-D
random walk; follow this link.

4.2. Estimation of the convex hull of a set of n points

In one dimension, this is just the estimation of an interval when points are uniformly
distributed, using the minimum and maximum observations, and multiplying the
observed length (max - min) by a factor (n+1)/n to remove the bias. In two dimensions,
computing the convex hull is easy, and again you need to expand the shape a little to
correct for bias. Convex hulls are used in clustering problems, where clusters are
modeled by (possibly) overlapping convex domains: This is a non-parametric alternative
to clustering algorithms based on the Gaussian distribution.

A potential application is estimating the shape of an oil field when digging a number of
test wells - some within the (unknown) oil field boundary, some (as few as possible)
outside the boundary. It is also used to estimate the extent and shape of an

https://www.quora.com/Why-is-it-that-a-2D-random-walk-is-recurrent-while-a-3D-random-walk-is-transient
https://www.quora.com/Why-is-it-that-a-2D-random-walk-is-recurrent-while-a-3D-random-walk-is-transient
http://mathworld.wolfram.com/RandomWalk1-Dimensional.html
http://www.analyticbridge.datasciencecentral.com/group/computationalfinance/forum/topics/theorems-for-traders
http://www.analyticbridge.datasciencecentral.com/profiles/blogs/interesting-probability-problem-for-serious-geeks
https://www.datasciencecentral.com/profiles/blogs/2-d-random-walks-simulation-video-with-r-source-code-curious-fact

239

underground contaminated area: It was used to identify whether the nuclear waste from
the Hanford nuclear reservation, was spilling in the Columbia river located a few
hundred yards away, and whether it got worse over time, by measuring chromium levels
in a number of wells.

How about designing a fast algorithm to compute the convex hull of a set of points, in
any dimension? This is a great exercise for a data scientist, but first you need to check
the literature about existing algorithms. I implemented one when I was working on my
PhD in computational statistics.

The first step to estimate this complex shape is to start with the convex hull

(click here for details)

4.3. Constrained linear regression on unusual domains

Lasso and ridge regression are popular examples of constrained linear regression:
Constraints are put on the regression coefficients to make it more stable, for instance,
the coefficient between a dependent and independent variable must have the same sign
as the correlation between the two variables in question. Such constraints are used for
instance in the HDT algorithm, (see chapter 2) which is an hybrid regression / pseudo
decision tree procedure.

In some cases, the constraints are dictated by the business problem itself. For instance,
if a response depends on a mix of chemical ingredients (think about the taste of a
beverage - how people like it or not) the weight or proportion attached to each
ingredient is a regression coefficient: All these coefficients must be positive or zero, and
they must add up to one. This is known as linear regression on the simplex
domain. Click here for more similar problems (regression on a sphere and so on.)

4. Robust and scale-invariant variances

The traditional variance is impacted by erroneous data and outliers, and thus not very
robust. I proposed a new variance that is more robust, and always positive, just like the
standard variance. The positivity is guaranteed by the Jensen inequality, and from a
mathematical point of view, it is a metric between an L1 and L2 version of the classical
variance (L^2 yields the classical variance.) Click here for details.

https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
https://github.com/AndriiHeonia/hull
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
http://www.analyticbridge.datasciencecentral.com/forum/topics/linear-regression-on-an-usual-domain-hyperplane-sphere-or-simplex
http://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://storage.ning.com/topology/rest/1.0/file/get/2220281814?profile=original

240

I am currently working on a variance that is scale-invariant (also described in the same
article) and this is really a bizarre object, though useful when the variance should stay
the same, whether your metric is measured in miles or kilometers. The next step is to
design scale-invariant clustering algorithms, as the scale of each variable (the units
used for measurement) sometimes has a bigger impact on the resulting clusters, than
the choice of the clustering algorithm itself.

4.5. The Tweedie distributions

In statistics, the Tweedie distributions are a family of probability distributions which
include the purely continuous normal and gamma distributions, the purely discrete
scaled Poisson distribution, and the class of mixed compound Poisson–gamma
distributions which have positive mass at zero, but are otherwise continuous. Just like
the exponential family of distributions, it includes several popular distributions. These
distributions are characterized by the following property: The expectation is proportional
to a power of the variance. It has many applications, including for modeling errors in
signal processing, and even to model departure from the asymptotic representation in
some prime number functions. Click here for details, and to see the various
applications, including actuarial studies, survival analysis, ecology, medical applications,
meteorology and climatology, fisheries, cancer metastasis, genomic structure and
evolution.

Another distribution with several practical applications is the Zipf distribution.

4.6. The arithmetic-geometric mean

This was initially designed to compute the mean of two numbers, and it comes with a
very fast algorithm that converges to a value between the arithmetic and geometric
means. It has a number of interesting mathematical properties, and has been used to

compute the number very efficiently (other very fast algorithms to compute can be
found here and here.)

To compute the arithmetic-geometric mean of two numbers, start with two initial
estimates a0 and b0 equal respectively to the geometric and arithmetic mean. At each
iteration k, compute ak as the geometric mean of ak-1 and bk-1, and compute bk as the
arithmetic mean of ak-1 and bk-1. Both ak and bk converge very fast to the arithmetic-
geometric mean. Click here for details.

It has been generalized to any number of variables, see here. The picture below
summarizes one of the most interesting generalizations, involving a bunch of interesting
averaging functions, besides the arithmetic and geometric means.

https://en.wikipedia.org/wiki/Tweedie_distribution
https://www.datasciencecentral.com/profiles/blogs/zipf-s-distribution-example-of-a-great-application
http://www.analyticbridge.datasciencecentral.com/profiles/blogs/new-state-of-the-art-random-number-generator-simple-strong-and-fa
https://www.datasciencecentral.com/profiles/blogs/data-science-method-to-discover-large-prime-numbers
https://en.wikipedia.org/wiki/Arithmetic%E2%80%93geometric_mean
https://mathoverflow.net/questions/37576/nth-order-generalizations-of-the-arithmetic-geometric-mean

241

4.7. Weighted version of the K-NN clustering algorithm

It can be used to estimate the local or global intensity of a stochastic point process, and
also related to density estimation techniques. How many neighbors should we use, and
which weights should we put on these neighbors to get robust and accurate estimates?
It turned out that putting more weight on close neighbors, and increasingly lower weight
on far away neighbors (with weights slowly decaying to zero based on the distance to
the neighbor in question) was the solution to the problem. I actually found optimum
decaying schedules for the weights ak attached to the kth nearest neighbor, as k tends to
infinity. You can read the details here. Obviously this can also be used when
implementing clustering techniques based on the well-known K-NN algorithm (k nearest
neighbors.)

For another generalization of the K-NN classifier, based on graph theory, see section 6.
This version of K-NN can also be used for variable reduction while preserving the
dimension of the original data set.

4.8. Multivariate exponential distribution and storm modeling

Intensity and duration of storm cells have been traditionally modeled using Gaussian
distributions. Bivariate exponential distributions with negative correlation provide more
flexibility and a better representation of the real world, that is, superior goodness of fit
with actual data. You can read more about this topic and about how to simulate a
multivariate exponential distribution with specific covariance matrix and known marginal
distributions, here (PDF document.)

http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00071/abstract
https://www.niss.org/sites/default/files/technicalreports/tr47.pdf
http://storage.ning.com/topology/rest/1.0/file/get/2808337356?profile=original

242

There is a limit on how negative the coefficient of correlation of a bivariate exponential
distribution can be, and this is pictured in the theorem below (from the same paper):

5. Variance, Clustering, and Density Estimation Revisited

We propose here a simple, robust and scalable technique to perform supervised
clustering on numerical data. It can also be used for density estimation, and even to
define a concept of variance that is scale-invariant. This is part of our general statistical
framework for data science.

5.1. General Principle: Working on the Grid, not on the Original Space

Here we discuss clustering and density estimation on the grid. The grid can be seen as
an 2-dimensional or 3-dimensional array. We assume that you have selected your best
predictors (for instance using our feature selection algorithm in chapter 5) so that the
loss of yield, predictability, or accuracy, due to working in smaller dimensions, is
minimum (and measurable), and is more than compensated by an increase in stability,
scalability, simplicity, and robustness.

In addition, all your observations have been linearly transformed and discretized (the
numerical values have been rounded) so that each observation, after this mapping,
occupies a cell in the grid. For instance, if the grid associated with the data set in
question consists of 1,000 columns and 2,000 rows, it can store at least 1,000 x 2,000
observations. It is OK to have two distinct but very close observations, mapped onto the
same cell in the grid. Also, the worst outliers (say the top 10 most extreme points) are
either ignored or put on the border of the grid, to avoid having an almost empty grid
because of a few extreme outliers. Transforming data (using log of salary rather than
salary) will also help here, as in any statistical methodology. As rule of thumb #1, I
suggest that 30% of the cells (in the grid) should have at least one observation attached
to them. At the end of the day, you can try with different data coverage (above or below
30% of the grid) until you get optimum results based on cross-validation testing.

Note that in the above example - a 1,000 x 2,000 grid - your rounded values in your
data set, once mapped onto the grid, have accuracy above 99.9%. Most data collection
processes have errors far worse than that, so the impact of discretizing your
observations is almost zero, at least in most applications. Again, compare
(using confusion matrices on test data from a cross-validation design) your
full, exact supervised clustering system with this approximate setting, and you should
not experience any significant prediction loss, in most applications.

http://storage.ning.com/topology/rest/1.0/file/get/2808337443?profile=original

243

Finally, this 1,000 x 2,000 grid (used for illustration purposes) fits easily in memory
(RAM). You can even go to 4 dimensions: (say) 500 x 500 x 500 x 500 grid, and store
that grid in memory, or slice it into 100 overlapping sub-grids, and do the processing
with a Map-Reduce mechanism (in Hadoop for instance) on each sub-grid separately
and in parallel.

For our purpose, the value of a cell in the grid will be in an integer between 0 and 255.
In some cases, it could be just 0 or 1, with 1 meaning that there is a training set data
point close to the location in question in the grid, 0 meaning that you are far enough
away from any neighbor.

Non parametric density estimation (source: click here)

5.2. Density Estimation

We start with density estimation, as this is the base (first step) for the supervised
clustering algorithm. We assume that we have g groups or classes: that is, a training set
consisting of g known groups -- each observation (x, y) having a label representing its
group. For simplicity, let's consider the 2-dimensional case.

https://www.byclb.com/TR/Tutorials/neural_networks/ch11_1.htm
http://storage.ning.com/topology/rest/1.0/file/get/2059720939?profile=original

244

Figure 1: data points in yellow; 3x3 kernel is too small (left), 5x5 kernel is OK (right)

In figure 1, yellow cells represent locations corresponding to an actual observation (x, y)
in the training set: that is, bi-variate coordinates of a point, where x could (for instance)
represent the rounded monthly payment associated with a loan, and y the rounded
salary, after log transformation of the salary. The groups could represent the risk level
(risk of default on loan repayment), with three categories: low, medium, high.

To compute density estimates on each cell of the grid, draw a 3x3 window around each
yellow cell, and add 1 to all locations (cells) in that 3x3 window. Or better, draw a 5x5
window around each yellow cell, add 1 at the center, add 2 at each location in the 3x3
sub-window, and add 1 to all locations at the border (inside) the 5x5 window. See figure
1 for illustration.

You can use bigger windows, circular windows and even infinite windows where the
weight (the value added to each cell) decays exponentially fast with the distance to the
center. I do not recommend it though, as it would allow you to classify any new
observation (outside the training set) even if they are far away from the closest
neighbor: this leads to misclassification; such extreme observations should remain un-
classified. Finally, this methodology works too in higher dimensions (3- or 4-dim).

The result is (see Figure 1, right picture, for a specific group): after applying this
procedure to each yellow cell and each class, you have density estimates for each
class, for each cell. If we define N(z) as the value (density estimate for a specific group)
computed on a particular cell z in the grid, rule of thumb #2 says that 10% of the cells
with N(z) > 0 must have an N(z) that is contributed by more than one neighboring data
point. In figure 1, the percentages are respectively 0% for the left picture (3x3 window),
and 13/79 = 16% for the right picture (5x5 window). So clearly, the 5x5 window is OK,
but the 3x3 is not. If you violate this rule, try with a bigger window, e.g. 7x7 rather than
5x5, or 5x5 rather than 3x3.

How to handle non-numeric variables?

In our example in the previous section, if one of the variables is gender (M/F) and
another one is age (young / medium / old), multiply the number of groups accordingly. In

http://storage.ning.com/topology/rest/1.0/file/get/2808309351?profile=original

245

our example, the number of groups (g=3: low risk, medium risk, high risk of default) will
be multiplied by 2 (M / F) x 3 (young / medium / old), resulting in 18 groups, for instance
“young females with medium risk of default” being one of these 18 groups.

5.3. Supervised Clustering

Now we have a straightforward classification rule: for a new data point to be classified
(a point that typically does not belong to the training set), with cell location equal to z in
the grid, compute the density estimate N(z | c) for each group c, then assign the point to
the group c maximizing N(z | c). The speed of this algorithm is phenomenal: the
computational complexity is O(g) where g is the number of groups. If you pre-classify
your entire (say) 1,000 x 2,000 grid, then it is even faster, equal to O(1). You can't beat
that. Of course, accessing a cell in the grid (represented by a 2-dim array), while
extremely fast and not depending on the number of observations, still requires a tiny bit
of time, but it is entirely dependent only on the size of the array, and its dimension. In
higher dimensions, where Map-Reduce strategies are used, more time is used to
access a cell of the grid and return its value, yet it is nothing compared with the time
required to perform standard supervised clustering.

Optimizing the Computations

In 2 dimensions, we have a little trick to compute the density estimates for each cell in
the grid much faster, in a systematic way: it is illustrated in Figure 2 below. It also works
in higher dimensions, though it is most efficient in 2 dimensions.

Figure 2: data points in yellow; trick to compute densities row by row, to reduce

computing time

5.4. Scale-Invariant Variance

I have designed a scale-invariant variance not so long ago: you can check it out here.
Interestingly, it relies on convex functions. The proof that it is always positive is based
on some advanced mathematics, namely, the Jensen inequality.

http://www.hadoop360.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://storage.ning.com/topology/rest/1.0/file/get/2808309524?profile=original

246

Here, the purpose is a bit different. We want to create a new, scale-invariant variance,
that is minimum when the data points are evenly distributed in some domain, and
maximum when there are peaks and valleys or oceans of high and low density. This is
still an area of intense research.

Let's denote as N(z) the density estimate at a specific location z (cell) on the grid, as in
our earlier sections. The first definition of variance that comes to mind is related to the
proportion (denoted as p) of cells z with N(z) > 1, among all cells with N(z) > 0. You can
now define the new variance v as v = p. It has interesting properties, but unfortunately, it
is dependent on the window size (3x3 or 5x5 as in our figure 1), though this drawback
can be mitigated if you abide by our two rules of thumb mentioned above. I invite you to
come up with a better definition.

Note that this new definition of variance applies to point distributions in any dimension,
not just to univariate observations.

5.5. Historical Notes

This chapter has its origins in one of my earlier papers published in the Journal of Royal
Statistical Society, series B, back in 1995: Multivariate Discriminant Analysis and
Maximum Penalized Likelihood.... At that time, I was working on image analysis
problems to automatically determine the proportions of various crops cultivated in
several countries, based on satellite image data. This technology was cheaper than
sending people in the fields to manually make the measurements via sampling - in
short, it was (even back in 1995) an attempt at replacing men with robots. The same
technology was used to identify tanks from enemies in the Iraq war. The images
consisted of a few channels: infrared, radar, red, green, and blue -- that is, about 5
dimensions. So the (x, y) coordinates mentioned earlier in this chapter were (in this
case) color intensities in two of the 5 channels, not physical locations of a particular
point.

Indeed, what we call the grid here (in this article) actually corresponds to what is
referred to as the spectral space by practitioners. The actual images were referred to as
the geometric or spatial space. This image remote sensing problem was very familiar to
mathematicians and operations research practitioners, and was typically referred to as
signal processing. And in many ways, this was a precursor to modern AI.

6. New K-NN Clustering Algorithm and Data Reduction

I describe here an interesting and intuitive clustering algorithm (that can be used for
data reduction as well) offering several advantages, over traditional classifiers:

 More robust against outliers and erroneous data
 Executing much faster

https://www.jstor.org/stable/2346153?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2346153?seq=1#page_scan_tab_contents

247

 Generalizing well known algorithms

You don't need to know K-NN to understand this chapter -- but click here if you want to
learn more about it. You don't need a background in statistical science either.
Let's describe this new algorithm and its various components, in simple English

6.1. General Framework

We are dealing here with a supervised learning problem, and more specifically,
clustering (also called supervised classification.). In particular, we want to assign a class
label to a new observation that does not belong to the training set. Instead of checking
out individual points (the nearest neighbors) and using a majority (voting) rule to assign
the new observation to a cluster based on nearest neighbor counts, we are checking
out cliques of points, and focus on the nearest cliques rather than on the nearest points.

6.2. Cliques and Clique Density

The cliques considered here are defined by circles (in two dimensions) or spheres (in
three dimensions.) In the most basic version, we have one clique for each cluster, and
the clique is defined as the smallest circle containing a pre-specified proportion p of the
points from the cluster in question. If the clusters are well separated, we can even
use p = 1. We define the density of a clique as the number of points per unit area. In
general, we want to build cliques with high density.

Ideally, we want each cluster in the training set to be covered by a small number of
(possibly slightly overlapping) cliques, each one having a high density. Also, as a
general rule, a training set point can only belong to one clique, and (ideally) to only one
cluster. But the circles associated with two cliques are allowed to overlap.

6.3. Classification Rule, Computational Complexity, Memory Requirements

Once we have built a set of cliques for each cluster, the classification rule is
straightforward. Building these cliques is the complicated pre-processing step, but as
discussed in the last section, we only need a rough approximation. The classification
rule is as follows:

 1-NC algorithm: Assign the new observation to the cluster attached to the
nearest clique

 K-NC algorithm: Assign the new observation to the cluster that has the largest
number of cliques, among the K cliques closest to the observation in question
(majority vote).

Note that if cliques consist of a single point, then K-NN and K-NC algorithms are
identical. Also note that computing the distance between a point and a clique is

https://www.datasciencecentral.com/page/search?q=k-nn

248

straightforward, because cliques are circular. You just need to know the center of the
circle in question, and its radius.

Finally, to assign a new observation to a cluster, one only has to check all the cliques,
rather than all the points. Thus the K-NC algorithm is v times faster than K-NN,
where v is number of points in the training set, divided by the number of cliques across
all clusters. In practice, we have far fewer cliques than we have points in the training
set, so v can be large, when dealing with very big training sets. This is especially true if
there is not too much overlap among the cliques.

In short, the cliques summarize the training set data: we can discard all the data and
only keep the cliques (with their center, radius, density, and cluster label), once these
cliques have been computed. This also saves a lot of memory, and in itself can be used
as a data reduction technique.

6.4. Cliques Building and Smallest-Circle-Problem

This concept could prove useful when building the clique system. The smallest-circle-
problem (click here for details) consists of computing the smallest circle that contains all
points in a given region. It is illustrated in Figure 1 below.

Figure 1: Cliques computed based on the Smallest-Circle-Problem

One would think that such cliques have maximum density, a desirable property. Several
very efficient algorithms are available to solve this problem. Some even allow you to
attach a weight to each point.

6.5. Gravitational Field Generated by Clusters

You can skip this section. It has been included for those interested in further
improvements of the K-NC algorithm, as well as improving standard algorithms such as
K-NN, Also, it highlights the fact that the square of the distance, could be a better metric
than raw distance (from a modeling point of view) when averaging proximity among

https://en.wikipedia.org/wiki/Smallest-circle_problem
http://storage.ning.com/topology/rest/1.0/file/get/2220282535?profile=original

249

points, just like many physical laws involve the square of the distance between two
objects, rather than the distance itself. You can look at a classification problem the
same way that you would at the gravitation law: which cluster is going to “attract” a new
observation (in the context of classification), versus which celestial body is going to
attract and adsorb a meteoroid (in the context of celestial physics.) You would think that
in both cases, similar laws apply.

For each point x (typically, a new point that we want to classify) and cluster G, the
potential V(x, G) is defined as follows:

where the sum is over all cliques in G. A better definition might be to take the sum only
over the k nearest cliques in G, for a pre-specified value of k. A potential classification
rule consists of assigning a point x to the group G that maximizes V(x, G).

A final improvement consists in attaching a weight to each term in the above sum: the
weight being the density of the corresponding clique. Note that if cliques (their circles)
significantly overlap, this should be addressed in the definition of the potential V. As a
general rule, a training set point can only belong to one clique, and (ideally) to only one
cluster.

6.6. Building an Efficient Clique System

This data pre-processing step is the more complicated step. However, easy-to-obtain
approximate solutions work well. It provides good results even if each point is a clique
(the K-NN particular case.

Different approaches are possible:

 Start with one clique per training set point, and iteratively merge the cliques
 Start with one clique per cluster, based on the smallest-circle-problem described

earlier. Then shrink it and move the center till it contains a proportion p of the
training set points, for the cluster in question, and the density of the clique is
maximal (or close enough to maximum.) Repeat the operation for the remaining
points in the cluster in question. Maybe choose p = 30% assuming each cluster
has a circular core consisting of at least 30% of its points.

 Start with a pre-specified number of random cliques (random radius, random
center, possibly corresponding to a point randomly selected in the training set.) in
each cluster. Adjust the centers and radii one clique at a time to optimize some
density-related criterion described below. Also, it would be a good idea to use a
birth and death process to eliminate some cliques and create new ones over
time.

The aim is to obtain as few cliques as possible, covering the entire training set without
too much overlapping. Each clique must have a high density, and must contain more

http://storage.ning.com/topology/rest/1.0/file/get/2808335491?profile=original

250

than (say) 1% of the training set points for the cluster in question. We could add another
constraint: each clique must have at least two points.

6.7. Non-Circular Cliques

It would be interesting to test whether the shape of the clique matters. As long as we
have sufficiently many cliques, the shape probably does not matter (this should be
tested), and thus a circle -- because it leads to considerably simplified computations
when measuring the distance between a clique and a point -- is ideal. Note that if a
point is inside a clique (inside its circle) then the distance between the clique and the
point is zero. We should test whether this rule leads to more robustness against outliers
or erroneous data.

6.8. Potential Enhancements, Data Reduction, and Conclusions

Potential improvements to our methodology include:

 Using density in addition to proximity, putting more emphasis on dense cliques
when assigning a new observation to a cluster

 Allowing training set points to belong to multiple cliques within the same cluster
 Allowing training set points to belong to multiple clusters
 Testing cliques that are made up of closest neighbors
 Reducing the overlap among cliques

Also, we need to test this new algorithm, and see when it performs best, depending on
how cliques are created. Is K-NC almost equivalent to K-NN, provided a different K is
used in each case? Even if they are equivalent, K-NC has one great benefit: it can be
used for data reduction, in a way that is different from traditional data reduction
techniques. Traditional data reduction techniques such as PCA try to project the data
set onto a space that has a lower dimension. The clique structure produced by K-NC is
the result of a data reduction technique that does not perform dimension reduction nor
projections, but instead, performs something akin to data compaction or data
compression or entropy reduction, in the same original space.

Another benefit is the fact that K-NC, thanks to its pre-processing step to build the
clique structure, runs much faster than K-NN. It is also more intuitive, as it is based on
the intuitive concept that each cluster is made up of sub-clusters: the cliques. It is
indeed similar to model fitting with stochastic point processes representing cluster
structures, such as Neyman-Scott cluster processes.

Finally, in many cases, one way to improve a classifier is by re-scaling or transforming
the data, for instance using a logarithmic scale. Most classifiers are scale-dependent.
See section 6 in the first chapter in Part 5 of this book, for scale-invariant clustering.

251

7. Spatial Patterns Found in Random Points

Check the three charts below: only one corresponds to pure randomness. Which one?

Chart #1

Chart #2

http://storage.ning.com/topology/rest/1.0/file/get/2220278468?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2220278570?profile=original

252

Chart #3

It is clear that chart #3 exhibits a strong clustering pattern, unless you define your
problem as points randomly distributed in an unknown domain whose boundary has to
be estimated. So, the big question is: between chart #1 and #2, which one represents
randomness? Look at these charts very closely for 60 seconds, then make a guess,
then read on. Note that all three charts contain the same number of points - so there's
no scaling issue involved here.

Let's assume that we are dealing with a spatial distribution of points over the entire 2-
dimentional space, and that observations are seen through a small square window. For
instance, points (observations) could be stars as seen on a picture taken from a
telescope.

The first issue is the fact that the data is censored: if you look at the distribution of
nearest neighbor distances to draw conclusions, you must take into account the fact
that points near the boundary have fewer neighbors because some neighbors are
outside the boundary. You can eliminate the bias by

 Tiling the observation window to produce a mathematical tessellation
 Mapping the square observation window onto the surface of a torus
 Apply statistical bias-correction techniques
 Use Monte-Carlo simulations to estimate what the true distribution is (with

confidence intervals) if the data was truly random

Second issue: you need to use better visualization tools to see the patterns. The fact
that I use a + rather than a dot symbol to represents the points, helps: some points are
so close to each other that if you represent points with dots, you won't visually see the
double points (in our example, double points could correspond to double star systems -
and these very small-scale point interactions are part of what makes the distribution
non-random in two of our charts). But you can do much better: you could measure a

http://storage.ning.com/topology/rest/1.0/file/get/2220278691?profile=original

253

number of metric (averages, standard deviations, correlation between x and y, number
of points in each sub-square, density estimates, etc.) and identify metrics proving that
we are not dealing with pure randomness.

In these 3 charts, the standard deviation for either x or y - in case of pure randomness -
should be 0.290 plus or minus 0.005. Only one of the 3 charts succeeds with this
randomness test.

Third issue: even if multiple statistical tests suggest that the data is truly random, it
does not mean it really is. For instance, all three charts show zero correlation between x
and y, and have mean x and y close to 0.50 (a requirement to qualify as random
distribution in this case). However, only one chart exhibits randomness.

Fourth issue: we need a mathematical framework to define and check randomness.
True randomness is the realization of a Poisson stochastic process, and we need to use
metrics that uniquely characterizes a Poisson process to check whether a point
distribution is truly random or not. Such metrics could be e.g.

 The inter-point distance distributions
 Number of observations in sub-squares (these counts should be uniformly

distributed over the sub-squares, and a Chi-square test could provide the
answer; however in our charts, we don't have enough points in each sub-square
to provide a valid test result)

Fifth issue: some of the great metrics (distances to kth neighbors) might not have a
simple mathematical formula. But we can use Monte-Carlo simulations to address this
issue: simulate a random process, compute the distribution of distances (with
confidence intervals) based on thousands of simulations, and compare with distances
computed on your data. If the distance distribution computed on the data set matches
results from simulations, it means our data is probably random. However, we would
have to make sure that the distance distribution uniquely characterizes a Poisson
process, and that no non-random processes could yield the same distance distribution.
This exercise is known as goodness-of-fit testing: you try to see if your data support a
specific hypothesis of randomness.

Sixth issue: if you have a million points (and in high dimensions, you need much more
than a million points due to the curse of dimension), then you have a trillion distances to
compute. No computer, not even in the cloud, will be able to make all these
computations in less than a thousand year. So you need to pick up 10,000 points
randomly, compute distances, and compare with equivalent computations based on
simulated data. You need to make 1,000 simulations to get confidence intervals, but this
is feasible.

Here's how the data (charts 1-3) was created:

 Produce 158 random points [an, bn], n=1, ...,158

254

 Produce 158 random deviates (un, vn), n=1, ...,158
 Define xn as follows for n > 1: if un < r, then xn = an, else xn = svnan + (1 - svn)xn-1,

with x1 = a1
 Define yn as follows for n > 1: if un < r, then yn = bn, else yn = svnbn + (1 - svn)yn-1,

with y1 = b1
 Chart 1: xn = an, yn = bn
 Chart 2: r = 0.5, s = 0.5
 Chart 3: r = 0.4, s = 0.1

Notes:

 The only chart exhibiting randomness is chart #1. Chart #2 has significantly too
low standard deviations for x and y, too few points near boundaries, and too
many points that are very close to each other

 Note that chart #1 (the random distribution) exhibits a little bit of clustering, as
well as some point alignments: this is however perfectly expected from a random
distribution. If the number of points in each sub-square was identical, the
distribution would not be random, but would correspond to a situation where
antagonist forces make points to stay as far away as possible from each other.

 How would you test randomness if you had only two points (impossible to test),
three points, or just 10 points?

 Finally, once a pattern is detected (e.g. abnormal close proximity between
neighboring points), it should be interpreted and/or leveraged, that is, it should
lead to (say) ROI-positive trading rules if the framework is about stock trading, or
the conclusion that double stars do exist (based on chart #2, more on this here) if
the framework is astronomy

8. Stochastic Geometry: Spatial Coverage Problem

This should remind you of your probability classes during college years. Can you solve
this problem in 30 minutes? This could make for an interesting job interview question.

Problem

Points are randomly distributed on the plane, with an average of m points per unit area.
A circle of radius R is drawn around each point. What is the proportion of the plane
covered by these (possibly overlapping) circles?

What if circles can have two different radii, either R = r, or R = s, with same probability?
What if R is a random variable, so that we are dealing with random circles? Before
reading further, try to solve the problem yourself.

https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-

255

Solution

The points are distributed according to a Poisson point process of intensity m. The
chance that an arbitrary point x in the plane is not covered by any circle, is the chance
that there is zero point from the process, in a circle of radius R centered at x. This is

equal to exp(-mR2). Thus the proportion of the plane covered by the circles is

If circles have radii equal to r or s, it is like having two independent (superimposed)
Poisson processes, each with intensity m/2: one for each type of circle. The chance
that x is not covered by any circle is thus a product of two probabilities,

If R is a positive random variable and E denotes its expectation, then the general
solution is

You can easily simulate a large number of these circles over a broad area, and then,
pick up 1,000 random points and see how many of them are covered by at least one
circle, to check whether your solution is correct or not. You can also use these

simulations to get an approximation for exp(-).

Application

The formula for p(m, R) and confidence intervals obtained for its value via simulations
under the assumption of pure randomness (Poisson process), can be used to check if a
process is really random. For instance, are Moon's craters spread randomly? They
might not, if large meteorites break up in small pieces before impact, resulting in
clustered craters. In that case, the area covered by the (overlapping) craters might be
smaller than theoretically expected.

https://en.wikipedia.org/wiki/Poisson_point_process
http://storage.ning.com/topology/rest/1.0/file/get/2808337803?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338356?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338390?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338699?profile=original

256

9. Markov Chains and the Collatz Conjecture

Take any positive integer n. If n is even, divide it by 2 to get n/2. If n is odd, multiply it by
3 and add 1 to obtain 3n + 1. Repeat the process indefinitely. Does the sequence
eventually reach 1, regardless of the initial value? For instance, if you start with the
number 75,128,138,247, you eventually reach 1 after 1,228 steps. If you start with the
number 27, you climb as high as 9,232, but eventually reach 1 after 41 steps.

This is supposed to be a very difficult problem. Note that if a sequence reaches any
power of 2 (say, 64) or any intermediate number found in the trillions of trillions of such
sequences that are known to reach 1, then the sequence in question will obviously
reach 1 too. For a sequence not to reach 1, the first element (as well as any subsequent
element) would have to be different from any initial or intermediate number found in any
series identified as reaching 1 so far. This makes it highly unlikely, yet the conjecture
has not been proved yet. For more on this problem, click here.

It is interesting to note that if you replace the deterministic algorithm by a probabilistic
one, for instance n becomes n/2 with probability 0.5 and 3n + 1 with probability 0.5, then
instead of reaching 1, you reach infinity. Also with the deterministic algorithm, if you
replace 3n + 1 by 2n + 1, you would think that you would reach 1 even faster, but this is
not the case: you reach 1 only if the initial value is a power of 2, and in all cases you
eventually reach infinity.

Possible proof

If you want to prove (or disprove) this conjecture, a possible methodology is as follows.
Let's recursively define f(k+1, n) = f(f(k, n)) for k = 0, 1, 2 and so on, with f(0, n) = n, and
f(x) = x/2 if x is even, 3x + 1 otherwise. The conjecture states that no matter the initial
value n, there is always a number k (function of n) such that f(k, n) = 1: in short, you
reach 1 after k steps.

Consider the following four cases, each occurring with a probability 0.25 (Mod stands
for the modulo operator):

 Mod(n, 4) = 0. Then f(2, n) = n/4.
 Mod(n, 4) = 1. Then f(3, n) = (3n + 1)/4
 Mod(n, 4) = 2. Then f(1, n) = n/2.
 Mod(n, 4) = 3. This case is broken down into two sub-cases, see below.

The case Mod(n, 4) = 3 is broken down into the following two sub-cases, each occurring
with probability 0.125:

 If Mod(n, 8) = 3 then f(2, n) = (3n + 1)/2 and in this case we are back to case #2
above after 2 steps.

 If Mod(n, 8) = 7 then f(2, n) = (3n + 1)/2 and in this case we are back to case #4
above after 2 steps.

https://en.wikipedia.org/wiki/3x_%2B_1_problem
https://en.wikipedia.org/wiki/Modulo_operation

257

In both sub-cases, the sequence has been increasing, though we know that if Mod(n, 8)
= 3, it will go down a bit (but still stay a little above n, more specifically around 9n/8)
after 3 additional steps.

So it looks like on average, we are decreasing over time (thus the fact that we would
eventually reach 1 seems likely), but the challenging case if when Mod(n, 4) = 3, and
even more challenging when Mod(n, 8) = 7. Can we get stuck in a sequence where
every two steps, the residual modulo 8 is equal to 7 (the worst case that makes the
sequence grows at its fastest pace?) And for how many cycles can we get stuck in such
a configuration? These are difficult issues to address if you want to prove this
conjecture.

The problem might also be approximately modeled as some kind of Markov chain, with
5 different states corresponding to the first 3 cases and the 2 sub-cases discussed
earlier. One single iteration in the Markov chain corresponds respectively to 2, 3, 1, 5,
and 2 steps of the above algorithm, to reach the next local dip in value (if any).

For n large enough, one iteration of the Markov chain is thus approximately as follows:

 we reduce n by 75% with probability 0.25
 we reduce n by 25% with probability 0.25
 we reduce n by 50% with probability 0.25
 we increase n by 12.5% with probability 0.125
 we increase n by 50% with probability 0.125

It is easy to compute the probability p(N) that the initial value n will not be reduced
after N iterations of the Markov chain, for any positive N. However, even for very
large N, this probability is still strictly positive, albeit very close to zero. Also, it is not
clear if the memory-less property of Markov chains is violated here, which would either
invalidate this approach, or possibly make it more difficult to handle this problem. Most
likely, if it results in a proof, it would be an heuristic one.

10. Special Integral Solved Using Statistical Concepts

Below are a few integrals that you won't find in textbooks. Solving them is a good
exercise for college students with some advanced calculus training. We provide the
solution, as well as a general framework to compute many similar integrals. Maybe this
material should be part of the standard math curriculum. Here, p, q, r are positive real
numbers, with q larger than p.

https://storage.ning.com/topology/rest/1.0/file/get/294104671?profile=original

258

The Gamma symbol represents the gamma function. It is possible that these results are
published here for the first time. These are known as Frullani integrals, although the
ones mentioned here are not covered by Frullani's theorem, nor by any recent
generalization that I am aware of (see here and here for recent contributions to this
topic.) Indeed, AI-based automated integration platforms such as WolframAlpha cannot
find the exact value (only an approximation) while they are able to compute standard
Frullani integrals exactly. My approach to derive the exact values is different from the
classical approaches, as it relies on the statistical concept of expectation, possibly
leading to interesting areas of research.

How to compute such integrals?

These integrals are a particular case of the following main result, proved in the next
section:

where g(x)/x tends to 1 as x tends to infinity, and f is a bounded function with a finite
expectation. Some additional conditions may be required, for instance the fact that the
integral of f(x)/g(x), between 0 and 1, is finite. The expectation of f, also called average
value, is defined as

For instance, if f(x) = |SIN(x1/2)|, then the expectation exists, and it is equal to E(f) = 2/.

The main result introduced at the beginning of this section, is rather intuitive but needs
great care to prove it rigorously, including correctly stating the required assumptions
on f and g to make it valid. Some cases might require working with non-Riemann
integrals. Here we only provide the intuitive explanation.

Proof of the main result (sketch)

Here p, q and n are integers, with q greater than p. We are interested in the case
where n tends to infinity. We approximate integrals using the Euler-Maclaurin
summation formula. The approximations below become equalities as n tends to infinity.

The first approximation is related to the Abelian theorem. We also used the classic
approximation of the harmonic series to make the logarithm terms appear. Note that for

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Frullani_integral
https://math.stackexchange.com/questions/61828/proof-of-frullanis-theorem
https://www.ams.org/journals/proc/1990-109-01/S0002-9939-1990-1007485-4/S0002-9939-1990-1007485-4.pdf
https://www.wolframalpha.com/
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Abelian_and_tauberian_theorems
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://storage.ning.com/topology/rest/1.0/file/get/323866903?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/294458112?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/295092023?profile=original

259

large values of k, g(k) is asymptotically equal to k. This was one of the requirements for
the formula to be valid.
We also have:

Using the change of variable y = x / q in the first integral, and y = x / p in the second
integral, we obtain:

This concludes the proof.

Note that for all the examples in the introduction, I used g(x) = x. I also tested it with
different functions such as g(x) = x + 1, and it also worked. The results are not posted
here.

Generalization

So far, we assumed that g(x)/x tends to 1 as x tends to infinity. What if instead, we
make the more general assumption that g(x) / x, is equal to 1 on average? Using the
notation E(f) or E(f(x)) interchangeably to denote the expectation of a function f, the
main results becomes:

This formula works even if f or g is not Riemann-integrable, as long as the expectations
are finite and different from zero. In this case, the integrals can be replaced by infinite
sums or averages over equally-spaced points.

An example of function g not covered by the main theorem, but covered by its
generalization, is

In this case, E(x/g(x)) = 1/21/2.

11. From A/B Testing to Discrete Choice Analysis

Let’s say you want to test the optimum price for some items sold online. One way to do
it is to set two different prices and do some A/B testing to see which price generates the
most revenue, or comparing user-customized versus flat prices, using Thompson
sampling, the Taguchi method or multi-armed A/B testing.

https://www.quora.com/How-is-Thompson-Sampling-used-in-A-B-testing
https://www.quora.com/How-is-Thompson-Sampling-used-in-A-B-testing
https://en.wikipedia.org/wiki/Fractional_factorial_design
https://splitmetrics.com/blog/multi-armed-bandit-in-a-b-testing/
https://storage.ning.com/topology/rest/1.0/file/get/295314042?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/323548617?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/326684701?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/326867323?profile=original

260

How to proceed if you want to test a continuous set of prices, not just two or three prices
A/B/C? Is testing (say) 10,000 different prices any better than standard A/B testing, or
does it lead to over-fitting and thus a non-robust solution? Likewise, if you want to test
which background color works best for a website, is testing one million different colors
more efficient than standard testing, and how to do it?

Also, let's say you want to modify 20 features on your website, each one having 4
potential values (color, font size, font face and so on). In short, instead of A/B testing
with 2 potential outcomes (A or B), you perform a multivariate test with 420 outcomes. Of
course you will be able to test only a tiny fraction of all the possibilities, but is it more
efficient than sequentially doing an A/B test for one feature, then another A/B test for
another feature, and so on? The latter approach would take a lot of time and would
result in a very local optimum. For instance, for the first feature, maybe A works best, for
the second one (after choosing A for the first one) C works best, but for both featured
combined, maybe (D, B) works best. How to do such a test when the number of
potential combinations is 420?

Finally, how do you determine the sample size for these types of experiments? Or in
other words, what is the stopping criterion?

The technique used by leading market research professionals to solve the problems
described here is called conjoint or discrete choice analysis. Here is a brief example
of the type of problem conjoint analysis helps solve. Conjoint analysis helps you
develop the preferred product or service based on almost an unlimited number of
attributes (price, color, font size, etc.) and levels (different prices, different colors,
different font sizes, etc.). The ultimate output of the conjoint model is a simulator that
lets you test for the best product (based on market share, sales, other objectives) and
can provide you a price elasticity of demand curve for a price. Sawtooth Software uses
Hierarchical Bayesian Regression to drive their models.

12. Deep Dive into Polynomial Regression and Overfitting

Here, we show that the issue with polynomial regression is not over-fitting, but
numerical precision. Even if done right, numerical precision still remains an
insurmountable challenge. We focus here on step-wise polynomial regression, which is
supposed to be more stable than the traditional model. In step-wise regression, we
estimate one coefficient at a time, using the classic least square technique.

Even if the function to be estimated is very smooth, due to machine precision, only the
first three or four coefficients can be accurately computed. With infinite precision, all
coefficients would be correctly computed without over-fitting. We first explore this
problem from a mathematical point of view in the next section, then provide
recommendations for practical model implementations in the last section.

This is also a good read for professionals with a math background interested in learning
more about data science, as we start with some simple math, then discuss how it
relates to data science. Also, this is an original article, not something you will learn in

https://www.sawtoothsoftware.com/download/techpap/undca15.pdf
https://www.sawtoothsoftware.com/

261

college classes or data camps, and it even features the solution to a regression problem
involving an infinite number of variables.

12.1. Polynomial regression for Taylor series

Here we show how the mathematical machinery behind polynomial regression creates
big challenges, even in a perfect environment where the response is well behaved and
the exact theoretical model is known. In the next section, we shall show how these
findings apply in the context of statistical polynomial regression, to design a better
modeling tool for data scientists and statisticians.

Let us consider a function f(x) that can be represented by a Taylor series:

Here we assume that the coefficients are bounded, though the theory also works with a
less restrictive assumption, provided that the coefficients do not increase too fast. In
most cases, for instance the exponential function, the successive coefficients actually
get closer and closer to 0, guaranteeing convergence at least when |x| < 1. The
function f(x) does not need to be differentiable; it could even be differentiable nowhere,
such as for the Weierstrass function. So the context here is more general than the
standard Taylor series framework.

Stepwise polynomial regression: algorithm

We introduce here an iterative algorithm to estimate the coefficients bk one at a time, in
the above Taylor series. Note that we are dealing with a regression problem with an
infinite number of variables. It is still solved using classic least square approximations.
We focus on values of x that are located in a small symmetrical interval centered at 0.
This interval is denoted as S. The estimated coefficients are denoted as ak. We
introduce the following notations:

Here, E(n) is called the mean squared error after estimating n coefficients. It measures
how well we are approaching the target function f(x) after n steps. The coefficient an (the
estimated value of bn) is chosen to minimize the mean squared error E(n) in the above
formula. Note that the mean squared error is a decreasing function of n. We proceed
iteratively starting with n = 0. As in the standard least square framework, take the
derivative of E(n) with respect to an, and find its root, to determine an. The result is

https://en.wikipedia.org/wiki/Weierstrass_function
http://storage.ning.com/topology/rest/1.0/file/get/2808357908?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808357933?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808358390?profile=original

262

Convergence theorem

We have the following remarkable result:

As the interval S, centered at 0, gets smaller and smaller and tends to S = {0}, the
estimated coefficients ak tend to the true value bk.

For instance, if f(x) = exp(x), that is, if bk = 1/k!, then the estimates ak also tend to 1/k!.
Thus this framework provides an alternate way to compute the coefficients of a Taylor
series, even when derivatives of f(x) do not exist. It also means that step-wise
regression, in this context, works just as well as a full-fledged regression, yet involves
far fewer computations. A full-fledged regression would involve inverting an infinite
matrix.

The proof of this theorem is quite simple, and proceeds by induction. First, check that a0
= b0. Then, if ak = bk for all k less than or equal to n, we must also have an+1 = bn+1. In
order to prove this, note that under this assumption, we have:

As S tends to {0}, all terms except the first one (corresponding to k = 0) in the above
series, vanish. Thus an+1 = bn+1, at the limit. Thus, all estimated coefficients match the
true ones.

12.2. Application to Real Life Regression Models

The convergence theorem in the previous section seems to solve everything, even
dealing with an infinite number of variables in a regression problem, and yet delivering a
smooth, robust theoretical solution to a problem notoriously known for its over-fitting
issues. It has to be too good to be true. While the theoretical result is correct, we
explore in this section how it translates to applications such as fitting actual data with a
polynomial model. It is not pretty, but also not as bad as you would think.

In real life applications, S is your set observations (the independent variable) rather than
an interval, after re-scaling these observations so that they are centered at 0, and all
very close to 0. You then replace the integral by a sum over all your re-scaled data
points. Everything else stays the same.

I tested this using the same perfectly exponential response f(x) = exp(x), using m =
1,000,000 random deviates distributed on [-1/m, -1/m] to simulate a real data set. I then
computed the estimates ak. By design, according to the convergence theorem, they
should all be close to ak = 1/k!. This did not happen. Indeed it only worked for k = 0
and k = 1. By tweaking the parameters (the set S and m) I was able to get up to four
correct coefficients. This is the best that I could get, due to machine precision. Now the
good news: Even though higher order coefficients were all very wrong, the impact on
interpolation / predictive power was minimal for four reasons:

http://storage.ning.com/topology/rest/1.0/file/get/2808358883?profile=original

263

 S was extremely concentrated around 0,
 As a result, higher terms (k = 3, 4, etc.) had almost no impact on the response,
 As a result, getting higher order estimates ak, even if totally wrong, had no impact

on the error E(n) discussed in the first section,
 It was obvious that beyond k = 3 or k = 4, the error, very small, so small that it

was smaller than machine precision, stabilized and did not go up, as expected.

The most surprising result is as follows, and I noticed this behavior in all my tests:

 Typical values: a0 = 0.999999995416665, a1 = 0.999999965249988, a2 =
3.55555598019368. The correct ones are respectively 1, 1, and 1/2.

 Replace a(0) = 0.999999995416665 by a(0) = 1 in the regression model, now you
get a1 = 1, and a2 = 0.50000086709697, very close to the theoretical value 1/2.
How can such a small difference have such a big impact?

The answer is because machine precision in standard arithmetic is typically about 15
decimals, and the error E(n) quickly drops to 1/1025, largely because the independent
observations are highly concentrated so close to 0. One way to get around this is to
use high precision computing. It allows you to work with thousands of correct decimals
(or billions if you wanted to, but expect it to be very slow), rather than just 15.

Recommendations for practical model implementation

Here are some takeaways from my experiments:

 Polynomial regression, in general, should be avoided. If you want to do it, use
step-wise polynomial regression as described in this article: it is more stable, and
it leads to easier interpretation.

 Rescale your independent variable so that data points for this variable fit in [-1,
1], maybe even in [-0.01, 0.01], to get more robust results. Use for interpolation,
not extrapolation.

 Avoid making predictions outside any for x outside [-1, 1].
 Start with a standard linear regression to get your first two estimated

coefficients a0 and a1 as accurate as possible. Then do a stepwise polynomial
regression to get the third and fourth coefficients in your polynomial model, with
the first two coefficient estimates set to the value obtained in the linear
regression.

 When the error E(n) does not improve when adding new coefficients and
increasing n, stop adding them. This should be your stopping point in your
iterative step-wise polynomial regression algorithm, usually occurring at n = 3 or
4 unless you use the techniques (high precision computing and so on) described
in this article.

Also, it is easy to compute confidence intervals for the coefficients in the step-wise
linear regression, using Monte-Carlo simulations. Add random noise to your data, do it a
thousand times with a different noise, and see how the estimated ak's fluctuate based
on the added noise: this will help you build confidence bands for your estimates.

https://www.datasciencecentral.com/profiles/blogs/high-precision-computing-benchmark-examples-and-tutorial

264

The author of the article Step-wise Polynomial Regression: Royal Road or Detour?
(here) comes to the same conclusion: it is an ill-conditioned n problem. The solution is
to replace xk in the Taylor series by a more general but smoother term gk(x) called a
spline. The convergence theorem can easily be generalized.

13. Lifecycle of Data Science Projects

Data science projects can be broken down into 7 main phases. It is sometimes
necessary to move back to a previous stage to fix previous business mistakes, and start
over from there. Also, respect the 80/20 rule. Here are the 7 phases:

Identify the problem

 Identify baseline (doing nothing) and metrics used to measure success over
baseline

 Identify type of problem: prototyping, proof of concept, root cause analysis,
predictive analytics, prescriptive analytics, machine-to-machine implementation

 Identify key people within your organization and outside
 Get specifications, requirements, priorities, budgets
 How accurate the solution needs to be?
 Do we need all the data?
 Built internally versus using a vendor solution
 Vendor comparison, benchmarking

Identify available data sources

 Extract (or obtain) and check sample data (use sound sampling techniques);
discuss fields to make sure data is understood by all stakeholders

 Perform EDA (exploratory analysis, data dictionary)
 Assess quality of data, and value available in data
 Identify data glitches, find workarounds
 Is data quality and fields populated consistent over time?
 Are some fields a blend of different stuff (example: keyword field, sometimes

equal to user query, sometimes to advertiser keyword, with no way to know
except via statistical analyses or by talking to business people)

 How to improve data quality moving forward?
 Do I need to create mini summary tables / database to store external data or

perform local analyses more efficiently?
 Which tool do I need (R, Excel, Tableau, Python, Tableau, SAS and so on)

Identify if additional data sources are needed

 What fields should be captured?
 How granular?
 How much historical data do we need?

https://www.jstor.org/stable/40241102

265

 Do we need real time data?
 How to store or access the data (NoSQL? Cloud?)
 Do we need experimental design?

Statistical Analyses

 Use imputation methods as needed
 Detect / remove / interpret outliers
 Selecting variables (also, variables reduction)
 Is the data censored (hidden data, as in survival analysis or time-to-crime

statistics)
 Cross-correlation analysis
 Model selection (as needed, favor simple models)
 Sensitivity analysis
 Cross-validation, model fitting
 Measure accuracy, provide confidence intervals

Implementation, development

 FSSRR: Fast, simple, scalable, robust, re-usable
 How frequently do I need to update lookup tables, white lists, data uploads, and

so on
 Debugging
 Need to create an API to communicate with other apps?

Communicate results

 Need to integrate results in dashboard? Need to create an email alert system?
 Decide on dashboard architecture, with business people
 Visualization
 Discuss potential improvements (with cost estimates)
 Provide training
 Commenting code, writing a technical report, explaining how your solution should

be used, parameters fine-tuned, and results interpreted

Maintenance

 Test the model or implementation; stress tests
 Regular updates
 Final outsourcing to engineering and business people in your company, once

solutions is stable
 Help move solution to new platform or vendor

266

Appendix A. Linear Algebra Revisited

This simple introduction to matrix theory offers a refreshing perspective on the subject.
Using a basic concept that leads to a simple formula for the power of a matrix, we see
how it can solve time series, Markov chains, linear regression, data reduction, principal
components analysis (PCA) and other machine learning problems. These problems are
usually solved with more advanced matrix calculus, including eigenvalues,
diagonalization, generalized inverse matrices, and other types of matrix normalization.
Our approach is more intuitive and thus appealing to professionals who do not have a
strong mathematical background, or who have forgotten what they learned in math
textbooks. It will also appeal to physicists and engineers. Finally, it leads to simple
algorithms, for instance for matrix inversion. The classical statistician or data scientist
will find our approach somewhat intriguing.

1. Power of a Matrix

For simplicity, we illustrate the methodology for a 2 x 2 matrix denoted as A. The
generalization is straightforward. We provide a simple formula for the n-th power of A,
where n is a positive integer. We then extend the formula to n = -1 (the most useful
case) and to non-integer values of n.
Using the notation

we obtain

Using elementary substitutions, this leads to the following system:

We are dealing with identical linear homogeneous recurrence relations. Only the initial
conditions corresponding to n = 0 and n = 1, are different for these four equations. The
solution to such equations is obtained as follows (see here for details.) First, solve the
quadratic equation

The two solutions r1, r2 are

https://math.berkeley.edu/~arash/55/8_2.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2667074766?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667090771?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667113811?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667129993?profile=original

267

If the quantity under the square root is negative, then the roots are complex numbers.
The final solution depends on whether the roots are distinct or not:

with

Here the symbol I represents the 2 x 2 identity matrix. The last four relationships were
obtained by applying the above formula for An, with n = 0 and n = 1. It is easy to prove
(by recursion on n) that this is the correct solution.

If none of the roots is zero, then the formula is still valid for n = -1, and thus it can be
used to compute the inverse of A.

2. Examples, Generalization, and Matrix Inversion

For a p x p matrix, the methodology generalizes as follows. The quadratic polynomial
becomes a polynomial of degree p, known as the characteristic polynomial. If its roots
are distinct, we have

The matrix V is a Vandermonde matrix, so there is an explicit formula to compute its
inverse, see here and here. A fast algorithm for the computation of its inverse is
available here. The determinants of A and V are respectively equal to

Note that the roots can be real or complex numbers, simple or multiple, or equal to zero.
Usually the roots are ordered by decreasing modulus, that is

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
https://en.wikipedia.org/wiki/Vandermonde_matrix
https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660023042.pdf
https://ieeexplore.ieee.org/document/5413083
https://storage.ning.com/topology/rest/1.0/file/get/2667149450?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667289630?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2673525095?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674945087?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674995043?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674956619?profile=original

268

That way, a good approximation for An is obtained by using the first three or four roots
if n > 0, and the last three or four roots if n < 0. In the context of linear regression (where
the core of the problem consists of inverting a matrix, that is, using n = -1 in our general
formula) this approximation is equivalent to performing a principal component
analysis (PCA) as well as PCA-induced data reduction.

If some roots have a multiplicity higher than one, the formulas must be adjusted. The
solution can be found by looking at how to solve an homogeneous linear recurrence
equation, see theorem 4 in this document.

2.1. Example with a non-invertible matrix

Even if A is non-invertible, some useful quantities can still be computed when n = -1, not
unlike using a pseudo-inverse matrix in the general linear model in regression analysis.
Let's look at this example, using our own methodology:

The rightmost matrix attached to the second root 0 is of particular interest, and plays the
role of a pseudo-inverse matrix for A. If that second root was very close to zero rather
than exactly zero, then the term involving the rightmost matrix would largely dominate in
the value of An, when n = -1. At the limit, some ratios involving the (non-existent!)
inverse of A still make sense. For instance:

 The sum of the elements of the inverse of A, divided by its trace, is (4 - 2 - 2 + 1) /
(4 + 1) = 1 / 5.

 The arithmetic mean divided by the geometric mean of its elements, is 1 / 2.

2.2. Fast computations

If n is large, one way to efficiently compute An is as follows. Let's say that n = 100. Do
the following computations:

This can be useful to quickly get an approximation of the largest root of the
characteristic polynomial, by eliminating all but the first root in the formula for An, and
using n = 100. Once the first root has been found, it is easy to also get an approximation
for the second one, and then for the third one.

If instead, you are interested in approximating the smallest roots, you can proceed the
other way around, by using the formula for An, with n = -100 this time.

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://math.berkeley.edu/~arash/55/8_2.pdf
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Generalized_linear_model
https://storage.ning.com/topology/rest/1.0/file/get/2676775158?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2676086869?profile=original

269

3. Application to Machine Learning Problems

We have discussed principal component analysis, data reduction, and pseudo-inverse
matrices in section 2. Here we focus on applications to time series, Markov chains, and
linear regression.

3.1. Markov chains

A Markov chain is a particular type of time series or stochastic process. At iteration or
time n, a system is in a particular state s with probability P(s | n). The probability to
move from state s at time n, to state t at time n + 1 is called a transition probability, and
does not depend on n, but only on s and t. The Markov chain is governed by its initial
conditions (at n = 0) and the transition probability matrix denoted as A. The size of the
transition matrix is p x p, where p is the number of potential states that the system can
evolve to. As n tends to infinity An and the whole system reaches an equilibrium
distribution. This is because

 The characteristic polynomial attached to A has a root equal to 1.
 The absolute value of any root is less than or equal to 1.

3.2. AR processes

Auto-regressive (AR) processes represent another basic type of time series. Unlike
Markov chains, the number of potential states is infinite and forms a continuum. Yet the
time is still discrete. Time-continuous AR processes such as Gaussian processes, are
not included in this discussion. An AR(p) process is defined as follows:

Its characteristic polynomial is

Here { en } is a white noise process (typically uncorrelated Gaussian variables with
same variance) and we can assume that all expectations are zero. We are dealing here
with a non-homogeneous linear (stochastic) recurrence relation. The most interesting
case is when all the roots of the characteristic polynomial have absolute value less than
1. Processes satisfying this condition are called stationary. In that case, the auto-
correlations are decaying exponentially fast.

The lag-k covariances satisfy the relation

https://www.datasciencecentral.com/page/search?q=markov+chain
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/White_noise
https://storage.ning.com/topology/rest/1.0/file/get/2681289621?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2681372862?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2682761959?profile=original

270

with

Thus the auto-correlations can be explicitly computed, and are also related to the
characteristic polynomial. This fact can be used for model fitting, as the auto-correlation
structure uniquely characterizes the (stationary) time series. Note that if the white noise
is Gaussian, then the Xn's are also Gaussian.

The results about the auto-correlation structure can be found in this document, pages
98 and 106, originally posted here. See also this this document (pages 112 and 113)
originally posted here, or the whole book (especially chapter 6) available here. See also
section 4 (Appendix.)

3.3. Linear regression

Linear regression problems can be solved using the OLS (ordinary least squares)
method, see here. The framework involves a response y, a data set X consisting
of p features or variables and m observations, and p regression coefficients (to be
determined) stored in a vector b. In matrix notation, the problem consists of
finding b that minimizes the distance ||y - Xb|| between y and Xb. The solution is

The techniques discussed in this appendix can be used to compute the inverse of A,
either exactly using all the roots of its characteristic polynomial, or approximately using
the last few roots with the lowest moduli, as if performing a principal component
analysis. If A is not invertible, the methodology described in section 2.1 can be useful: it
amounts to working with a pseudo inverse of A. Note that A is a p x p matrix as in
section 2.

Questions regarding confidence intervals (for instance, for the coefficients) can be
addressed using the model-free re-sampling techniques discussed in chapter 16.

4. Appendix

Here we connect the dots between the auto-regressive time series described in section
3.2., and the material in section 2. For the AR(p) process in section 3.2., we have

https://storage.ning.com/topology/rest/1.0/file/get/2682985975?profile=original
http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2014/model_analysis1/08.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2704799935?profile=original
http://www.maths.qmul.ac.uk/~bb/TimeSeries/TS_Chapter6_2_1.pdf
http://www.maths.qmul.ac.uk/~bb/TimeSeries/
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://storage.ning.com/topology/rest/1.0/file/get/2682892115?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2683849728?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2737303528?profile=original

271

where V is the same matrix as in section 2, the rk's are the roots of the characteristic
polynomial (assumed distinct here), and g is a linear function of ep, ep+1, ..., en. For
instance, if p = 1, we have

This allows you to compute Var[Xn] and Cov[Xn, Xn-k], conditionally to X0, ..., Xp-1. The
limit, when n tends to infinity, allows you to compute the unconditional variance and
auto-correlations attached to the process, in the stationary case. For instance, if p = 1,
we have

where 2 is the variance of the white noise, and |a1| < 1 because we assumed
stationarity.

For the general case (any p) the formula, if n is larger than or equal to p, is

The initial conditions for the coefficients Ak correspond to k = 0, -1, -2, ..., -(p -1), as
listed above. The recurrence relation for Ak, besides the initial conditions, is identical to
the previous one and thus can be solved with the same p x p matrix V and the same
roots. If two time series models, say an ARMA and an AR models, have the same
variance and covariance structure, they are actually identical.

https://storage.ning.com/topology/rest/1.0/file/get/2737325403?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2739449849?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2740399927?profile=original

272

Appendix B. Organized Chaos

I decided to add this appendix as it is a nice introduction to stochastic processes, time
series and dynamical systems, with applications in experimental mathematics, Fintech,
cryptography and Blockchain. Also it discusses new statistical tests (the Brownian test)
and especially, several examples discussed in this book are based on the processes
investigated in this appendix.

I present here some innovative results from my most recent research on stochastic
processes. chaos modeling, and dynamical systems, with applications to Fintech,
cryptography, number theory, and random number generators. While covering
advanced topics, this appendix is accessible to professionals with limited knowledge in
statistical or mathematical theory. It introduces new material not covered in my recent
book (available here) on applied stochastic processes. You don't need to read my book
to understand this article, but the book is a nice complement and introduction to the
concepts discussed here.

None of the material presented here is covered in standard textbooks on stochastic
processes or dynamical systems. In particular, it has nothing to do with the classical
logistic map or Brownian motions, though the systems investigated here exhibit very
similar behaviors and are related to the classical models. This cross-disciplinary
appendix is targeted to professionals with interests in statistics, probability,
mathematics, machine learning, simulations, signal processing, operations research,
computer science, pattern recognition, and physics. Because of its tutorial style, it
should also appeal to beginners learning about Markov processes, time series, and data
science techniques in general, offering fresh, off-the-beaten-path content not found
anywhere else, contrasting with the material covered again and again in countless,
identical books, websites, and classes catering to students and researchers alike.

Some problems discussed here could be used by college professors in the classroom,
or as original exam questions, while others are extremely challenging questions that
could be the subject of a PhD thesis or even well beyond that level. This appendix
constitutes (along with my book) a stepping stone in my endeavor to solve one of the
biggest mysteries in the universe: are the digits of mathematical constants such as Pi,
evenly distributed? To this day, no one knows if these digits even have a distribution to
start with, let alone whether that distribution is uniform or not. Part of the discussion is
about statistical properties of numeration systems in a non-integer base (such as the
golden ratio base) and its applications. All systems investigated here, whether
deterministic or not, are treated as stochastic processes, including the digits in question.
They all exhibit strong chaos, albeit easily manageable due to their ergodicity.

Interesting connections to the golden ratio, Fibonacci numbers, Pisano periods, special
polynomials, Brownian motions, and other special mathematical constants, are
discussed throughout the article. All the analyses were done in Excel. You can

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://en.wikipedia.org/wiki/Ergodicity

273

download my spreadsheets from this appendix; all the results are replicable. Also,
numerous illustrations are provided.

Content

 General framework, notations and terminology
o Finding the equilibrium distribution
o Auto-correlation and spectral analysis
o Ergodicity, convergence, and attractors
o Space state, time state, and Markov chain approximations
o Examples

 Case study
o First fundamental theorem
o Second fundamental theorem
o Convergence to equilibrium: illustration

 Applications
o Potential application domains
o Example: the golden ratio process
o Finding other useful b-processes

 Additional research topics
o Perfect stochastic processes and Brownian motions
o Characterization of equilibrium distributions (the attractors)
o Probabilistic calculus and number theory, special integrals

 Appendix
o Computing the auto-correlation at equilibrium
o Proof of the first fundamental theorem
o How to find the exact equilibrium distribution
o Perfect process with no auto-correlation

 Additional Resources

1. General framework, notations and terminology

We are dealing here with sequences { xn }, sometimes denoted as { x(n) }, starting
with n = 1, recursively defined by an iterative formula xn+1 = g(xn). We will explore
various functions g in the next sections. Typically, xn is a real number in [0, 1], and g is a
mapping such that xn+1 = g(xn) is also in [0, 1]. The first, value, x1, is called the seed. In
short, { xn } is a time series or stochastic process, and the index n denotes the (discrete)
time or iteration.

Typically, the values xn appear to be distributed somewhat randomly, according to some
statistical distribution called the equilibrium distribution, and generally, the xn's are auto-
correlated. So xn can be seen as a realization or observation of a random variable X,
whose distribution is the equilibrium distribution. That is, the empirical distribution of
the xn's, when computed on a large number of terms, tends to the theoretical equilibrium
distribution in question. Also, in practice, the vast majority of seeds yield the same
exact equilibrium distribution. Such seeds are known as good seeds, the other ones are
called bad seeds.

274

1.1. Finding the equilibrium distribution

The equilibrium distribution can be obtained by solving the equation P(X < y) = P(g(X) <
y) with y in [0, 1]. This is actually a stochastic integral equation: the probability
distribution P is the solution, and corresponds to the distribution of X. This distribution is
sometimes denoted as F. Whether the equilibrium distribution exists or not, and whether
it is unique or not (for good seeds), is not discussed here. However, we will provide
several examples with unique equilibrium distribution, throughout this article, including
how to solve the stochastic integral equation. The density attached to the equilibrium
distribution is called the equilibrium density and is denoted as f.

1.2. Auto-correlation and spectral analysis

The theoretical auto-correlation between successive values of x(n) can be computed as
follows:

Once computed, it is interesting to compare its value to the observed auto-correlation
measured on the first few thousand terms of the sequence { xn }. Longer-term auto-
correlations (lag-2, lag-3 and so on) can be computed using the same principle, either
theoretically or empirically (on data). The entire auto-correlation structure, given the
equilibrium distribution, uniquely characterizes the stochastic process. The study of
these auto-correlations is called spectral analysis.

1.3. Ergodicity, convergence, and attractors

So far we have looked at one instance or realization { xn } of the underlying process,
characterized by a mapping g and a seed x1. This provides enough information to
determine the auto-correlation structure and equilibrium distribution, which do not
depend on the good seed.

There is another way to look at things. You can simulate m deviates of a random
variable Z1 with any pre-specified distribution, say uniform on [0, 1]. Then apply the
mapping g to each of these deviates, to obtain another set of m values. These new
values are m deviates of a random variable denoted as Z2, also with known statistical
distribution. Repeat this step over and over, to obtain Z3, Z4, and so on. For large n, Zn
converges in distribution to the equilibrium distribution, regardless of the initial
distribution chosen for Z1. We illustrate how it works on an example, later in this article.
Because convergence to the same equilibrium distribution occurs regardless of the
initial distribution, the equilibrium distribution, in the language of dynamical systems, is
called an attractor distribution. The method described here can be used to identify these
attractors.

https://storage.ning.com/topology/rest/1.0/file/get/1473713810?profile=original

275

A stochastic process where the equilibrium distribution does not depend on Z1 nor on
the good seed, is called ergodic. All the processes studied here are ergodic. An
example of non-ergodic process can be found here.

1.4. Space state, time state, and Markov chain approximations

The space state is the space where { xn } takes its values; here it is [0, 1] and is thus
continuous. The time space is attached to the index n, and it is discrete here. However,
in some of our examples, xn can be written explicitly as a function of n, thus it can easily
be extended to real values of n, making it a time-continuous process.

We can also divide the continuous space state [0, 1] into a finite number of disjoint
intervals S(1), S(2), ..., S(k). Rather than studying the full equilibrium distribution, we
could compute the probabilities

Then we are dealing with a state-discrete Markov chain with k states, and p(i, j)
represents the transition probability for moving from state i to state j, estimated
on n observations x1, ..., xn. One can compute the steady state probability vector, by
solving a linear system of k equations; it represents the stable state of the system.
As k and n tend to infinity and the intervals S(1), ..., S(k) become infinitesimal, the
steady state probability vector converges to the equilibrium density. This is another way
to approximate the equilibrium distribution.

1.5. Examples

The most well-known examples of { xn } are random walks (n discrete) and Brownian
motions (n continuous). However, since the space state considered in this appendix is
[0, 1], a better suited example would be a random walk constrained to stay within [0, 1].
Such processes are discussed in my previous book, in chapter 3. Other less well known
examples, but more relevant to this article, are also discussed in my previous book
(chapters 7 to 12), and here, including the logistic map xn+1 = 4 xn(1 - xn). Also:

 xn+1 = (sin(xn)
b, where b is a parameter between 0 and 1

 xn+1 = | log xn |, known as the logarithmic map, see here
 xn+1 = 1 / |1 - xn |

b, where b is a parameter between 0 and 1 (typically b = 0.5)

Let us now introduce the example that we will discuss in detail throughout the remaining
of this article. It is defined with the following mapping:

Here the curly brackets represent the fractional part function, also denoted as FRAC.
The straight brackets on the right-hand side represent the integer part or floor function,
also denoted as INT. Since the seed is between 0 and 1, we also have this interesting

https://www.datasciencecentral.com/profiles/blogs/difficult-probably-problem-distribution-of-digits
http://www.sosmath.com/matrix/markov/markov.html
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/pattern-recognition-techniques-application-to-new-decimal-systems
https://math.stackexchange.com/questions/3244544/which-positive-continuous-functions-satisfy-fx-fex-fe-x-for-x-geq
https://storage.ning.com/topology/rest/1.0/file/get/1475118402?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1475503614?profile=original

276

property: INT(bxn) is the nth digit of the seed x1, in base b. Thus the parameter b is
called the base, and it can be any real number greater than 1. In the next section, we
consider the case where b is in]1, 2]. Non-integer bases are also discussed
here and here, and also extensively in my previous book. While this process looks very
peculiar, there is a mapping between the base-2 system, and the very popular logistic
map system: see chapter 10 in my previous book for details, or here for a summary.

It makes sense to call this process the base-b process. If b is an integer, its equilibrium
distribution is uniform on [0, 1] assuming you use a good seed. Also, if b is an integer,
the auto-correlation between successive values of xn is 1/b. This fact was probably
mentioned for the first time in my previous book. It was never proved, but assumed
based on simulations and a lot of data crunching. The proof is actually quite simple and
worth reading; it shows how to compute such auto-correlations, and constitutes an
interesting classroom problem or exam question. You will find it in this appendix.

Pretty much all numbers in [0, 1] are good seeds for the b-process. However, there are
infinitely many exceptions: in particular, none of the rational numbers is a good seed.
Identifying the class of good seeds is an incredibly complicated problem, still unsolved
today. If we knew which numbers are good seeds, we would know whether or not the

digits of or any popular mathematical constant, are evenly distributed. Another
question is whether or not a good seed is just a normal number, and conversely. The
two concepts are closely related, and possibly identical. Later in this appendix, we will
discuss a stochastic process where all seeds are good seeds.

Finally, the most interesting values of b are those that are less than two. In some ways,
the associated stochastic processes are also much easier to study. But most
interestingly, the similarities between these b-processes and stochastic dynamical
systems are easier to grasp, for instance regarding branching behavior, and attractors.
This is the subject of the next section. The second fundamental theorem in the next
section is one of the fascinating results published here for the first time, and still a work
in progress.

Note that if b is an integer, it is easy to turn the time-discrete b-process into a time-
continuous one. We have

Thus the formula can be extended to values of n that are not integers.

2. Case study

In this section, we consider the b-process introduced as an example in section 1.5,
with b in]1, 2]. Thus, xn+1 = g(xn), with g(x) = bx - INT(bx), and x1 is the seed. We now
jump right away to the two fundamental theorems, and cool applications will follow
afterwards.

https://en.wikipedia.org/wiki/Non-integer_representation
https://en.wikipedia.org/wiki/Golden_ratio_base
https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://en.wikipedia.org/wiki/Normal_number
https://storage.ning.com/topology/rest/1.0/file/get/1476359426?profile=original

277

2.1. First fundamental theorem

Let Z be a random variable with an arbitrary distribution F, admitting a density
function f on [0, 1]. Let Y = g(Z) be the fractional part of bZ, and b in]1, 2]. Then we
have:

This result is easy to obtain and constitutes an interesting classroom problem, or exam
question. The proof is in the appendix. This theorem allows you to design a simple
iterative algorithm to approximate the equilibrium distribution, and to assess how fast it
converges to the solution. The result is valid even if the density function of Z has an
infinite but countable number of discontinuities. This will be the case in the examples
discussed here, in which a uniform distribution on [0, 1] is chosen for Z.

The algorithm, already discussed in the first section (see the ergodicity, convergence
and attractors subsection), consists in iteratively computing the distribution of g(Z),
g(g(Z)), g(g(g(Z))), and so on, until the difference between two successive iterates is
small enough. Here, the difference is measured as the distance between two
distributions, using one of the many distance metrics discussed in the literature
(see here.)

The next theorem tells you in more details what happens if you choose a uniform
distribution on [0, 1], for Z. This was our favorite choice in most of our simulations.

2.2. Second fundamental theorem

We use the same assumptions as in the first theorem, but here Z has a uniform
distribution on [0, 1]. The following theorem can be used to find the equilibrium density,
as illustrated in the appendix, using the supergolden ratio constant for b:

Let Z1 = Z, and Zn+1 = g(Zn). Then Zn+1 has a piece-wise uniform distribution, more
precisely, a mixture (see chapter 11) of n+1 uniform distributions on n+1 intervals.
These intervals are denoted as

[0, c1[, [c1, c2[, [c2, c3[, ..., [cn, 1],

and the constant value of the density of Zn+1 on the kth interval (k = 1, ..., n+1) is denoted
as dk. The distribution of Zn+1 has the following features:

 Sometimes ck-1 = ck depending on b, k, and n
 bndk is an integer and { dk } is a decreasing sequence
 ck is a polynomial of degree n in b, with coefficients equal to 0, 1, or -1
 Only the dominant coefficient of this polynomial is equal to 1

https://en.wikipedia.org/wiki/Statistical_distance
https://en.wikipedia.org/wiki/Supergolden_ratio
https://storage.ning.com/topology/rest/1.0/file/get/1476992326?profile=original

278

It is convenient to use the notation c0 = 0 and cn+1 = 1. The ck's, for k = 1, ..., n are called
the change points. A change point is thus a discontinuity in the density function. One of
these change points is always equal to b - 1.

I haven't completed the proof of the second theorem yet, and the theorem itself can
probably be further refined. However, using the first fundamental theorem, it is easy to
see that when moving from iteration n to n+1, we observe the following:

 Because b is smaller than 2 and Zn+1 takes on value between 0 and 1, it is clear
that Zn+1, the fractional part of bZn, takes more frequently on smaller values
(closer to 0) than on larger ones (closer to 1.) Thus the interval densities dk are
highest next to zero, and lowest next to 1, and decreasing in between. This
explains why { dk } is a decreasing sequence.

 The densities are also constant on each interval, as we are only dealing with
uniform densities, throughout the iterations. Also bkdk must be an integer, as the
formula in the first fundamental theorem only involves adding integers (divided by
b). This is easy to prove by recursion.

 Finally, at iteration n = 2, we have a single change point c1 = b - 1, and two
intervals. Any new iteration, because of the formula in the first fundamental
theorem, creates a whole new set of new change points, each one either equal
to cb or c(b - 1), where c is any change point from the current iteration. This
explains the special polynomial expression for ck.

For any value of n, the exact distribution of Zn+1 can be computed explicitly. The
computation is elementary, but becomes incredibly tedious (and should be automated
using some software) as soon as n is larger than 5: this is a combinatorial problem. But
particular results are easier to obtain. The simplest case is as follows:

Exercise: prove that this is actually a density, that is,

Other easy cases include the full solution (for any value of b between 1 and 2) when n =
2 or n =3. This is left as an exercise. Note that if for some finite value of n, Zn has the
equilibrium density, then Zn+1, Zn+2 and so on also have that exact same density. This is
why the equilibrium distribution is called an attractor.

2.3. Convergence to equilibrium: illustration

The first picture below illustrates the convergence of the empirical equilibrium densities
to the theoretical solution, starting with a simulated uniform density on [0, 1] for Z1, and
computing the empirical densities for Z2, Z3, and so on, up to Z7. You can check out the
computations in this spreadsheet. The parameter b used here is the supergolden ratio

https://storage.ning.com/topology/rest/1.0/file/get/1506742460?profile=original

279

constant (see next section) and we used 100,000 observations to estimate each
density.

Below are a few equilibrium densities (approximated using the empirical density) for
various values of b.

The spreadsheet used to produce the 4 above charts, with detailed computations, is
available here. Some exact solutions (where the theoretical equilibrium density is easy
to compute) are provided in the next section and in the appendix, with a short tutorial on

https://storage.ning.com/topology/rest/1.0/file/get/1501309462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1506573789?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1502066949?profile=original

280

how to discover these solutions and to apply the methodology to the general case (see
appendix.).

3. Applications

In this section, we discuss applications, still focusing for the most part on b-processes
with b smaller than 2. But we also discuss other stochastic processes.

3.1. Potential application domains

Stochastic processes or time series models are routinely used in Fintech to model the
price of some commodities. Thus, b-processes offer a new tool for quants, behaving
quite differently than traditional processes and time series. The variety in these b-
processes is such, and the behavior so unique depending on b, that it allows the data
scientist to attach a unique number to an observed time series: its estimated
parameter b. Two different values of b provide two wildly different types of patterns, as
is usually the case with all chaotic dynamical systems, for instance, with the logistic
map. Whether in finance or other fields, these processes model situations in which an
auto-correlated system evolves chaotically over time, with sharp drops every now and
then in the equilibrium density, occurring at what we defined earlier as change points.
Depending on b, the number of change points in [0, 1] can be 2, 3, 4, and so on, up to
values so large that the equilibrium density looks perfectly smooth (this is the case, for
instance if b is very close to 1.) Thus the parameter b can be chosen to fit with a wide
array of change point locations, as well as various downward trends and gaps, in the
equilibrium density. As discussed in section 2, the b-process can be seen as an infinite
mixture of uniform distributions on infinitesimal intervals, or finite mixture on larger
intervals, depending on b.

Other specific applications include:

 Generation of non-periodic, continuous, replicable pseudo-random numbers.
By far, the largest class of pseudo random number generators currently in use is
made of periodic, discrete generators, though the period is extremely large in
modern generators. And random numbers produced using physical devices are
typically not replicable. To get a good generator, one would have to use a value
of b resulting in a known equilibrium distribution, start with a good seed, and map
the sequence { xn } so that the distribution of the mapped xn's (each one
representing a random number) becomes uniform, with no auto-correlation. How
to do this is described in the next sub-section about the golden ratio process.

 Thus, with a careful choice of b and proper mapping, b-processes can be used

in cryptographic systems and Blockchain. Digits produced by b-processes, and
defined as an = INT(bxn), have the following particular property. The digits are
binary (equal to 0 or 1), so each digit can be called a bit, using the language of
information theory. Indeed, when b = 2, this is just the standard base-2

281

numeration system that we are all familiar with. However, when b is smaller than
2, each digit carries an amount of information smaller than the standard bit.
Indeed, that amount is equal to the logarithm of b in base 2 (and of course, equal
to 0 if b = 1.) So not only we invented a unit of information that is smaller than the
smallest unit currently in use, but it allows you to create encryption systems filled
with some amount of natural blurring, which may or may not be useful depending
on the purpose.

 Another application is to benchmark computer systems, testing for accuracy

when performing heavy computations that require a large number of decimals. If
you compute the successive values of x1, x2 and so on up to xn, all your numbers
will be completely wrong once n is larger than 45. You may not notice it initially,
but try in Excel with a base b that is an even integer: it will become very obvious!
Sometimes it does not matter (for instance when studying asymptotic properties
such as auto-correlations or the equilibrium distribution) because b-processes
are ergodic, and sometimes it matters. This is discussed in detail in my previous
book, available here: see the chapters about high precision computing, or
read this article.

 Also, b-process can be used to benchmark and test the power of statistical

tests, the sample size needed, and other statistical procedures. Since the
“observations” { xn } have a known statistical distribution (depending on b, see
next subsection about the golden ratio process) -- a property never found in
actual, real life data sets -- you can test a number of hypotheses (for instance
about the value of some auto-correlation), and check when your statistical tests
provide the right or wrong answer. Here, the right answer is known in advance!

 Another application is to design a lottery, where the winning number is a

sequence of digits generated after re-mapping a b-process so that its associated
digits are uniformly distributed, and with no auto-correlation. See the golden ratio
process below about how to do this re-mapping. Use digits in positions n = 1,001
to 1,020 the first week, 1,021 to 1,040 the second week, and so on. The
advantage of such a lottery is that the winning numbers are known in advance
yet unpredictable unless you know the secret base b, the secret seed x1, and the
secret starting point n = 1,001. So it can be labeled as a game of skills rather
than a game of chance, and not subject to lottery laws. Another example of such
a “lottery” (number guessing) played with real money and cryptocurrency is
described in chapter 18.

3.2. Example: the golden ratio process

The golden ratio process, as its name indicates, corresponds to b = (1 + 51/2)/2. Its
associated numeration system, with INT(bxn) representing the nth digit of the seed x(1)
in base b, has been studied in some details, see here. This b-process is the best
behaved one, and the easiest to study, besides b = 2. It is probably the only b-process
with exactly one change point, and its equilibrium distribution is known (probably

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/high-precision-computing-benchmark-examples-and-tutorial
https://en.wikipedia.org/wiki/Golden_ratio_base

282

published here for the first time.) Thus, it is a good candidate for applications such as
encryption, random number generation, model fitting, testing statistical tests, or
Blockchain.

(a) Properties and use in cryptography

Using the notations introduced in section 2, this process has the following features:

 The unique change point is c1 = b - 1
 The equilibrium distribution is a mixture of two uniform distributions: one on

[0, c1[, and one on [c1, 1[
 At equilibrium, the two respective densities are d1 = (5 + 3*51/2)/10 and d2 = (5 +

51/2)/10.

Below is a picture of the equilibrium density associated with this process:

In order to make this process suitable for use in cryptography, one has to map { xn }
onto a new sequence { yn }, so that the new equilibrium density becomes uniform on [0,
1]. This is achieved as follows:

If xn < b -1, then yn = xn/(b - 1) else yn = (xn - (b - 1))/(2 - b).

Now the { yn } sequence has a uniform equilibrium distribution on [0, 1]. However, this
new sequence has a major problem: high auto-correlations, and frequently, two or three
successive values that are identical (this would not happen with a random b, but
here b is the golden ratio -- a very special value -- and this is what is causing the
problem.)

https://storage.ning.com/topology/rest/1.0/file/get/1492686452?profile=original

283

A workaround is to ignore all values of xn that are larger than b - 1, that is, discarding yn
if xn is larger than b -1. This is really a magic trick. Now, not only the lag-1 auto-
correlation in the remaining { yn } sequence is equal to 1/2, the same value as for the full
{ xn } sequence with b = 2, but the lag-1 auto-correlation in the remaining sequence of
binary digits (digits are defined as INT(byn) is also equal to zero, just like for ordinary
digits in base 2! The proof of these facts is left as an exercise.

(b) Bad seeds and connection to Fibonacci numbers

Fibonacci numbers are defined by the recursion Fn+1 = Fn + Fn-1, with F1 = F2 = 1.
Also, Fn = INT(xbn) +1 if n is odd, and Fn = INT(xbn) otherwise, with x = 5-1/2. Thus they
are related to the golden ratio process with b = (1 + 51/2)/2 and the seed x = x1 = 5-1/2.
That seed is actually a bad seed, resulting in periodicity: xn+4 = xn.

But the link to bad seeds of the golden ratio process does not stop here. All fractions
1/k, with k a positive integer, are also bad seeds, resulting in periodicity in { xn }. Here
we compare these periods with those (well-known) of Fibonacci numbers modulo k,
known as Pisano periods. If you are not familiar with elementary modulo arithmetic, you
can check the Wikipedia page on the subject, here.

I only tested a few values of k, but in all cases, both periods were identical.

3.3. Finding other useful b-processes

There are different ways to compute the equilibrium distribution of a b-process when
you have 3 change points or less. Finding the change points is easy: one of them is
always b-1, and the other ones can be any of these:

You can identify them by visual inspection of the empirical equilibrium density. And
among the 8 potential change points listed above, you must ignore those below 0 or
above 1. Note that the golden ratio process actually has two change points: b2 -
1 and b - 1. But b2 - b = 1 in this case, thus the first one is not a real change point. If you
try with b = 1.61 (very close to the golden ratio) this ghost change point is now visible,
and it is very close to 1. If you try b = 1.60, you now have 3 change points. And with b =
1.59, the empirical equilibrium density looks entirely different, possibly with a lot of
change points and no visible drop (just a linear, bumpy downward trend), though it is
hard to tell. In some cases, a change point can be double (or triple) for instance if b3 - b2

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Pisano_period
https://en.wikipedia.org/wiki/Modulo_operation
https://storage.ning.com/topology/rest/1.0/file/get/1585262369?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1493055673?profile=original

284

- b = b - 1. It typically results in an equilibrium density with very few change points. Once
the change points are known, the densities can be computed using the first fundamental
theorem (see section 2 in this article) and solving a linear system of equations. This is
illustrated in the appendix.

Interestingly, the b-processes most likely to have a simple equilibrium density with very
few change points correspond to b's for which two of the above polynomials have the
exact same value, or one is equal to 0 or 1, when evaluated for the b in question. This
was the case for the golden ratio process. Below are other examples:

 b3 - b2 = 1 yields b = 1.4655712318767... (3 change points, b is the supergolden
ratio)

 b3 - b2 - b = b - 1 yields b = 1.8019377358048... (3 change points)
 b5 - b4 = 1 or b3 - b = 1 yields b = 1.32471795724475... (4 change points, b is

the plastic number)

You can find more about these three special constants, in this article. The exact values,
respectively for the supergolden ratio and the plastic number, are

To get an approximation of the equilibrium distribution and see the change points, start

with a good seed x1. For whatever reasons x1 = 21/2/2 works better than /4. Then
compute xn up to N = 1,000,000, then plot the empirical equilibrium density computed
on the xn's. This is illustrated in my spreadsheet, available here. See also the picture
below based on values of xn for n =1, ..., 300,000, with b being the plastic number.

https://en.wikipedia.org/wiki/Supergolden_ratio
https://en.wikipedia.org/wiki/Supergolden_ratio
https://en.wikipedia.org/wiki/Plastic_number
http://archive.bridgesmathart.org/2000/bridges2000-87.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1501309462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1500420469?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1501204382?profile=original

285

As a general rule, the lower the value of b, the more change points, on average. Also,
most values of b (whether special or not) always produce a few major change points
(and frequently a large number of minor ones), with big drops in the density function
occurring at the major change points. Analyzing the polynomials discussed in the
second fundamental theorem, can help you identify these major change points.
In the appendix, we completely solve the case where b is the supergolden ratio.

4. Additional research topics

Here we discuss three potential topics for future research: stochastic processes free of
bad seeds, the asymptotic properties of attractors and the construction of a table of
attractors summarizing their features, and finally, some applications of b-processes to
probabilistic and experimental number theory, including the discussion of some special
integrals.

4.1. Perfect stochastic processes and Brownian motion

The b-process, defined by g(x) = bx - INT(bx), has bad seeds, as discussed earlier. For
a b-process, the vast majority of seeds are good seeds (the set of bad seeds actually

has Lebesgue measure zero), but nobody knows if mathematical constants such as or
21/2 are good or bad seeds. Are there any stochastic processes free of bad seeds?
Such processes can have some benefits (but mostly drawbacks!) and are called perfect
processes, until someone comes up with a better word. The term universally good
averaging sequence is sometimes used. One example is the following.

The process defined by g(x) = x + b - INT(x + b), where b is a positive irrational number,
fits the bill. Since by definition, xn+1 = g(xn), it is easy to see that

xn = (n - 1)b + x1 - INT((n - 1)b + x1).

The fact that there is no bad seed is guaranteed by the equidistribution theorem.
Even x1 = 0 is a good seed.

(a) Properties of perfect processes

This process is investigated in chapter 11 in my previous book, available here (see
page 70.) The nth binary digit is defined as INT(2xn), and these digits carry even less
information than those generated by b-processes with b between 1 and 2. If b = log 2,
the first few digits of the seed x1 = 0 are as follows:

0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0

In contrast to b-processes, all seeds (regardless of b) have 50% of digits equal to 0, and
50% equal to 1. This process is related to integral C defined later in this appendix, in the
sub-section Probabilistic calculus and number theory, special integrals.

https://en.wikipedia.org/wiki/Equidistribution_theorem
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

286

The equilibrium distribution is always uniform if b is irrational, thus it is possible to
compute the theoretical lag-1 auto-correlation of the sequence { xn } (using the first
formula in section 1) and search for the b's that minimize, in absolute value, that auto-
correlation. See appendix for a detailed solution. The empirical equilibrium distribution
converges much faster to the theoretical one, than with b-processes. However, I've

found a striking, unusual pattern for b = and b = exp().

The empirical density, computed on x1, ..., xn and binned into N intervals, shows strong

periodic bumps that other irrational b do not produce, not even b = - 0.00001. It occurs
even with the seed x1 = 0, with specific values of n and N, for instance n = 10,000
and N = 100, or n =1,000,000 and n = 100, but not with N = 100,000 and N = 100.
These bumps decrease as n increases, and convergence to uniform [0, 1] still occurs

for b = and b = exp(). Initially, I thought it was an issue with my internal machine
arithmetic, but both my Perl and Excel implementations reproduce the same patterns.
The Perl code is available here. The pattern is illustrated in the figure below.

The above picture shows the empirical density, with n = 56,000 observations and N =
100 bins, for four values of b. It is extremely close to the theoretical uniform equilibrium

https://storage.ning.com/topology/rest/1.0/file/get/1522145767?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1522403555?profile=original

287

on [0, 1]. I truncated the Y-axis to visually amplify the pattern. The spreadsheet is
available here.

(b) Comparison with b-processes

Below we contrast some of the properties of b-processes, with those of perfect
processes.

Below is a chart comparing the auto-correlation of b-processes with that of perfect
processes. The red curve was computed empirically (based on simulations) while the
blue curve represents the exact values. The small bumps in the red curve are real; they
are not caused by a small sample size. Note that b is in [1, 4] here. While in this
appendix we focused on b between 1 and 2 for b-processes, it can easily be extended
to any b larger than 2.

https://storage.ning.com/topology/rest/1.0/file/get/1522599713?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1719044888?profile=original

288

Auto-correlations and cross-correlations in multivariate processes are studied in chapter
13. For b-processes, the lag-k auto-correlation in base b is equal to the lag-1 auto-
correlation in base bk. For perfect processes, the lag-k auto-correlation in base b is
equal to the lag-1 auto-correlation in base bk. These results are valid for any good seed.

(c) Connection with Brownian motions

Now, let us investigate the connection with Brownian motions. It seems that few of the
perfect processes investigated here can emulate Brownian motions, because they are
usually too strongly auto-correlated. But there are a few exceptions. The opposite is true
for b-processes.

Let us define

where E is the expected value of { xn }, and un, vn and wn are functions chosen to
stabilize the variances of { yn } and { zn } respectively, as n becomes large. For details
about stabilizing the variance to turn time-discrete processes such as { yn } or { zn } into
time-continuous processes such as Brownian motions (the time is the index n), see
chapter 1 and 2 in my previous book, here. In short, it consists of re-scaling both the Y-
axis (values) and X-axis (time, or n) to make sure that variances stay finite and non-zero
as n tends to infinity. As time increments become infinitesimal and n tends to infinity,
convergence to a continuous process is obtained. The textbook example is the
transformation of a random walk into a Brownian motion. Here we only provide two
examples, and technical details are omitted.

The first example is the b-process with b an integer larger than 1. In this case, with x1 a
good seed thus E = 1/2,with un = n1/2, vn = n3/2, and wn =0, after re-scaling the time axis,

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1576483916?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1580535745?profile=original

289

{ yn } becomes a Brownian motion, while { zn } becomes an integrated Brownian motion.
There is nothing new here. What is new though, is the fact that this works too even
if b is not an integer.

The second example involves a perfect process, with the seed x1 = 1, b = 21/2 - 1, E =
1/2, un = 1, vn = n1/2, and wn = n/2. After re-scaling, this time { zn }, not { yn }, looks like a
Brownian motion, see picture below.

If you try the perfect process with a different parameter b and a different seed, the result
will usually be very different, sometimes unexpectedly beautiful with many smooth
bumps, if your sample is large enough, but it won't look at all like a Brownian motion. All
the computations are in my spreadsheet, available here. You can play with it to see the
variety of patterns that it can produce. Here only the first 500 values of zn have been
used. If you try with the first 50,000 values instead, it still looks Brownian, and indeed,
strikingly similar due to the fractal nature of Brownian motions (when you zoom in or
out, the randomness patterns stay the same.) A statistical test to assess the Brownian
character of this time series would probably conclude that it is likely to be Brownian.
One such test was designed by Grzegorz Sikora, see here; his article was submitted for
publication in 2018.

One of the issues with very large n is machine precision. As a test, replicate this
example with a large sample, using only 8 correct decimals in your computation, rather
than the 15 that Excel offers by default. Is the resulting chart still the same? If you want
to replicate the example with the b-process and b an integer, avoid b = 2, try b = 3
instead, because programming languages and Excel rely on base-32 or base-64
arithmetic, and assign the value 0 to xn when n > 55 or so. A workaround is to use high
precision computing, or use b = 1.9999999 (1.999 won't work, and indeed theoretically,
it is not supposed to work.)

The connection to Brownian motions (including the smoothness of b-processes versus
perfect processes) is further studied in chapter 12.

https://storage.ning.com/topology/rest/1.0/file/get/1581134813?profile=original
https://arxiv.org/abs/1803.08553
https://storage.ning.com/topology/rest/1.0/file/get/1580969849?profile=original

290

4.2. Characterization of equilibrium distributions (the attractors)

Here, we focus again on b-processes with b in]1, 2]. Another interesting research topic
is about characterizing the class of attractors. That is, what kind of distribution is an
equilibrium distribution? What makes them peculiar compared to other distributions?
Another question is about how the number of attractors grows as the number of change
points increases. Is there an asymptotic relationship between the number of change
points (say N), and the number of attractors that have N change points?

It is not even known if the number of attractors with a finite number of change points, is
finite or infinite. Surely, there are more than two attractors with two change points, and
much more than one attractor with three change points. The ones listed in the above
table are only those that I have studied. So this table is a work in progress.

4.3. Probabilistic calculus and number theory, special integrals

When I first started this research project a while back, the initial purpose was to study

the behavior of the digits of numbers such as . In fact, in this article, INT(bxn)
represents the nth digit of the seed x1 in base b, whether b is an integer, a real number
between 1 and 2, or any real number above 1. My previous book Applied Stochastic
Processes, Chaos Modeling, and Probabilistic Properties of Numeration Systems
published in June 2018 (see here) was the first milestone: developing a general
framework to study this kind of problems. Since then, I have had new ideas. Here, I
present some of them that I am still pursuing today.

In this subsection, the notation { x } represents the fractional part of the number x, in
contrast to the remaining of this appendix, where { xn } represents the entire
sequence x1, x2, and so on. Here we will only consider the case b = 2. Also, the seed x1
is denoted as x.

If b is an integer and if the seed x = x1 is in [0, 1], we have, for k larger or equal to 0:

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1507498762?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1518913789?profile=original

291

(a) Interesting series, limits, and integrals

One of the promising starting points is the following result. The proportion of digits
of x equal to 0 in base 2 is 50% if and only if the series below, with b = 2, converges:

In particular, it always converges if x is a good seed in base 2. It would be interesting to
study the wildly erratic behavior of this function, which is not only discontinuous
everywhere, but admits a dense set of singularities (where it does not converge.) Note
that if we replace bk by k in the above series, it always converges whenever x is an
irrational number, a consequence of the equidistribution theorem. What happens if we
replace bk by k2 or kb?

A related quantity is the following:

If b is an integer, M(b) = (log 2)/2 and does not depend on x, assuming x is a good
seed. If b is not an integer, M(b) is smaller than (log 2)/2. More precisely, M(b) = E(b)
log(2), where E(b) is the expected value of the equilibrium distribution of a b-process.
If b is between 1 and 2, then E(b) is approximately equal to the proportion of binary
digits in base b, that are equal to 1, for a good seed x; it does not depend on x. For
instance, based on results established in section 3.2.(a), we have:

Finally, let us consider the following integrals:

It seems that A is related to M(b). After a change of variable that makes the
parameter b disappear, A = B, so A does not depend on b. One can prove that B = (log
2)/2, see here for details. What about C? That one is also equal to (log 2)/2, as one
would expect, so A = B = C = (log 2)/2. Other similar integrals, known as Frullani
integrals, can be found in section 10 in chapter 28.

Integral A is associated with b-processes, which have bad seeds, and are sometimes
called universally bad averaging sequences for that reason. Integral C is associated
with a process with no bad seed, defined at the beginning of section 4, see Perfect
stochastic processes in this appendix. The integrals A and C are associated with time-

https://en.wikipedia.org/wiki/Equidistribution_theorem
https://math.stackexchange.com/questions/3148818/what-is-the-value-of-int-0-infty-frac-ax2-ax-x-log-xdx
https://storage.ning.com/topology/rest/1.0/file/get/1517889687?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1519657073?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1520065544?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1518447112?profile=original

292

continuous versions of these processes, respectively for b-processes and perfect
processes.

(b) Some expected values, distribution of binary digits

Let E(b) be the expected value of the equilibrium distribution of a b-process. What is the
average value of E(b) between 1 and 2? That is,

The value is around 0.38. See references at the end of this section, for a tentative
solution. Interestingly, the exact value of E(b) is not even known for most b's. The figure
below shows E(b), as well as the proportion P(b) of digits equal to 1 for a b-process.
The largest peak takes place at b = (1 + 51/2)/2, the golden ratio. The case b = 2
corresponds to the standard base-2 numeration system. The n-th digit of the seed x = x1
is INT(2xn), and it is equal to either 0 or 1 depending on x. It is assumed that x is a good
seed in base b, thus P(b) and E(b) do not depend on x. Also, b is in]1, 2].

(c) References

 StackExhange: Computation of B
 StackExhange: Average value of M(b) on [1, 2]
 Research paper: Arithmetics on number systems with irrational bases, by P.

Ambroz, et al.
 Wikipedia: Golden ration numeration system

https://math.stackexchange.com/questions/3148818/what-is-the-value-of-int-0-infty-frac-ax2-ax-x-log-xdx
https://math.stackexchange.com/questions/3161362/let-mb-lim-n-rightarrow-infty-sum-k-n12n-bk-x-k-do-we-have
http://people.fjfi.cvut.cz/pelanedi/Publications/AmbrozArithmetics.pdf
https://en.wikipedia.org/wiki/Golden_ratio_base
https://storage.ning.com/topology/rest/1.0/file/get/1617712773?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1650526490?profile=original

293

5. Appendix

Here we dive into more technical details, regarding four problems discussed in the
article.

5.1. Computing the auto-correlation at equilibrium

We consider a b-process where b is an integer, so the equilibrium distribution is
"known" to be uniform on [0, 1]. This fact has been taken for granted probably for more

than a thousand years (and that's why people believe that the digits of and other
mathematical constants, are uniformly distributed), but it would be nice (and easy) to
prove it, if the seed is a good seed. This is left as an exercise. It is not true usually if the

seed is a bad seed. is believed to be a good seed, but no one has ever managed to
prove it: it is one of the biggest mathematical challenges of all times.

Note that at equilibrium, both X and g(X) have the same distribution, so their mean and
variance are identical. So if b is an integer and the seed x1 is a good seed, the only
challenge in the auto-correlation formula mentioned in the first section, is the
computation of E[Xg(X)].

We have:

By definition, g(X) = bX - INT(bX). Thus,

Combined with the fact that E(X) = E(g(X)) = 1/2 and Var(X) = Var(g(X)) = 1/12, as the
equilibrium distribution is uniform on [0, 1], we obtain the final result: the correlation
between X and g(X), that is, the theoretical auto-correlation between two successive
values of xn, is equal to 1/b. It is easy to check this result by computing the estimated
value of the lag-1 auto-correlation on x1, ..., xn, with n = 1,000,000: this test provides a
very good approximation.

5.2. Proof of the first fundamental theorem

Here b is in]1, 2]. If Y = g(X), we have, for y in [0, 1]:

https://storage.ning.com/topology/rest/1.0/file/get/1516007486?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1516096980?profile=original

294

Thus, using the notation F for the probability distribution function (and f for the density)
we have:

Taking the derivative with respect to y on both sides of the equation, we obtain the final
result:

5.3. How to find the exact equilibrium distribution

We focus on b-processes with b in]1, 2]. Finding the equilibrium distribution (actually,
its density) is accomplished in two steps.

First, compute P(b) for all the polynomials P mentioned in the second fundamental
theorem. Any value of P(b) between 0 and 1 corresponds to a potential change point.
By looking at the empirical equilibrium density, computed on 100,000 values of { xn },
you can find the approximate value of the major change points: they correspond to
points of discontinuity in the density function. For instance, if b = 1.4656... (the
supergolden ratio), there is clearly a change point around 0.46, see the first picture in
section 2. There is another one around 0.68. The exact values c1 and c2 of the two
change points are derived from two of these polynomials:

c1 = b - 1, and c2 = b2 - b,

because no other polynomial (in the small list that you have to check) gets so close to
0.46 and 0.68 respectively, when evaluated at b.

Then, once the change points are identified, take three different values -- one in each
interval -- for instance

0.25 in S(1) = [0, c1[, 0.50 in S(2) = [c1, c2[, and 0.75 in S(3) = [c2, 1].

This assumes that you have three intervals, but you can easily generalize if you have
more. Now apply the first fundamental theorem with y = 0.25, y = 0.50, and y = 0.75
respectively. You get:

https://storage.ning.com/topology/rest/1.0/file/get/1575462140?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1517284048?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1517399484?profile=original

295

Note that

 0.853... = (1 + 0.25)/b, and it is in S(3), and 0.171... = 0.25/b, and it is in S(1)
 0.341... = 0.50/b, and it is in S(1)
 0.512... = 0.75/b, and it is in S(2)

At equilibrium, the density functions of X and Y are identical. Thus, if d1, d2 and d3
denote the density values in each of the 3 intervals, we end up with the following linear
system, where d1, d2 and d3 are the unknowns:

d1 = (d3 + d1)/b
d2 = d1/b
d3 = d2/b

It has an infinite number of solutions, and you need to add one constraint, the fact that
the total density sums to 1, to be able to solve it. That constraint is

d1c1 + d2(c2 - c1) + d3(1 - c2) = 1,
that is,

d1(b - 1) + d2(b
2 - 2b + 1) + d3(1 - b2 + b) = 1.

Finally, the solution, in this case, is

d1 = b2/(2b3 - 4b2 + 2b + 1), d2 = d1/b, and d3 = d1/b
2.

If you cannot easily determine which polynomials yield the change points or you want to
automate the method, you may as well try any two combinations of the potential
polynomials (assuming you have two change points), and for each pair of polynomials
(that that is, for each pair of change point candidates) solve a similar linear system. You
then plug the tentative equilibrium densities obtained for each pair of polynomials, into
the formula in the first fundamental theorem. Only one of them will satisfy the fact that X
and Y have the same density everywhere on [0, 1], and that is the solution.

5.4. Perfect process with no auto-correlation

We compute the covariance E(X, g(X)) between successive observations xn in a perfect
process. These processes were introduced in subsection 4.1 and are defined by g(x)
= x + b - INT(x + b). We show that the covariance between X and g(X), and thus the lag-
1 auto-correlation, is zero if and only if the fractional part of b is equal to (3 + 31/2)/6 or (3
- 31/2)/6. Also, the lag-1 auto-correlation is minimum, and equal to -1/2, when the
fractional part of b tends to 1/2.

https://storage.ning.com/topology/rest/1.0/file/get/1511103026?profile=original

296

Here, b is any positive irrational number. The seed x1 can be any real number in [0, 1],
even x1 = 0, since perfect processes don't have bad seeds. Also, as usual and by
definition, xn+1 = g(xn).

To prove the result, we start with the fact that since X is in [0, 1], we have:

INT(X + b) = INT(b) if X < INT(b + 1) - b, otherwise INT(X + b) = INT(b + 1).

The equilibrium distribution being uniform on [0, 1], and using the brackets to represent
the INT function, we thus have:

At equilibrium, we have E(X) = E(g(X)) = 1/2, and E(X2) = 1/3 since the distribution is
uniform. Thus,

With the notation k = INT(b), A = 1, B = 1 - 2(k + 1), and C = (k + 1)2 - (k + 1) + 1/6,
finding the values of b that yield Cov(X, g(X)) = 0, consists in solving the quadratic
equation Ab2 + Bb + C =0. There may be a solution for each k = 0, 1, 2, and so on. Note
that the discriminant of the quadratic equation does not depend on k:

Thus the solutions are b = k + (3 + 31/2)/6 and b = k + (3 - 31/2)/6, for k = 0, 1, and so on.
Note that b must be irrational, otherwise the equilibrium distribution may not exist or
may not be uniform.

https://storage.ning.com/topology/rest/1.0/file/get/1571909013?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1571744833?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1572056346?profile=original

297

Appendix C. Cheat Sheet

Here is all you need to get started from scratch, including sample projects, data sets,

and references.

1. Hardware

A laptop is the ideal device. I've been using Windows laptops for years, and I always
installed a Linux layer (acting as an operating system on top of Windows), known as
Cygwin. This way, you get the benefits of having Windows (Excel, Word, compatibility
with clients and employers, many apps such as FileZilla) together with the flexibility and
pleasure of working with Linux. Note that Linux is a particular version of UNIX. So the
first recommended step (to start your data science journey) is to get a modern Windows
laptop and install Cygwin.

Even if you work heavily on the cloud (AWS, or in my case, access to a few remote
servers mostly to store data, receive data from clients and backups), your laptop is you
core device to connect to all external services (via the Internet). Don't forget to do
regular backups of important files, using services such as DropBox.

2. Linux environment on Windows laptop

Once you installed Cygwin, you can type commands or execute programs in the Cygwin
console. Here's how the console looks like on my laptop:

 Figure 1: Cygwin (Linux) console on Windows laptop

https://www.cygwin.com/

298

You can open multiple Cygwin windows on your screen(s).

To connect to an external server for file transfers, I use the Windows FileZilla freeware
rather than the command-line ftp offered by Cygwin. If you need full privileges on the
remote machine, use Putty instead (for Telnet/SSH sessions).
You can run commands in the background using the & operator. For instance,

$ notepad VR3.txt &

will launch Notepad (the standard Windows text editor) from the Cygwin console, into

another window, and open the file VR3.txt located in your local directory (if this file

exists in that directory). Note the $ symbol preceding any command (see Figure 1). In

addition, the console also displays the username (Vincent@Inspiron-Switch in my

case) as well as the directory I'm in (/cygdrive/c/vincentg/ in Linux, corresponding to

the c://vincentg/ pathname under windows).

Basic operations:

 Changing directory is performed with the command cd (examples: cd

subfolder/sub-subfolder, cd .. to go one level above, cd . to go to your home
directory)

 Listing content of directory is done with command ls -l (note that -l is a
command argument used to specify that want a full, detailed listing; without this
option, the listing shown in Figure 1 would be far less detailed).

 If you don't know your local directory, type in the command pwd, it will tell you
your location (path)

So far you've learned the following Linux concepts: command line and symbol $

(sometimes replaced by > depending on the Linux version), operator & (for background

processing), paths, commands cd, pwd, and ls, command options (-l for ls)

and shortcuts (. and .. for the cd command).

A few more things about files

Files have an extension that indicates what kind of file it is (text, image,spreadsheet)

and what software can open and process them. In Figure 1, VR3.txt has the .txt
extension, meaning it's a text file - the most widespread type of data file. There are two
types of files: binary (used by various programs; compressed/encrypted format) and text
(can be processed easily by any program or editor). It is important to know the
distinction when doing FTP file transfers (FTP clients allow you to specify the type of
file, though it's automated and transparent to the user with FileZilla).

Other extensions include

 .csv (comma-separated text file that you can open with Excel or Notepad; it can
have more than 1 million rows),

 .xlsx (Excel files limited to 1 million rows, this is a binary file),

 .gz (compressed files, thus binary files),

https://filezilla-project.org/
http://www.putty.org/

299

 .png (best image format, other image formats include .gif, .jpg, .jpeg, and

.bmp; these are binary files),

 .docx (Word documents; binary),

 .html (text files representing source code of a web page),

 .sql (text file used to store an SQL query, used as input for some database
clients such as Brio),

 .php (PHP code, text format),

 .pl (Perl code, text format),

 .js (Javascript code, text format),

 .r (R code, text format),

 .py (Python code, text format),

 .c (C code, text format),

 .exe (Windows executable),

 .xml (XML, text format for name-value pairs)

Files are not stored exactly the same way in Windows and UNIX. Also, some systems
use UNICODE for file encoding, which takes much more space but allow you e.g. to
work with Chinese characters (stored using two bytes per character). When processing
such a file (they are rather rare fortunately), you'll first need to clean it and standardize it
to traditional ASCII (one byte = one character).

Finally, the best text format that you can use is tab separated: each column or field is

separated by a TAB, an invisible char represented by \t in some programming
languages. The reason is that some fields contain commas, and thus using csv
(comma-separated text files) results in broken fields and data that looks like garbage,
and is hard to process (requiring a laborious cleaning step first, or talking to your client
to receive tab-separated format instead).

When processing data, the first step is to produce a data dictionary (see section 8 in
chapter 25). It is easily done using a scripting language.

File management

Filenames should be designed carefully (no space or special char in a filename),
especially when you have thousands or millions of files across thousands of directories
and sub-directories, and across dozens of servers (the cloud). One of the two core
components of Hadoop is actually its file management system, known as HDFS (the
other component being the distributed Map-Reduce architecture to process tasks).
It's always a good idea to always have a time stamp embedded into the file name,
representing the creation date. Note that in Figure 1, the files all start with VR, an
abbreviation for Vertical Response, as these files are coming or related to our email
service provider, called Vertical Response. File names should be very detailed: keep in
mind that sooner rather than later, you might run scripts to process millions of them.
Without proper naming conventions, this task will be impossible.

300

A final word, if you look at Figure 1, the first column indicates who can read (r), re-write

(w) or execute (x) these files, besides me. It's never been an issue on Windows for me,
but on a true UNIX operating system (not Cygwin), you might want to set the right
protections: for example Perl scripts (despite being text) must be set to Executable, with

the UNIX command chmod 755 filename.pl, where filename.pl is your Perl script. File
protections (and locks) are important for organizations where files can be shared by
many users, sometimes simultaneously.

3. Basic UNIX commands

You don't need to spend hours learning UNIX and buy 800-page books on the subject.
The following commands will get you started, once you have your Cygwin console:

 cd, pwd, ls (see section 2)

 tail -100, head -150 to extract the last 100 or first 150 rows of a file

 cp, mv, mkdir, rmdir respectively copy a file to another location, rename a file,
create a new directory or delete a directory (you need to erase all files first)

 sort, uniq respectively sort a file and remove duplicate entries (you can sort
alphabetically or numerically depending on the option; default is alphabetical
order)

 gzip: compress/un-compress files

 wc: count number of rows and words in a text file

 grep: identify all rows containing a specific string in a text file (it helps to be
familiar with regular expression)

 cat: display content of text file on your screen

 chmod: change file protections, see section 2

 history: lists the last commands you used, as it is very common to re-use the
same commands all the time.

 cron, crontab: to automatically schedule tasks (running an executable once a
day)

Operators include > (to save output to a new file), >> to append output to an existing

file, | (the pipe operator, see examples), & (see section 2, used for background or batch

mode when executing a command), * (see examples) and !(see examples.)

Examples

 sort filename.txt | uni -c > results.txt (sort filename.txt alphabetically -
not numerically - then remove duplicates, and for each final entry count number

of duplicates with option -c; store results in results.txt)

 rm -i test*.txt (remove all files starting with test and with extension .txt; the

extension -i is to request manual confirmation before each file gets deleted)

 grep 'abc' test.txt | wc (extract all rows containing ‘abc’ in test.txt, then

count these rows with wc)

 !545 (run command #545, after you run the command history to get the lists of
previously entered commands)

301

Check out this reference for more details (exact syntax and options).

Miscellaneous

Shell scripts (or batch files) are small programs that execute a list of commands, and
can be run in batch mode. For regular expressions, see section 4.

4. Scripting languages

You can get started in data science wth just a few Unix commands, a tool for statistical
analyses such as R (unless you write your own algorithms to get more robust and
simple tools) and a scripting programming language such as Perl or Python. Python
(together with Pandas libraries) is the most popular language for data science. Python
and machine learning resources are provided later in this article. This article is a good
introduction on Python for data science. This reference has tons of resources about
Python for data science.

Here I describe fundamental features of Perl, but they apply to all scripting languages.
You can download Perl from ActiveState. Numerous short programs (Perl, but also R),

easy to read and understand, can be found here. Perl scripts are text files with a .pl

extension (say myprogram.pl) that you can execute in the Cygwin console with the

command line perl myprogram.pl once you have installed Perl on your laptop.

Core elements of scripting languages

Some basic stuff that is used in pretty much any programs include

 Hash tables are lists of name-value pairs, where insertion or deletion of an
element is very fast. They can be descibed as arrays indexed by strings, and
constitute a powerful, fundamental data structure. They can be used to
produce efficient joins. See data dictionary (section 8 in chapter 25) for a simple

illustration. Hash tables store data using a syntax such as $myhash{"Vincent

Granville|Data Scientist"} = "yes"; In this case the index is bi-dimensional
and is made up of the name and job title; the value is "yes" or "no". If the name or
job title is not in your data, no entry is created (that's why this data structure
produces efficient joins). See also chapter 5 on feature selection, for a more

sophisticated application.

 Associative arrays are just hash tables: arrays indexed by strings rather than

integers. In Perl, they are declared using %myhash=() while regular arrays are

declared using @myarray=(). Memory allocation for hash tables is automated in

Perl. However, you should create a variable $myhashsize that is incremented by

1 each time an entry is added to %myhash (or decremented by 1 in case of
deletion). This way, you know how big your hash tables grow. If your program

http://mally.stanford.edu/~sr/computing/basic-unix.html
http://www.freeos.com/guides/lsst/
http://www.zytrax.com/tech/web/regex.htm
https://nbviewer.jupyter.org/github/gumption/Python_for_Data_Science/blob/master/Python_for_Data_Science_all.%20ipynb
https://www.datasciencecentral.com/group/resources/forum/topics/comprehensive-list-of-data-science-resources
https://www.activestate.com/activeperl
http://www.analyticbridge.com/group/codesnippets
http://www.analyticbridge.com/forum/topics/why-is-vlookup-in-excel-1-000-times-slower-than-hash-tables-in-py
http://www.analyticbridge.com/profiles/blogs/why-and-how-you-should-build-a-data-dictionary-for-big-data-sets

302

displays (on the screen) the exact time every 300,000 newly created hash
entries, you'll have an idea when you run out of memory: at that moment, your
Perl script suddenly starts running 20 times slower. When this happens, it's time
to think about optimization using Hadoop or Map-Reduce (distributed
architecture.)

 String processing and regular expressions: the sample code below contains

basic strings substitution including special characters (\n, \:). Many

substitutions can be performed in just one tiny bit of code using regular
expressions, click here or here for details. One of the most widespread

operations is to split a text $text into elements stored in an array @myarray; the

syntax is @myarray = split(/\t/,$text). Here we assume that text elements

are separated by TABs (the special character \t). The number of text elements is

stored in the variable $#myarray.

The easiest way to learn how to code is to look at simple, well written sample programs
of increasing complexity, and become an expert in Google search to find solutions to
coding questions - many answers can be found on StackOverflow. I have learned R,
SQL C, C++ and Perl that way, without attending any training. If you need training,
check out this list of courses. The following are good examples of code to get you
started.

Sample scripts to get you started

Here is some sample code.

 Code to run SQL queries 10 times faster than Brio, Toad etc.
 Source code for our Big Data keyword correlation API (Perl API)
 Source code to compute N-grams (NLP)
 Simulation of stochastic processes
 Simple source code to simulate nice cluster structures
 Ridge regression with bootstrap
 Basic web crawler
 Model-free confidence intervals (see section 2, subsection "Perl code")

Below is a simple script that performs automated dns lookups to extract domain names

associated with IP addresses. The input file is a list of IP addresses (ips.txt) and the

output file is a text file outip.txt with two fields, tab-separated: IP address and domain

name. A temporary file titi.txt is created each time we call the external Cygwin

command 'nslookup'. Note that $ is used for variables. There's some basic string

processing here, for instance: $ip=~s/\n//g substitutes each carriage return / line feed

(special character \n) by nothing (empty) in the variable $ip. Note that the

symbol # means that what follows (in the line in question) is a comment, not code.

`rm titi.txt`;

$ip="107.2.111.109";

https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.techrepublic.com/article/regular-expresssion-substitutions-in-perl/
http://www.comp.leeds.ac.uk/Perl/sandtr.html
https://www.stackoverflow.com/
https://www.datasciencecentral.com/page/search?q=courses
http://www.analyticbridge.com/group/codesnippets/forum/topics/code-to-help-business-analysts
http://www.analyticbridge.com/group/codesnippets/forum/topics/source-code-for-our-big-data-keyword-correlation-api
http://www.analyticbridge.com/group/codesnippets/forum/topics/source-code-to-compute-all-permutations-of-n-elements
http://www.analyticbridge.com/group/codesnippets/forum/topics/from-chaos-to-clusters-simulation-of-stochastic-processes
http://www.analyticbridge.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
http://www.analyticbridge.com/group/codesnippets/forum/topics/2004291:Topic:15893
https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det

303

open(IN,"<ips.txt");

open (OUT,">outip.txt");

while ($lu=<IN>) {

 $ip=$lu;

 $n++;

 $ip=~s/\n//g;

 if ($ip eq "") { $ip="na"; }

 `nslookup $ip | grep Name > titi.txt`;

 open(TMP,"<titi.txt");

 $x="n/a";

 while ($i=<TMP>) {

 $n++;

 $i=~s/\n//g;

 $i=~s/Name\://g;

 $x=$i;

 }

 close(TMP);

 print OUT "$ip\t$x\n";

 print "$n> $ip | $x\n";

 sleep(0);

}

close(OUT);

close(IN);

Now, you can download logfiles (see free data sets in section 6), extract IP addresses
and traffic statistics per IP address, and run the above script (using a distributed
architecture, with 20 copies of your script running on your laptop) to extract domain
names attached to IP addresses. Then you can write a program to map each IP
address to an IP category using the technique described in my article Internet Topology
Mapping. And finally, sell or license the final data to clients.

A few more useful concepts:

 Functions in Perl are declared using the subroutine reserved keyword. A few
examples are found in the sample scripts. Learn how to pass an argument that is
a variable, an array or an hash table. Subroutines can return more than one
value. Use of global variables is discouraged, but with proper care (naming
conventions), you can do it without risks.

 You can write programs that accept command-line arguments. Google
'command-line arguments' for details.

 Libraries (home-made or external) require an inclusion directive, such as require

LWP::UserAgent; in the web robot sample code (see link above) that uses the
LWP library. If a library is not available in your Perl distribution, you can
download and add it using the ppm command, or even manually (see my Wiley

book page 138, where I discuss how to manually install the library Permutor.pl).
 Scripts can be automatically run according to a pre-established schedule, say

once a day. Google 'cron jobs' for details, and check this article for running cron
jobs on Cygwin.

https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
http://docs.activestate.com/activeperl/5.10/faq/ActivePerl-faq2.html
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://stackoverflow.com/questions/707184/how-do-you-run-a-crontab-in-cygwin-on-windows

304

Exercise

Write a script that accesses all the text files on your laptop using two steps:

 recursively using the ls-l > dir.txt Cygwin command from within Perl to create
directory listings (one for each folder / subfolder) saved as text files and named
dir.txt

 accessing each text file from each of these automatically created directory
listings dir.txt in each directory

Then count the number of occurrences for each word (broken down per file creation
year) across these files, using a hash table. Purpose: identify keyword trends in your
data.

5. Python, R, Hadoop, SQL, DataViz

R is a popular language to perform statistical analyses or nice graphics. I would not use
it for black-box applications. Large applications such as text clustering involving 20
million keywords are performed in Python or Perl, known as scripting languages. Python
libraries for data analysis and machine learning are widely available and discussed in a
few O'Reilly books: they offer an alternative to R, for big data processing. Note that R
does have an extensive collection of sophisticated statistical functions, too many in my
opinion. Finally, R is currently used for exploratory data analysis rather than production-
mode development. For more info, read R versus SAS versus Python or R versus
Python.

R programming

You can download the open-source R package from The R Project. Installation and
running R programs via the GUI, on a Windows laptop, is straightforward. Memory
limitations can be bypassed using multiple copies of R on multiples machines, some R

packages, or using RHadoop (R + Hadoop). R programs are text files with an .r
extension. Useful links:

 Producing videos with R
 R libraries
 R cheat sheets
 Sample R code

Also, see here for more references.

http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.datasciencecentral.com/forum/topics/which-one-is-best-r-sas-or-python-for-data-science
https://www.datasciencecentral.com/profiles/blogs/data-science-wars-r-versus-python
https://www.datasciencecentral.com/profiles/blogs/data-science-wars-r-versus-python
https://www.r-project.org/
https://github.com/RevolutionAnalytics/RHadoop/wiki
http://www.analyticbridge.com/group/codesnippets/forum/topics/from-chaos-to-clusters-simulation-of-stochastic-processes
https://www.datasciencecentral.com/page/search?q=r+libraries
https://www.datasciencecentral.com/page/search?q=r+cheat+sheets
https://www.datasciencecentral.com/page/search?q=r+code
https://www.datasciencecentral.com/page/search?q=R

305

Python programming

Check out these articles about Python for data science, the preferred full-fledged
programming language for data scientists. Sample code, cheat sheets, and machine
learning libraries for Python, can be found on GitHub.com and in the following articles:

 Python cheat sheets
 Python libraries
 Sample Python code

Hadoop

Hadoop is a file management system used to perform tasks in a distributed
environment, across multiple servers if necessary, by spitting files into sub-files,
performing the analysis on each sub-file separately, and summarizing the results (by
collecting the various outputs associated with each file, and putting it together). This
environment uses redundancy to easily and transparently recover from server crashes.
It works well for web crawling projects, even for sorting, but not so much for graph
databases or real time data (except as a back-end platform). For an example, read this
article. For an example of what Map-Reduce (the distributed architecture supporting
Hadoop) can’t do, follow this link.

SQL

Finally, don't forget that SQL is still a widely used language. Learn at least the basics,
including to joining multiple tables efficiently, and playing with indexes and keys. The
book SQL Essentials is a good starting point. Also, search this PDF document for the
keyword fuzzy joins. NoSQL databases also exist, in particular graph databases.

Excel

Excel has advanced functions such as Linest (linear regression), Vlookup, percentiles,
rank statistics, random numbers, or index (indirect cell referencing.) A large collection of
Excel spreadsheets featuring advanced machine learning techniques can be found as
attachments in the articles posted here or within this book (search for the keyword Excel
or spreadsheet in this PDF document.) In particular:

 Advanced Machine Learning with Basic Excel (chapter 3)
 Black box confidence intervals - See section 2, Source Code
 Model-free confidence intervals

Also, a list of articles about data science with Excel can be found here.

https://www.datasciencecentral.com/page/search?q=python
https://www.datasciencecentral.com/page/search?q=python+cheat+sheet
https://www.datasciencecentral.com/page/search?q=python+libraries
https://www.datasciencecentral.com/page/search?q=python+code
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/what-mapreduce-can-t-do
https://www.datasciencecentral.com/profiles/blogs/free-book-sql-essentials
http://www.vincentgranville.com/
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/forum/topics/100-articles-about-data-science-with-excel

306

Visualization

Many visualizations can be performed with R (see section on R in this article), Excel, or
Python libraries. Specific types of charts (graphs or decision trees) require special
functions. The most popular software is Tableau. Birt (by Accenture) is popular for
dashboards and Visio for diagrams. Most tools allow you to produce maps, scatterplots
and various types of visualizations. For a reference, follow this link or search for
visualization cheat sheet. See also here (dataviz with R.) Also, search the web to learn
how to avoid creating bad charts.

6. Machine Learning

To understand the difference between machine learning and data science, read this
article. A large list of machine learning references can be found here. It covers the
following domains:

 Support Vector Machines
 Clustering
 Dimensionality Reduction
 Anomaly Detection
 Recommender Systems
 Collaborative Filtering
 Large Scale Machine Learning

 Deep Learning

 Sparse Coding

Also check out our resources section. Some of these resources include:

 34 Great Articles and Tutorials on Clustering
 22 Great Articles and Tutorials on Classification Methods
 13 Great Articles and Tutorials about Correlation
 26 Great Articles and Tutorials about Regression Analysis
 15 Great Articles About Decision Trees
 27 Great Resources About Logistic Regression
 Four Great Pictures Illustrating Machine Learning Concepts
 11 Great Hadoop, Spark and Map-Reduce Articles
 20 Cheat Sheets: Python, ML, Data Science, R, and More
 25 Great Articles About SQL and NoSQL
 15 Great Articles about Bayesian Methods and Networks
 22 Great Articles About Neural Networks
 21 Great Articles and Tutorials on Time Series
 15 Deep Learning Tutorials
 11 Great Articles About Natural Language Processing (NLP)
 Statistical Concepts Explained in Simple English

 Machine Learning Concepts Explained in One Picture

https://www.datasciencecentral.com/page/search?q=visualization
https://www.datasciencecentral.com/group/tutorials/forum/topics/cheat-sheet-data-visualization-with-r
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/group/resources/forum/topics/a-large-set-of-machine-learning-resources-for-beginners-to-mavens
https://www.datasciencecentral.com/profiles/blogs/comprehensive-repository-of-data-science-and-ml-resources
https://www.datasciencecentral.com/profiles/blogs/14-great-articles-and-tutorials-on-clustering
https://www.datasciencecentral.com/profiles/blogs/22-great-articles-and-tutorials-on-classification-methods
https://www.datasciencecentral.com/profiles/blogs/13-great-articles-and-tutorials-about-correlation
https://www.datasciencecentral.com/profiles/blogs/26-great-articles-and-tutorials-about-regression-analysis
https://www.datasciencecentral.com/profiles/blogs/15-great-articles-about-decision-trees
https://www.datasciencecentral.com/profiles/blogs/27-great-resources-about-decision-trees
https://www.datasciencecentral.com/profiles/blogs/four-great-pictures-illustrating-machine-learning-concepts
https://www.datasciencecentral.com/profiles/blogs/11-great-hadoop-spark-and-map-reduce-articles
https://www.datasciencecentral.com/profiles/blogs/20-cheat-sheets-python-ml-data-science
https://www.datasciencecentral.com/profiles/blogs/25-great-articles-about-sql-and-nosql
https://www.datasciencecentral.com/profiles/blogs/15-great-articles-about-bayesian-methods-and-networks
https://www.datasciencecentral.com/profiles/blogs/22-great-articles-about-neural-networks
https://www.datasciencecentral.com/profiles/blogs/21-great-articles-and-tutorials-on-time-series
https://www.datasciencecentral.com/profiles/blogs/15-deep-learning-tutorials
https://www.datasciencecentral.com/profiles/blogs/11-great-articles-about-natural-language-processing-nlp
https://www.datasciencecentral.com/page/search?q=statistical+concepts
https://www.datasciencecentral.com/page/search?q=in+one+pictures

307

Algorithms

The picture below summarizes the main types of algorithms used in machine learning
(ML). Source: MathWorks. See also this list and for more details, follow this link. Deep
learning (neural networks with several intermediate layers) is getting more and more
popular: click here for a starting point.

Getting started

A great ML cheat sheet can be found here. For a search engine focusing exclusively on
ML and related topics, click here. For competitions, visit Kaggle.com. For job interview
questions and answers, follow this link or download this document. Glossaries can be
found here. For a great, interactive tutorial, check out Ajit Jaokar’s book series, here.
Many ML projects (and hopefully yours in the future) are hosted on Github.com. To ask
questions, one of the best platforms is Stackexchange: see here. For more articles
from the author of this book, visit this web page.

ML Applications

The following articles illustrate how ML is used in business.

 Unusual ML application: gaming technology
 22 tips for better data science

https://www.mathworks.com/
https://www.datasciencecentral.com/profiles/blogs/machine-learning-and-its-algorithms-to-know-mlalgos
https://www.bigdatanews.datasciencecentral.com/profiles/blogs/10-machine-learning-algorithms-you-should-know-in-2018
https://www.datasciencecentral.com/page/search?q=deep+learning
https://www.datasciencecentral.com/profiles/blogs/new-data-science-cheat-sheet
https://www.datasciencecentral.com/page/search?q=machine+learning
https://www.datasciencecentral.com/profiles/blogs/100-commonly-asked-data-science-interview-questions
http://datashaping.com/Addendum5.pdf
https://www.datasciencecentral.com/page/search?q=glossary
https://www.datasciencecentral.com/profiles/blogs/new-books-and-resources-for-dsc-members
https://www.datasciencecentral.com/profiles/blogs/10-python-machine-learning-projects-on-github
https://stats.stackexchange.com/
https://www.datasciencecentral.com/profiles/blogs/my-data-science-machine-learning-and-related-articles
https://www.datasciencecentral.com/profiles/blogs/data-science-foundations-for-a-new-stock-market
https://www.datasciencecentral.com/profiles/blogs/22-tips-for-better-data-science

308

 21 data science systems used by Amazon to operate its business
 40 Techniques Used by Data Scientists
 Designing better algorithms: 5 case studies
 33 unusual applications of machine learning
 Architecture of Data Science Projects
 24 Uses of Statistical Modeling (Part II) | (Part I)

Data sets and sample projects

Open source data sets can be found here and here. Here is another list featuring 100
data sets. KDNuggets.com also maintains a fairly comprehensive list of data sets. The
following articles also feature interesting data sets:

 Source code for our Big Data keyword correlation API
 Great statistical analysis: forecasting meteorite hits
 Fast clustering algorithms for massive datasets
 53.5 billion clicks dataset available for benchmarking and testing
 Over 5,000,000 financial, economic and social datasets
 New pattern to predict stock prices, multiplies return by factor 5
 3.5 billion web pages
 Another large data set - 250 million data points - available for do...
 125 Years of Public Health Data Available for Download
 From the trenches: real data science project (Google Analytics)

You can also start working on the following projects:

 Analyzing 40,000 web pages to optimize content: see here. Work on the data to
identify the types of articles and other metrics associated with success (and how
do you measure success in the first place?), such as identifying great content for
our audience, forecasting articles' lifetime and page views based on subject line
or category, assessing impact of re-tweets, likes, and sharing on traffic, and
detecting factors impacting Google organic traffic. Also, designing a tool to
identify new trends and hot keywords. See also chapter 3 for a related NLP
project. Chapters 19 to 23 are also good starting points.

 Categorization of data scientists. Also, create a list of top 500 data scientists

using public data such as Twitter, and rate them based on number of followers or
better criteria. Also identify new stars and trends - note that new stars have fewer
followers even though they might be more popular, as it takes time to build a list
of followers. Classify top practitioners into a number of categories (unsupervised
clustering) based on their expertise (identified by keywords or hashtags in their
postings or LinkedIn profile). Filter out automated from real tweets. Finally, create
a taxonomy of data scientists: see here for a starting point.

 Spurious correlations in big data, how to detect and fix it. You have n = 5,000

variables uniformly distributed on [0,1]. What is the expected number m of
correlations that are above p = 0.95? Perform simulations or find theoretical

https://www.datasciencecentral.com/profiles/blogs/20-data-science-systems-used-by-amazon-to-operate-its-business
https://www.datasciencecentral.com/profiles/blogs/40-techniques-used-by-data-scientists
https://www.datasciencecentral.com/profiles/blogs/helping-facebook-design-better-machine-learning-algorithms
https://www.datasciencecentral.com/profiles/blogs/33-unusual-problems-that-can-be-solved-with-data-science
https://www.datasciencecentral.com/profiles/blogs/the-data-science-zoo
https://www.datasciencecentral.com/profiles/blogs/24-uses-of-statistical-modeling-part-ii
https://www.datasciencecentral.com/profiles/blogs/top-20-uses-of-statistical-modeling
https://www.datasciencecentral.com/page/search?q=dataset
https://www.datasciencecentral.com/profiles/blogs/a-plethora-of-data-set-repositories
http://rs.io/2014/05/29/list-of-data-sets.html
http://rs.io/2014/05/29/list-of-data-sets.html
http://www.kdnuggets.com/datasets/index.html
http://www.analyticbridge.com/group/codesnippets/forum/topics/source-code-for-our-big-data-keyword-correlation-api
http://www.analyticbridge.com/profiles/blogs/great-statistical-analysis-forecasting-meteorite-hits
http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
http://www.bigdatanews.com/profiles/blogs/53-5-billion-clicks-dataset-available-for-benchmarking-and-testin
https://www.datasciencecentral.com/forum/topics/over-5-000-000-financial-economic-and-social-datasets
http://www.analyticbridge.com/profiles/blogs/new-pattern-to-predict-stock-prices-multiplies-return-by-factor-5
http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
http://www.bigdatanews.com/profiles/blogs/another-large-data-set-250-million-data-points-available-for-down
http://www.bigdatanews.com/group/bdn-daily-press-releases/forum/topics/pitt-unlocks-125-years-of-public-health-data-to-help-fight-contag
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
https://www.datasciencecentral.com/profiles/blogs/types-of-data-scientists

309

solution. Try with various values of n (from 5,000 to 100,000) and p (from 0.80 to
0.99) and obtain confidence intervals for m (m is a function of n and p). Identify
better indicators than correlation to measure whether two time series are really
related. The purpose here is twofold: (1) to show that with big data, your
strongest correlations are likely to be spurious, and (2) to identify better metrics
than correlation in this context. A starting point is my article about the curse of big
data, also in my Wiley book pages 41-45. Or read chapter 27 in this book.

 Perform simulations to assess the probability of some extreme events (useful in
fraud detection problems, to detect fake or shared profiles or fake reviews). See
here, also here (are there too many twin points in this dataset?) and here.
Simulations are useful in pattern detection problems. For number theory
applications (experimental mathematics involving chaotic sequences) - with
several statistical tests being used to assess departure from randomness - check
out Appendix B in this book, or in my book on stochastic processes, here.

http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
http://www.analyticbridge.com/forum/topics/challenge-of-the-week-random-numbers
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/how-to-detect-a-pattern-problem-and-solution
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes

