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economists, data scientists, biologists, and quants, ranging from beginners to 
executives. In about 300 pages, it covers many new topics, offering a fresh perspective 
on the subject, including rules of thumb and recipes that are easy to automate or 
integrate in black-box systems, as well as new model-free, data-driven foundations to 
statistical science and predictive analytics. The approach focuses on robust techniques; 
it is bottom-up (from applications to theory), in contrast to the traditional top-down 
approach. The material is accessible to practitioners with a one-year college-level 
exposure to statistics and probability. The compact and tutorial style, featuring many 
applications with numerous illustrations, is aimed at practitioners, researchers, and 
executives in various quantitative fields.  

New ideas, advanced topics and state-of-the-art research are discussed in simple 
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Excel spreadsheets. Thanks to cross-references and redundancy, the chapters can be 
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Content 
 

 

Part 1 - Machine Learning Fundamentals and NLP 
 
We introduce a simple ensemble technique (or boosted algorithm) known as Hidden 
Decision Trees, combining robust regression with unusual decision trees, useful in the 
context of transaction scoring. We then describe other original and related machine 
learning techniques for clustering large data sets, structuring unstructured data via 
indexation (a natural language processing or NLP technique), and perform feature 
selection, with Python code and even an Excel implementation. 
 
1. Multi-use, Robust, Pseudo Linear Regression -- page 12 
 

 Introduction 
 Example: Simulated Data with Correlated Features 
 Clustering the Variables 
 Clustering the Observations 

 
2. A Simple Ensemble Method, with Case Study (NLP) -- page 15 

 
 The Problem 
 Feature Selection and Best Practices 
 Methodology and Solution 
 Case Study: Results 
 Source Code 

o Perl, R, Python, Julia 
 

3. Excel Implementation -- page 24 
 

 Excel template for general machine learning 
 Who should use the spreadsheet? 
 Description of the techniques used 
 Spreadsheet versus Python version 
 Why a brand new set of machine learning tools? 
 The Spreadsheet 
 Confidence intervals for the response 

 
4. Fast Feature Selection -- page 31 
 

 Predictive Power of a Feature, Cross-Validation 
 Data structure, computations 
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5. Fast Unsupervised Clustering for Big Data (NLP) -- page 36 
 

 Building a Keyword Taxonomy 
 Fast Clustering Algorithm 
 Computational Complexity 

 
6. Structuring Unstructured Data -- page 40 
 

 Indexation algorithm 
 Potential improvement 

 

 
 
Part 2 - Applied Probability and Statistical Science 
 
We discuss traditional statistical tests to detect departure from randomness (the null 
hypothesis) with applications to sequences (the observations) that behave like 
stochastic processes. The central limit theorem (CLT) is revisited and generalized with 
applications to time series (both univariate and multivariate) and Brownian motions. We 
discuss how weighted sums of random variables and stable distributions are related to 
the CLT, and then explore mixture models -- a better framework to represent a rich 
class of phenomena. Applications are numerous, including optimum binning for 
instance. The last chapter summarizes many of the statistical tests used earlier. 
 
7. Testing for Randomness -- page 42 
 

 Context 
 Methodology 

o Algorithm to compute the observed gap distribution 
o Statistical testing 

 Application to Number Theory Problem 
o A counter-example 
o Potential use in cryptography 

 Conclusion 
 
8. The Central Limit Theorem Revisited -- page 48 
 

 A special case of the Central Limit Theorem 
 Simulations, testing, and conclusions 

o The Lyapunov connection 
 Generalizations 

o Correlated observations  
o Non-random (deterministic) observations 
o Other generalizations 

 Source code 
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9. More Tests of Randomness -- page 55 
 

 Central Limit Theorem for Non-Random Variables 
 Testing Randomness: Max Gap, Auto-Correlations and More 

o Convergence to a non-degenerate distribution 
 Excel Spreadsheet with Computations 
 Potential Research Areas 

o Generalization to higher dimensions 
 
10. Random Weighted Sums and Stable Distributions -- page 63 
 

 Central Limit Theorem: New Approach 
o Theorem 

 Stable and Attractor Distributions 
o Using decaying weights 
o Exact distribution 
o More about stable distributions and their applications 

 Non CLT-compliant Weighted Sums, and their Attractors 
o Testing for normality 
o Testing for symmetry and dependence on kernel 
o Testing for uni-modality and other peculiarities 
o Testing for semi-stability 

 Conclusions 
 
11. Mixture Models, Optimum Binning and Deep Learning -- page 73 
 

 Introduction and Context 
 Approximations Using Mixture Models 

o The error term 
o Kernels and model parameters 
o Algorithms to find the optimum parameters 
o Convergence and uniqueness of solution 
o Find near-optimum with fast, black-box step-wise algorithm 

 Example 
o Data and source code 
o Results 

 Applications 
o Optimal binning 
o Predictive analytics 
o Test of hypothesis and confidence intervals 
o Deep learning: Bayesian decision trees 
o Clustering 

 Interesting problems 
o Gaussian mixtures uniquely characterize a broad class of distributions 
o Weighted sums fail to achieve what mixture models do 
o Stable mixtures 
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o Nested mixtures and Hierarchical Bayesian Systems 
o Correlations 

 
12. Long Range Correlations in Time Series -- page 87 
 

 Introduction and time series deconstruction 
o Example 
o Deconstructing time series 
o Correlations, Fractional Brownian motions 

 Smoothness, Hurst exponent, and Brownian test 
o Our Brownian tests of hypothesis 
o Data 

 Results and conclusions 
o Charts and interpretation 
o Conclusions 

 
13. Stochastic Number Theory and Multivariate Time Series -- page 95 
 

 Some Definitions 
 Digits Distribution in b-processes 
 Strange Facts and Conjectures about the Rabbit Constant 
 Gaming Application 

o De-correlating Time Series Using Mapping and Thinning Techniques 
o Dissolving the Auto-correlation Structure Using Multivariate b-processes 

 
14.  Statistical Tests: Summary -- page 101 
 

 General Methodology 
 Off-the-beaten-path Statistical Tests 

 

 
 

Part 3 - New Foundations of Statistical Science 
 
We set the foundations for a new type of statistical methodology fit for modern machine 
learning problems, based on generalized resampling. Applications are numerous, 
ranging from optimizing cross-validation to computing confidence intervals, without 
using classic statistical theory, p-values, or probability distributions. Yet we introduce a 
few new fundamental theorems, including one regarding the asymptotic properties of 
generic, model-free confidence intervals. 
 
15. Modern Resampling Techniques for Machine Learning -- page 107 
 

 Re-sampling and Statistical Inference 
o Main Result 
o Sampling with or without Replacement 
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o Illustration 
o Optimum Sample Size  
o Optimum K in K-fold Cross-Validation 
o Confidence Intervals, Tests of Hypotheses 

 Generic, All-purposes Algorithm 
o Re-sampling Algorithm with Source Code 
o Alternative Algorithm 
o Using a Good Random Number Generator 

 Applications 
o A Challenging Data Set 
o Results and Excel Spreadsheet 
o A New Fundamental Statistics Theorem 
o Some Statistical Magic 
o How does this work? 
o Does this contradict entropy principles? 

 Conclusions 
 
16. Model-free, Assumption-free Confidence Intervals -- page 121 
 

 Principle 
 2. Examples 

o Estimator used in nearest neighbors clustering 
o Weighted averages when dealing with outliers 
o Correlation coefficient estimated via re-sampling 
o Auto-correlated time series, U-statistics 

 Counterexamples 
 Estimating A 
 Estimating B 

o Getting more accurate values 
o Getting even more accurate values 

 Theoretical Background 
o Connection with the re-scaled range and the Hurst exponent 
o General case 
o Another approach to building confidence intervals 

 Conclusions 
 
17. The Distribution of the Range: A Beautiful Probability Theorem -- page 133 
 

 Theorem and proof 
 Connection with order statistics and the Renyi Representation 
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Part 4 - Case Studies, Business Applications  
 
These chapters deal with real life business applications. Chapter 18 is peculiar in the 
sense that it features a very original business application (in gaming) described in 
details with all its components, based on the material from the previous chapters. Then 
we move to more traditional machine learning use cases. Emphasis is on providing 
sound business advice to data science managers and executives, by showing how data 
science can be successfully leveraged to solve problems. The presentation style is 
compact, focusing on strategy rather than technicalities.   
 
18. Gaming Platform Rooted in Machine Learning and Deep Math -- page 136 
 

 Description, Main Features and Advantages 
 How it Works: the Secret Sauce 

o Public Algorithm 
o The Winning Numbers 
o Using Seeds to Find the Winning Numbers 
o ROI Tables 

 Business Model and Applications 
o Managing the Money Flow 
o Virtual Currency 

 Challenge and Statistical Results 
o Data Science / Math Competition 
o Controlling the Variance of the Portfolio 
o Probability of Cracking the System 

 Designing 16-bit and 32-bit Systems 
o Layered ROI Tables 
o Smooth ROI Tables 
o Systems with Winning Numbers in [0, 1] 

 
19. Digital Media: Decay-adjusted Rankings -- page 148 
 

 Introduction 
 Top DSC blogs 
 Interesting Insights 
 New Scoring Engine 
 Good versus perfect model 
 Next steps 

 
20. Building a Website Taxonomy -- page 153 
 

 Seed Keywords 
 General Methodology 
 Top 2,500 Data Science Websites 
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 Data and Source Code  
 Detailed Methodology 
 Possible Improvements 

 
21. Predicting Home Values -- page 158 
 

 The data  
 Leveraging available data, getting additional data  
 Potential metrics to consider 
 Model selection and performance 

 
22. Growth Hacking -- page 161 
 

 Growth Hacking: Part I 
o Strategy 
o Methodology 
o Scoring algorithm 
o Data Sets, Excel spreadsheet  
o Python Source Code 
o Next steps 

 Growth Hacking: Part II 
 Growth Hacking: Part III 

o Algorithm: categorizing / clustering articles 
 Conclusions 

 
23. Time Series and Growth Modeling -- page 169 
 

 Case Study: The Problem 
o Business questions 

 Deep Analytical Thinking 
o Answering hidden questions 

 Data Science Wizardry 
o Generic algorithm 
o Illustration with three different models 
o Results 

 A few data science hacks 
 
24. Improving Facebook and Google Algorithms -- page 179 
 

 Five Case Studies 
o More about the Facebook ad processing system 

 Why so many Machine Learning Implementations Fail? 
o The fake news issue 
o When machine learning is used as a scapegoat 

 Twenty four tips for better data science 
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Part 5 - Additional Topics 
 
Here we cover a large number of topics, including sample size problems, automated 
exploratory data analysis, extreme events, outliers, detecting the number of clusters, p-
values, random walks, scale-invariant methods, feature selection, growth models, 
visualizations, density estimation, Markov chains, A/B testing, polynomial regression, 
strong correlation and causation, stochastic geometry, K nearest neighbors, and even 
the exact value of an intriguing integral computed using statistical science, just to name 
a few. 
 
25. Solving Common Machine Learning Challenges -- page 187 
 

 Eliminating sample size effects 
 Sample size determination 
 Automatically detecting the number of clusters  
 Fixing issues in regression models  
 Performing joins on mismatched data  
 Scale invariant techniques 
 Blending data sets with non-compatible fields 
 Automated exploratory data analysis 
 Simple solution to feature selection problems 
 Coefficient of Correlation for Non-Linear Relationships 
 Choosing a regression model 
 Growth modeling with Excel 
 Interesting charts 
 Simplified logistic regression 

 
26. Outlier-resistant Techniques, Cluster Simulation, Contour Plots -- page 214 
 

 General Framework 
o Finding a robust centroid 
o Generalization to linear regression problems 
o General outlier detection techniques 
o A related physics problem 

 Algorithm to find centroid when p > 1 
o Source code to generate points and compute centroid 
o Generating point clouds with Monte Carlo simulation 

 Examples and results 
 Convergence of the algorithm 
 Interesting Contour Maps 

 
27. Strong Correlation Metric -- page 225 
 

 Definition of strong correlation 
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 Comparison with traditional (weak) correlation 
 Excel spreadsheet with computations and examples 
 When to use strong versus weak correlation? 
 Generalization 

 
28. Special Topics -- page 229 
 

 Comparing ML, Data Science, AI, Deep Learning, and Statistics 
o Different Types of Data Scientists 
o Machine Learning versus Deep Learning 
o Machine Learning versus Statistics 
o Data Science versus Machine Learning 

 Distribution of Arrival Times for Extreme Events 
o Simulations 
o Theoretical Distribution of Records over Time 
o Useful Results 

 How to Lie with p Values? 
 Off-the-beaten-path Machine Learning Topics 

o Random walks in one, two and three dimensions 
o Estimation of the convex hull of a set of points 
o Constrained linear regression on unusual domains 
o Robust and scale-invariant variances 
o The Tweedie distributions 
o The arithmetic-geometric mean 
o Weighted version of the K-NN clustering algorithm 
o Multivariate exponential distribution and storm modeling 

 Variance, Clustering, and Density Estimation Revisited 
o Working on the Grid, not on the Original Space 
o Density Estimation 
o Supervised Clustering 
o Scale-Invariant Variance  
o Historical Notes 

 New K-NN Clustering Algorithm and Data Reduction 
 Spatial Patterns Found in Random Points 
 Stochastic Geometry: Spatial Coverage Problem 
 Markov Chains and the Collatz Conjecture 
 Special Integral Solved Using Statistical Concepts 
 From A/B Testing to Discrete Choice Analysis 
 Deep Dive into Polynomial Regression and Overfitting 
 Lifecycle of Data Science Projects 

  

 
 
Appendix A. Linear Algebra Revisited -- page 266 
 

 Power of a Matrix 



11 
 

 Examples, Generalization, and Matrix Inversion 
o Example with a non-invertible matrix 
o Fast computations 

 Application to Machine Learning Problems 
o Markov chains 
o Time series 
o Linear regression 

 Appendix 
 
Appendix B. Stochastic Processes and Organized Chaos -- page 272 
 

 General framework, notations and terminology 
o Finding the equilibrium distribution 
o Auto-correlation and  spectral analysis 
o Ergodicity, convergence, and attractors 
o Space state, time state, and  Markov chain approximations 
o Examples 

 Case study 
 Applications 
 Additional  topics 

o Perfect stochastic processes and Brownian motions 
o Characterization of equilibrium distributions (the attractors) 
o Probabilistic calculus, number  theory, special integrals 

 Appendix 
o Computing the auto-correlation at equilibrium 
o Proof of the first fundamental theorem 
o How to find the exact equilibrium distribution 
o Perfect process with no auto-correlation 

 
Appendix C. Machine Learning and Data Science Cheat Sheet  -- page 297 
 

 Hardware 
 Linux  environment on Windows laptop 
 Basic UNIX commands 
 Scripting  languages 
 Python, R, Hadoop, SQL, DataViz 
 Machine Learning 

o Algorithms 
o Getting started 
o Applications 
Data sets and sample projects  
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1. Multi-use, Robust Pseudo-regression  

We discuss a simple technique, first developed around 2002 when I was working for 
Visa, to blend different models to produce better predictions. It was developed 
independently from Stanford University’s boosted trees and similar techniques. It blends 
pseudo linear regression with a large number of simple decision trees, without explicitly 
building decision trees. Among its advantages is ease of implementation, robustness 
(no risk of over-fitting), interpretability, and low number of hyper-parameters, making it 
suitable for black box machine learning applications. It is known as hidden decision 
trees (HDT).  

This chapter focuses on the pseudo linear regression, one of the two components of 
HDT’s. It is a constrained regression, similar to ridge or Lasso regression, or to methods 
based on penalized likelihood. We also show how it can be used to cluster either the 
variables (features) or the observations.   

. 

1. Introduction 
 

Without loss of generality, we focus on linear regression with centered variables (with 
zero mean), and no intercept. Generalization to logistic or non-centered variables is 
straightforward. Let 

Y = a1X1 + ... + anXn + e 

Here e is the noise or error term. A solution, if you want the regression coefficients ak 
and the correlations Cor(Y, Xk) with the response Y to have the same sign, is: 

 ak = M bk, with bk = Cov(Y, Xk) / Var(Xk), k = 1, ..., n and 

 M (a real number) is chosen to minimize Var(e). 

Let W = b1X1 + ... + bnXn. You must find M that minimizes Var(Y - MW). The solution 
is M = Cov(Y, W) / Var(W). If the independent variables (features) are non-correlated, 
then this regression and the classical regression produce the same results, and M = 1. 
You can add an intercept parameter c to the model; the final estimate becomes W* = c 
+ W, where c = Mean(Y - W).  
 

Terminology: S = a1X1 + ... + anXn is the estimated or predicted response; the Xk's are 
the independent variables or features. 

 

2. Example: simulated data with correlated features 
 
I tested this methodology on a data set with 10,000 observations and 4 features. The 
data, source code to generate the data, graphs and results, are found in this 
spreadsheet. By construction, the correlation between the first two features is 0.99. 

http://storage.ning.com/topology/rest/1.0/file/get/2656751664?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2656751664?profile=original
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Whether you use an exact linear regression, or the approximated method described 
here, the goodness of fit (measured using R-squared) is similar. However the 
approximated method is far more robust. Robustness was tested by adding extra noise 
in the data. The exact regression coefficients are very sensitive to noise, and their 
values are very volatile. To the contrary, the regression coefficients obtained with this 
method are stable despite the high internal correlations.  
 

3. Clustering the variables: solution based on two M's 
 

We can improve the estimates by considering a model with two M's, namely M and M', 
where M applies to a subset of variables, and M' to the remaining variables. Now the 
estimated response is 

 

where I and J constitute a partition of {1, ... , n}. In short we are clustering the variables 
into two clusters. Again, the goal is to minimize Var(Z) = Var(Y - S), this time with 
respect to M, M', I and J. There are 2n possible partitions (I, J), so we can loop over all 
these partitions, and for each partition, find the M, M' that minimizes Var(Y - S). Then 
identify the partition with absolute minimum for Var(Y - S). 

The optimum partition will put highly correlated variables into a same cluster. In my 
example, since the first two features are highly correlated by construction, one would 
hope that the optimum partition will be {X1, X2} forming one cluster of variables, that is I 
= {1, 2}, and {X3, X4} forming the second cluster, that is J = {3, 4}. So I manually picked 
up this particular partition ({X1, X2}, {X3, X4}) as good enough for our test. I then tried a 
few values of M, M' for this particular partition, and settled with M = 0.1 and M'= 1.0. 
Clearly, there is no overfitting here. The parameters M and M' are located in cells P19 
and R19 respectively, in the “data & results” tab in the spreadsheet. 

 
Computations 
 

Of course if you have many variables (n is large) then you might need more than two M 
and M'. Do not use more than 4 M's for robustness. Note that 4 M's require visiting 4n 
partitions to identify the optimum one. In practice, I recommend to visit only 1,000 
partitions out of 4n, and choose the best one among these 1,000. To make the algorithm 
run much faster, you can do your computations using just 1% of the data set (but no 
less than 100 observations). Now you have a robust algorithm with a computational 
complexity that does not depend on the number of observations (if your computations 
are based on a sample of 100 observations), nor on the number of variables. Pretty 
amazing! 

Note that in the case where we use two Ms, namely M and M', given a partition (I, J), it 
is straightforward to compute the optimum M, M' depending on (I, J). Let's use the 
following notation: 
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Then the optimum is obtained by differentiating Var(Y - S) = Var(Y - MSI  - M'SJ) with 
respect to M and M'. This leads to a straightforward system of 2 linear equations with 2 
unknowns M and M'. You need to solve that system to find M and M'. If you work with 
three M's, you would have to solve a similar system, but this time with 3 unknowns M, 
M', and M''. 

 

4. Clustering the observations 
 
Just like we can cluster variables, we can apply the same methodology to cluster 
observations into two (or more) groups, using a different M for each group. Or you can 
cluster both variables and observations simultaneously.  
 
However, in practice, if observations are too disparate for regression to make sense, I 
suggest using other techniques to cluster the observations. Adding one or two carefully 
crafted new variables can help solve the problem. Another approach is to apply hidden 
decision tree technology (see chapter 2) to bin the observations in hundreds or 
thousands of data buckets (each with at least 100 observations if possible), and apply a 
specific regression (that is, specifics M, M') to each bucket. This works well with big 
data.  
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2. A Simple Ensemble Method  

The technique presented here, known as hidden decision trees, blends non-standard, 
robust versions of decision trees and regression. It has been successfully used in black-
box ML implementations. Here we describe a case study to optimize website content. It 
is NLP-intensive. Source code in Perl, R, Julia and Python is provided. 
 

We discuss a general machine learning technique to make predictions or score 
transactional data, applicable to very big, streaming data. This hybrid technique 
combines different algorithms to boost accuracy, outperforming each algorithm taken 
separately, yet it is simple enough to be reliably automated. It is illustrated in the context 
of predicting the performance of articles published in media outlets or blogs, and has 
been used by the author to build an AI (artificial intelligence) system to detect articles 
worth curating, as well as to automatically schedule tweets and other postings in social 
networks, with a goal of eventually fully automating digital publishing. This application is 
broad enough that the methodology can be applied to most NLP (natural language 
processing) contexts with large amounts of unstructured data.  

 

 

Figure 1: HDT 1.0. Here we will describe HDT 2.0. 
 

The algorithmic framework described here applies to any data set, text or not, with 
quantitative, non-quantitative (gender, race) or a mix of variables. It consists of several 
components; we discuss in details those that are new and original. No deep technical 
expertise and no mathematical knowledge is required to understand the concepts and 
methodology described here. The methodology, though state-of-the-art, is simple 
enough that it can even be implemented in Excel, for small data sets (one million 
observations.). 
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1. The Problem 
 

Rather than first presenting a general, abstract framework and then showing how it 
applies to a specific problem (case study), we proceed the other way around, as we 
believe that it will help the reader understand better our methodology. We then 
generalize to any kind of data set. 

In its simplest form, our particular problem consists of analyzing historical data about 
articles and blog posts, to identify features (also called metrics or variables) that are 
good predictors of blog popularity when combined together, to build a system that can 
predict the popularity of an article before it gets published. The goal is to select the right 
mix of relevant articles to publish, to increase web traffic, and thus advertising dollars, 
for a niche digital publisher. 

As in any similar problem, the historical data is called training set, and it is split into test 
data and control data for cross-validation purposes to avoid over-fitting. The features 
are selected to maximize some measure of predictive power, as described in chapter 4. 
All of this is (so far) standard practice; the reader not familiar with this can Google the 
keywords introduced in this paragraph. In our particular case, we use our domain 
expertise to identify great features. These features are pretty generic and apply to 
numerous NLP contexts, so you can re-use them for your own data sets.  
 
Feature Selection and Best Practices 
 
One caveat is that some metrics are very sensitive to manipulation. In our case, 
the response (that is, what we are trying to predict, also called dependent variable by 
statisticians) is the traffic volume. It can be measured in page views, unique page views, 
or number of users who read the article. Page views can easily be manipulated and the 
number is inflated by web robots, especially for articles that have little traffic. So instead, 
we chose "unique page views", a more robust metric available through Google 
Analytics. Also, older articles have accumulated more page views over time, so we 
need to correct for this effect. Correcting for time is explained in chapter 19. Here we 
used a very simple approach instead: focusing on articles from the most recent, main 
channel instead (the time window is about two years), and taking the logarithm of 
unique page views (denoted as pv in the source code in the last section).  
 
Taking the logarithm not only smooths out the effect of time and web robots, but also it 
makes perfect sense as the page view distribution is highly skewed -- well modeled 
using a Zipf distribution -- with a few incredibly popular (viral) articles and a large 
number of articles with average traffic: it is a bit like the income distribution.  
As for selecting the features, we have two kinds of metrics that we can choose as 
predictors: 

Metrics based on the article title, easy to compute: 

 Keywords found in the title 
 Article category (blog, event, forum question) 
 Channel 

https://www.datasciencecentral.com/profiles/blogs/zipf-s-distribution-example-of-a-great-application
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 Creation date 
 Title contains numbers? 
 Title is a question? 
 Title contains special characters? 
 Length of title 

 

Metrics based on the article body, more difficult to compute: 

 Size of article 
 Does it contain pictures? 
 Keywords found in body 
 Author (and author popularity) 
 First few words 

 
Despite focusing only on a subset of features associated with the article title, we were 
able to get very interesting, actionable insights; we only used title keywords, and 
whether the posting is a blog, or not. The methodology used here takes into account all 
potential key-value combinations, where a key is a subset of features, and value, the 
respective values: for instance key = (keyword1, keyword2, article category) and value = 
("Python", "tutorial", "Blog"). So it is important to appropriately bin the variables (see 
section 4 in chapter 16) when turning them into features, to prevent the number of key-
value pairs from exploding. Another mechanism described later in this chapter is also 
used to keep the key-value database, stored as an hash table or associate array, 
manageable. Finally, it can easily be implemented in a distributed environment 
(Hadoop.)   
 
Due to the analogy with decision trees, a key-value is also called a node, and plays the 
same role as a node in a decision tree.  
 

2. Methodology and Solution 
 
As we have seen in the previous section, the problem consists of predicting pv, the 
logarithm of unique page views for an article (over some time period), as a function of 
keywords found in the title, and whether the article in question is a blog or not.  
In order to do so, we created lists of all one-token and two-token keywords found in all 
the titles, as well as blog status, after cleaning the titles and eliminating some stop word 
such as "that", "and" or "the", that don't have impacts on the predictions. We were also 
careful about not eliminating all keywords made up of one or two letters: the one-letter 
keyword "R", corresponding to the programming language R, has a high predictive 
power. 

For each element in our lists, we recorded the frequency and traffic popularity. More 
precisely, for each key-value pair, we recorder the number of articles (titles, actually) 
that are associated with it, as well as the average, minimum and maximum pv across 
these articles. 
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Example 
 
For instance, the element or key-value (keyword1 = "R", keyword2 = "Python", article = 
"Blog") is associated with 6 articles, and has the following statistics: average pv = 8.52, 
minimum pv = 7.41, and maximum pv = 10.45. 
 
Since the average pv across all articles is equal to 6.83, this specific key-value pair 
(also called node) generates exp(8.52 - 6.83) = 5.42 times more traffic than an average 
article. It is thus a great node. Even the worst article, among the 6 articles belonging to 
this node, with a pv of 7.41, outperforms the average article across all nodes. So not 
only this is a great node, but also a stable one. Some nodes have a far larger volatility, 
for instance when one of the keywords has different meanings, such as the word 
"training", in "training deep learning" (training set) versus "deep learning training" 
(courses.) 
 
Hidden decision trees 
 
Note that here, the nodes are overlapping, allowing considerable flexibility. In particular, 
nodes with two keywords are sub-nodes of nodes with one keyword. A previous version 
of this technique, described here, did not consider overlapping nodes. Also, with highly 
granular features, the number of nodes explodes exponentially. A solution to this 
problem consists of 
 

 Shuffling the observations 
 Working with nodes built on no more than 4 or 5 features 
 Proper binning 
 Visiting the observations sequentially (after the shuffle) and every one million 

observations, deleting nodes that contain only one observation 

 

The general idea behind this technique is to group articles into buckets that are large 
enough to provide predictions that are sound, without explicitly building decision trees. 
Not only the nodes are simple and easy to interpret, but unstable nodes are easy to 
detect and discard. There is no splitting/pruning involved as with classical decision 
trees, making this methodology simple and robust, and thus fit for artificial intelligence 
(automated processing.) 

 
General framework 
 

Whether you are dealing with predicting the popularity of an article, or the risk for a 
client to default on a loan, the basic methodology is identical. It involves training sets, 
cross-validation, feature selection, binning, and populating hash tables of key-value 
pairs (referred to here as the nodes). 

When you process a new observation, you check which node(s) it belongs to. If the best 
node it belongs to is stable and not too small, you use it to predict the future 
performance or value of your observation, or to score the transaction if you are dealing 

https://www.datasciencecentral.com/profiles/blogs/hidden-decision-trees-revisited
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with transactional data such as credit card transactions. In our example, if the 
performance metric (the average pv in the node in question) is significantly above the 
global average, and other constraints are met (the node is not too small, and the 
minimum pv in the node in question not too low to guarantee stability), then we classify 
the observation as good, just like the node it belongs to. In our case, the observation is 
a potential article. 
 

Also, you need to update your training set and the node table (including automatically 
discovered new nodes) every six months or so. 

Parameters must be calibrated to guarantee that 

 Error rate (classifying a good observation as bad or the other way around) is 
small enough; it is measured using a confusion matrix 

 The system is robust: we have a reasonable number of stable nodes that are big 
enough; it is great if less than 3,000 stable, not too small nodes cover 80% of the 
observations (by stable, we mean nodes with low variance) with an average of at 
least 10 observations per node 

 The binning and feature selection mechanism offer real predictive power: the 
average response (our pv) measured in a node classified as good, is much 
above the general average, and the other way around for nodes classified as 
bad; in addition, the response shows little volatility within each node (in our 
case, pv is relatively stable across all observations within a same usable node) 

 We have enough usable nodes (that is, after excluding the small ones) to cover 
at least 50% of all observations, and if possible up to 95% of all observations 
(100% would be ideal but never exists in practice) 

 

We discuss the parameters of our technique, and how to fine-tune them, in the next 
section. Fine-tuning can be automated or made more robust by testing (say) 2,000 sets 
of parameters and identify regions of stability that meet our criteria (in terms of error rate 
and so on) in the parameter space.    

A big question is what to do with observations not belonging to any usable node: they 
cannot be classified. In our example it does not matter if 30% of the observations 
cannot be classified, but in many applications, it does matter. One way to address this 
issue is to use super-nodes: in our case, a node for all posts that are blogs, and another 
one for all posts that are not blogs (these two nodes cover 100% of observations, both 
past and future.) The problem is that usually, these super-nodes don't have much 
predictive power. A better solution consists of using two algorithms: the one described 
here based on usable nodes (let's call it algorithm A) and another one called algorithm B 
that classifies all observations. Observations that can't be classified or scored with 
algorithm A are classified/scored with algorithm B. You can read the details about how 
to blend the results of two algorithms, in one of my patents. In practice, we have used 
the technique described in chapter 1 for algorithm B, a technique easy to implement, 
easy to understand, leading to simple interpretations, and robust. These features are 
important for systems that are designed to run automatically. 
 

http://patents.justia.com/patent/8775257
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The resulting hybrid algorithm is called Hidden Decision Trees - hidden because you 
don't even realize that you have created a bunch of mini decision trees: it was all 
implicit. The version described here is version 2, with new features to prevent the node 
table from exploding, and allowing nodes to overlap, making it more suitable for data 
sets with a larger number of variables.  
 
 

3. Case Study: Results 
 

Our application about predicting page views for an article has been explained in detail in 
the previous sections. So here we focus on the results obtained. 

 
Output from the algorithm 
 

If you run the script listed in the next section, besides producing the table of key-value 
pairs (the nodes) as a text file for further automated processing, it displays summary 
statistics that look like the following: 

Average pv: 6.81 
Number of articles marked as good: 865 (real number is 1079) 
Number of articles marked as bad: 1752 (real number is 1538) 
Avg pv: articles marked as good: 8.23 
Avg pv: articles marked as bad: 6.13 
Number of false positive: 50 (bad marked as good) 
Number of false negative: 264 (good marked as bad) 
Number of articles: 2617 
Error Rate: 0.12 
Number of feature values: 16712 (marked as good: 3409) 
Aggregation factor: 1.62 

 

The number of “feature values” is the total number of key-value pairs found, including 
the small unstable ones, regardless as to whether they are classified as good or bad. 
Any article with a pv above the arbitrary value pv_threshold = 7.1 (see source code) is 
considered as good. This corresponds to articles having about 1.3 times more traffic 
than average, since we use a log scale and the average pv is 6.81. The traffic for 
articles classified as good by the algorithm (pv = 8.23) is about 4.2 times above the 
traffic that an average article receives.  
 
Two important metrics are: 
 

 Aggregation factor: it is an indicator of the average size of a node. The minimum 
is 1, corresponding to nodes that only have one observation. A value above 5 is 
highly desirable, but here, because we are dealing with a small data set and with 
niche articles, even a small value is OK. 

 The error rate is the number of articles wrongly classified. Here we care much 
more about bad articles classified as good.  
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Also note that we correctly identify the vast majority of good articles, but this is because 
we work with small nodes. Finally an article is marked as good if it triggers at least one 
node marked as good (that is, satisfying the criterion defined in the next sub-section.) 

 
Parameters 
 

Besides pv_threshold, the algorithm uses 12 parameters to identify a usable, stable 
node classified as good. These parameters are illustrated in the following piece of code 
(see source code): 
 

  if ( (($n > 3)&&($n < 8)&&($min > 6.9)&&($avg > 7.6)) ||  
       (($n >= 8)&&($n < 16)&&($min > 6.7)&&($avg > 7.4)) || 

       (($n >= 16)&&($n < 200)&&($min > 6.1)&&($avg > 7.2)) ) { 

 

Here, n represents the number of observations in a node, while, avg and min are the 
average and minimum pv for the node in question.  We tested many combinations of 
values for these parameters. Increasing the required size (denoted as n) of a usable 
node will do the following: 
 

 Decrease the number of good articles correctly identified as good 
 Increase the error rate 
 Increase the stability of the system 
 Decrease the predictive power 
 Increase the aggregation factor (see previous sub-section) 

 
Improving the methodology 
 

Here we share some caveats and possible improvements to our technique. 

You need to use a table of one-token keywords that look like two tokens, for increased 
efficiency, and consider these keywords as being one-token. For instance “San 
Francisco” is a one-token keyword, despite its appearance. Such tables are easy to 
build as you always see the two parts together. 

Also, we looked at nodes containing (keyword1, keyword2) where the two keywords are 
adjacent. If you allow the two keywords not to be adjacent, the number of key-value 
pairs (the nodes) increases significantly, but you don't get much additional predictive 
power in return: there is even a risk of over-fitting.  

Another improvement consists of having/favoring nodes containing observations spread 
over a long time period, to avoid any kind of concentration (which could otherwise result 
in over-fitting.)  

Finally, in our case, we cannot exclusively focus on articles with great potential. It is 
important to have many, less popular articles as well: they constitute the long tail. 
Without these articles, we face problems such as excessive content concentration, 
which have negative impacts in the long term. The obvious negative impact is that we 
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might miss nascent topics, and thus getting stuck into a non-adaptive mix of articles at 
some point, thus slowing growth.  

 
Interesting findings 
 

Titles with the following features work well: 

 Contains a number (10, 15 and so on) as we have many popular articles such as 
“10 great deep learning articles”  

 Contains the current year 
 Is a question  (how to) 
 Not a blog, but a book category 
 A blog 

 

Titles containing the following keywords work well: 

 everyone (as in “10 regression techniques everyone should know”) 
 libraries 
 infographic 
 explained  
 algorithms 
 languages  
 amazing  
 must read 
 r python 
 job interview questions 
 should know (as in "10 regression techniques everyone should know") 
 nosql databases 
 versus  
 decision trees 
 logistic regression 
 correlations 
 tutorials 
 code  
 free  

 

4. Source Code 
 
The source code is easy to read and has deliberately made longer than needed to 
provide enough details, avoid complicated iterations, and facilitate maintenance and 

translation into Python or R. The output file hdt-out2.txt stores the key-value pairs (or 
nodes) that are usable, corresponding to popular articles. Here is the input data 

set: HDT-data3.txt. 
 
The code has been written in Perl, R and Python. Perl and Python run faster than R. 
Click on the relevant link below to access the source code, available as a text file. The 

http://storage.ning.com/topology/rest/1.0/file/get/2808323526?profile=original
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code was originally written in Perl, and translated to Python and R by Naveenkumar 
Ramaraju. 
 

 Python version  
 Perl version 
 R version 
 Improved R version 

 
For those learning Python or R, this is a great opportunity. HDT (a light version) has 
been implemented in Excel too, see chapter 3. 
 
Note regarding the R implementation 
 

Required library: hash (R doesn't have inbuilt hash or dictionary without imports.)  

 Standard version is the literal translation of the Perl code with same variable 
names to the maximum extent possible. 

 Improved version uses functions, more data frames and more R-like approach to 
reduce code running time (~30 % faster) and less lines of code. Variable names 
would vary from Perl. Output file would have comma(,) as delimiter between IDs. 

 

Instructions to run:  Place the R file and HDT-data3.txt (input file) in root folder of R 
environment. Execute the “.R” file in R studio or using command line script:  

> Rscript HDT_improved.R 

 

R is known to be slow in text parsing. We can optimize further if all inputs are within 
double quotes or no quotes at all by using data frames. 

 
Julia version 
 
This was added later by Andre Bieler.  A few remarks about: 
 

 This code is absolutely not tuned for performance since everything is done in 
global scope. (In Julia it would be good practice to put everything in small 
functions) 

 Generally for run times of only a few 0.1 s Python will be faster due to the 
compilation times of Julia. 

 
Julia really starts paying off for longer execution times. Contact the author to get the 
Julia code.  
  

https://www.linkedin.com/in/naveenkumar-ramaraju-007284124/
https://www.linkedin.com/in/naveenkumar-ramaraju-007284124/
http://storage.ning.com/topology/rest/1.0/file/get/2808326768?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808326979?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808328353?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808328296?profile=original
https://www.datasciencecentral.com/profile/AndreBieler
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3. Excel Implementation  

 
The technique described in the previous chapter is adapted here to Excel. While it 
obviously shows the limitations of Excel, more surprisingly, it shows how far you can go, 
and how much you can do with Excel, on the same case study and data set. Essentially, 
it leads to the same business insights. 
 
Here we focus on an Excel version that does not even require any Excel macros, 
coding, plug-ins, or anything other than the most basic version of Excel. It is actually 
easily implemented in standard, basic SQL too, and we invite readers to work on an 
SQL version. 
 

1. Excel template for general machine learning 
 
In short, we offer here an Excel template for machine learning and statistical computing, 
and it is quite powerful for an Excel spreadsheet. The techniques have been used by 
the author in automated data science (AI to automate content production, selection and 
scheduling articles for digital publishers) but also in the following contexts: 
 

 Spam detection 
 click, website, and keyword scoring (assigning a commercial value to a keyword, 

group of keywords, or content category) 
 Credit card fraud detection 
 Botnet detection and predicting blog popularity.  

 

The technique blends multiple algorithms that at first glance look traditional and math-
heavy, such as decision trees, regression (logistic or linear) and confidence intervals. 
But they are radically different, can fit in a small spreadsheet (though the Python version 
is more powerful, flexible, and efficient), and do not involve math beyond high-school 
level. In particular, no matrix algebra is required to understand the methodology. 

The methodology presented here is the result of 20 years’ worth of applied research on 
various large industrial data sets.  
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Node table (extract, from spreadsheet) 

 
Who should use the spreadsheet? 
 

First, the spreadsheet (as well as the Python, R, Perl or Julia version) are free to use 
and modify, even for commercial purposes, or to make a product out of it and sell it. It is 
part of my concept of open patent, in which I share all my intellectual property publicly 
and for free.  

The spreadsheet is designed as a tutorial, though it processes the same data set as the 
one used for the Python version. It is aimed at people that are not professional coders, 
people who manage data scientists, BI experts, MBA professionals, and people from 
other fields, with an interest in understanding the mechanics of some state-of-the-art 
machine learning techniques, without having to spend months or years learning 
mathematics, programming, and computer science. A few hours is needed to 
understand the details. This spreadsheet can be the first step to help you transition to a 
new, more analytical career path, or to better understand the data scientists that you 
manage or interact with, or to spark a career in data science. Or even to teach machine 
learning concepts to high school students. 

The spreadsheet also features a traditional technique (linear regression) for comparison 
purposes. 

 

2. Description of the techniques used 
 

Here we explain the differences between the standard and the Excel versions, and we 
provide an overview, at a high level, of the techniques being used, as well as why they 
are better in pretty much all applications, especially with unstructured and large data 
sets. Detailed descriptions are available in the articles referenced in this section.  

https://i.imgur.com/fl9p77S.png
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Spreadsheet versus Python version 
 
The Python version (also available in R, Perl and Julia) of the core technique is 
described in the previous chapter. Python / Perl offer the following advantages over 
Excel: 
 

 It easily handles version 2.0 of HDT (see chapter 2) including overlapping nodes 
 It easily handles big datasets, even in a distributed environment if needed 
 It easily handles a large number of nodes 
 Of course, it is incredibly faster for large data sets 

 

The Excel version has the advantage of being interactive, and you can share it with 
people who are not data scientists. 

 
But Excel (at least the template provided here) is mostly limited to nodes that form a 
partition of the feature space, that is, it is limited to non-overlapping nodes: see 
HDT version 1.0. So even if we have two nodes, one for the keyword data, and one for 
the keyword data science, in version 1,0, they are not overlapping: text buckets contain 
either data and not data science, or data science. In version 2.0, we no longer have this 
restriction. Note that nodes can be a combination of any number of keyword values or 
any other variables (called features in machine learning), and these variables can be 
quantitative or not. 
 
For those familiar with computer science, nodes, both in the Excel or the Python 
version, are represented here as key-value pairs, typically stored as hash tables in Perl 
or Python, and as concatenated strings in Excel. For statisticians, nodes are just nodes 
of decision trees, though no tree structure is used (nor built) in my methodology -- and 
this is why it is sometimes referred to as hidden decision trees (HDT). But you don't 
need to understand this to use the methodology or understand how the spreadsheet 
works. 
 
What is it about?  
 

The methodology features an hybrid algorithm with essentially two components: 

 Data aggregation into bins, based on sound feature selection, binning continuous 
and discrete features, and metric design, not unlike decision trees. However, no 
tree is actually built, and the nodes may belong to several overlapping small 
decision trees, each one corresponding to a case or cluster easy to interpret. 
This is particularly true in HDT 2.0. I will call this the pseudo decision tree 
algorithm. 

 The regression algorithm described in chapter 1, requiring much fewer 
parameters than classical regression models, and more meaningful parameters, 
to avoid over-fitting and to be able to cope with cross-correlated features, while at 
the same time offering a simple interpretation. In the application discussed in the 
spreadsheet, one could argue that the regression used here is closer to logistic 

https://www.datasciencecentral.com/profiles/blogs/hidden-decision-trees-revisited
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than linear regression as data is transformed using a logit mapping, and we are 
predict, for an article, the odds of being popular. 

 
Data points belonging to a small node (say n < 10 observations) have the estimated / 
predicted response computed using the regression (algorithm #2 above), the remaining 
points get scored using the pseudo-decision tree algorithm (algorithm #1 above.) 
 
A lot of intelligence and creativity is put into creating great predictors (the features) and 
then perform sound feature selection. However, the features used in the spreadsheet 
and in the previous chapter (dealing with the same data set) apply to all NLP (natural 
language processing) systems in numerous contexts. 
 
In addition, while not incorporated in the spreadsheet, confidence intervals can be 
computed for each node with at least n observations (say n = 10) using percentiles for 
the response, computed for all data points (in this case, representing articles) in the 
node in question, see example at the bottom of section 3. This percentile function is 
even available in Excel. Then, data points in a node with too large a confidence interval 
are scored using the pseudo regression (first chapter) rather than the pseudo decision 
trees. By scoring, I mean having the response estimated or predicted. By response, I 
mean the variable that we are trying to predict: in this case the page views number 
attached to an article (indeed, its logarithm, to smooth out big spikes due to external 
factors, or the fact that older articles have by definition more page views -- see chapter 
19 for details.) 
 
So no statistical theory is used anywhere in the methodology, not even to compute 
confidence intervals.     
 
Why a brand new set of machine learning tools? 
 

The HDT methodology offers the following advantages: 

 The loss of accuracy, compared with standard procedures, is so small in 
the control data set, that it is negligible and much smaller than the inherent 
noise present in the data. This has been illustrated before on a different data set 
(see chapter 1), and it is confirmed again here (see next section.).  

 The accuracy is much higher in the test data set, in a cross-validation framework 
where HDT is performed on a control data set, and performance measured on a 
different data set called test data set. So the methodology simply works better in 
the real world. This is easy to understand: HDT was designed as a robust 
method, to avoid over-fitting and issues caused by outliers, as well as to 
withstand model failures, messy data, and violations of assumptions.    

 

In addition HDT also offers the following benefits: 

 

 Easy interpretation of the results 

https://www.datasciencecentral.com/profiles/blogs/going-deeper-into-regression-analysis-with-assumptions-plots
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 Simplicity, scalability, easy to implement in a distributed environment, and tested 
on unstructured big data 

 No need to know statistical or mathematical theory to understand its inner 
workings 

 Great to use as a machine learning tutorial for people who do not code or not 
interesting in learning more about machine learning and coming from a different 
field (software engineering, management consulting, bioinformatics, 
econometrics, journalism, and so on.) 

 Could be used in STEM programs in high schools, to give kids the chance to 
work on real machine learning problems using modern techniques. 

 Few parameters to deal with, this is essentially a non-parametric, data-driven (as 
opposed to model-driven) technique. 

 Since most companies use standard tools and software, using HDT can give you 
a competitive advantage (if you are allowed to choose your own method), and 
the learning curve is minimum.  

 

Another way to highlight the benefits is to compare with Naive Bayes. Naive Bayes 
assumes that the features are independent. It is the workhorse of spam detection, and 
we all know how bad it performs. For instance, a message containing the keyword 
“breast cancer” is flagged because it contains the keyword “breast”, and Naive Bayes 
erroneously assumes that “breast” and “cancer” are independent. Not true with HDT. 

Classical decision trees, especially the large ones with millions of nodes from just one 
single decision tree and involving more than 5 or 6 features at each final node, suffer 
from similar issues: over-fitting, artificial feature selection resulting in difficulties 
interpreting the results, maintenance challenges, over-parameterization making it more 
difficult to fine-tune, and most importantly, lack of robustness. 

 

3. The Spreadsheet 
 
The data set and features used in this analysis are described in the previous chapter. 
The spreadsheet only uses a subset of the original features, as it is provided mostly as 
a template and for tutorial purposes. Yet even with this restricted set of features, it 
reveals interesting insights about some keywords (Python, R, data, data science) 
associated with popularity (Python being more popular than R), and some keywords 
that surprisingly, are not (keywords containing “analy”, such as analytic.) Besides 
keywords found in the title, other features are used such as time of publication, and 
have also been binarized to increase stability and avoid an explosion in the number of 
nodes. Note that HDT 2.0 can easily handle a large number of nodes, and even HDT 
1.0 (used in the spreadsheet) easily handles non-binary features. 
 

There are 2,616 observations (articles) and 74 nodes. By grouping all nodes with less 
than 10 observations into one node, we get down to 24 nodes. Interestingly, these small 
nodes perform much better than the average node. The correlations between the 
features and the response are very low, mostly because the keyword-like features 
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trigger very few observations: very few articles contain the keyword R in the title (less 
than 3%.) As a result, the correlation between the response and predicted response is 
not high, around 0.33 regardless of the model. The solution is of course to add many 
more keywords to cover a much larger proportion of articles. 

 
Notes 
 

 In the Python version (see chapter 2), keyword detection / selection (to create 
features) is part of the process, and included in the source code. Here, the 
keywords used as features are assumed to be pre-selected.  

 Page view index (see spreadsheet) is a much better performance indicator than 
R-squared or correlation with response, to measure the predictive power of a 
feature. This is clearly the case with the feature “Python”. 

 The Excel version is slightly different from the Python version, from a 
methodological point of view, as described in section 2. 

 The goodness-of-fit for pseudo and linear regressions are very close, despite the 
fact that the pseudo-regression is a very rough (but robust) approximation of the 
linear regression. 

 Pseudo-regression has been used in its most elementary version, with only one 
M. When the cross-correlation structure is more complex, I recommend using it 
with two M's as described in the first chapter. 

 Some of the features are correlated, for instance “being a blog” with “being a 
forum question”, or “containing data but not data science” with "containing data 
science".  

 When combining pseudo-regression with the pseudo-decision trees (applying 
pseudo-regression to small nodes) we get a result that is better than pseudo-
regression, pseudo-decision trees, or linear regression taken separately. 

 For much larger data sets that include all sorts (categories) of articles (not just 
about data science), I recommend creating and adding a feature called category. 
Such a feature can be build using an indexation algorithm (see chapter 6). 

 The response is denoted as pv.     
 
Click here to get the spreadsheet. Below are some screenshots from the spreadsheet. 
Here pv is the response (logarithm of page views.) 

http://storage.ning.com/topology/rest/1.0/file/get/2808334603?profile=original
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Confidence intervals for the response: example 
 
Node N-100-000000 in the spreadsheet has an average pv of 5.85 (pv is the response), 
and consists of the following pv values: 5.10, 6.80, 5.56, 5.66, 6.19, 6.01, 5.56, 5.10, 
6.80, 5.69. The 10th and 90th percentiles for pv are respectively 5.10 and 6.80, so [5.10, 
6.80] is our confidence interval (CI) for this node. This computation of CI is similar to the 
methodology discussed here. This particular CI is well below the average pv -- even the 
upper bound 6.80 is below the average pv of 6.83. In fact this node corresponds to 
articles posted after 2014, not a blog or forum question (it could be a video or event 
announcement), and with a title containing none of the keywords from the keyword 
feature list. The business question is: Should we continue to accept and promote such 
poor performing content? The answer is yes, but not as much as we used to.  
  

https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://i.imgur.com/JIcS39i.png
https://i.imgur.com/crukJbr.png
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4. Fast Feature Selection  

 
In all machine learning problems, deciding which metrics to use is one of the core 
problems. This chapter addresses this topic.  
 
I propose a simple metric to measure predictive power. It is used for combinatorial 
feature selection, when a large number of feature combinations need to be ranked 
automatically and very fast, for instance in the context of transaction scoring, in order to 
optimize predictive models. It can easily be implemented in a Map Reduce framework. It 
was developed by the author in the context of credit card fraud detection, and 
click/keyword scoring.  
 
Feature selection is used to detect the best subset of features, out of dozens or 
hundreds of features (also called variables or rules). By “best”, we mean with 
highest predictive power, a concept defined in the following subsection. In short, we 
want to remove duplicate features, correlations between features, and features lacking 
predictive power, or features (sometimes called rules) that are rarely triggered -- except 
if they are excellent predictors of rare but costly fraud for instance. 
 
The problem is combinatorial in nature. You want a manageable, small set of features 
(say 20 features) selected from (say) a set of 500 features, to run algorithms such as 
hidden decision trees (see chapter 2) in a way that is statistically robust. But there are 
2.7 * 1035 combinations of 20 features out of 500, and you need to compute all of them 
to find the feature set with maximum predictive power. This problem is computationally 
intractable, and you need to find an alternate solution. The good thing is that you don’t 
need to find the absolute maximum; you just need to find a subset of 20 features that is 
good enough. 
 
One way to proceed is to compute the predictive power of each feature. Then, add one 
feature at a time to the subset (starting with 0 feature) until you reach either 
 

 20 features (your limit) 
 Adding a new feature does not significantly improve the overall predictive power 

of the subset (in short, convergence has been attained) 
 
At each iteration, choose the feature to be added, among the two remaining features 
with the highest predictive power: you will choose (among these two features) the one 
that increases the overall predictive power (of the subset under construction) most. Now 
you have reduced your computations from 2.7 * 1035 to 40 = 2 * 20. 
 
Technical note: Additional step to boost predictive power. Remove one feature at a 
time from the subset, and replace it with a feature randomly selected from the remaining 
features. If this new feature boosts the overall predictive power of the feature subset, 
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keep it, and otherwise switch back to old subset. Repeat this step 10,000 times or until 
no more gain is achieved (whichever comes first). 
 
Finally, you can add two or three features at a time, rather than one. Sometimes, 
combined features have better predictive power than isolated features. For instance if 
feature A = country, with values in {USA, UK} and feature B = hour of the day, with 
values in {“day - Pacific Time”, “night - Pacific Time”}, both features separately have 
little if any predictive power. But when you combine both of them, you have a much 
more powerful feature: UK/night is good, USA/night is bad, UK/day is bad, and USA/day 
is good, if your response (what you are predicting) is Internet traffic quality. Using these 
two features together also reduces the risk of false positives / false negatives. 
 
Also, in order to avoid highly granular features, use lists. So instead of having feature A 
= country (with 200 potential country values), and feature B = IP address (with billions of 
potential values), use: 
 

 Feature A = country group, with 3 list of countries (high risk, low risk, neutral). 
These groups can change over time. 

 Feature B = type of IP address (with 6-7 types, one being for instance “IP 
address is in some whitelist”. 

 

1. Predictive Power of a Feature, Cross-Validation 
 
Here we illustrate the concept of predictive power on a subset of 2 features. Let’s say 
that we have two binary features A and B taking two possible values 0 or 1. Also, in the 
context of fraud detection, we assume that each observation in the training set is either 
Good (no fraud) or Bad (fraud). The fraud status (G or B) is called the response or 
dependent variable in statistics. The features A and B are also called rules or 
independent variables. 
 
Cross validation 
 
First, split your training set (the data where the response B or G is known) into two 
parts: control and test. Make sure that both parts are data-rich: if the test set is big 
(millions of observations) but contain only one or two clients (out of 200), it is data-poor 
and your statistical inference will be negatively impacted (low robustness) when dealing 
with data outside the training set. It is a good idea to use two different time periods for 
control and test. You are going to compute the predictive power (including rule 
selection) on the control data. When you have decided on a final, optimum subset of 
features, you will then compute the predictive power on the test data. If the drop in 
predictive power is significant in the test data (compared with control), something is 
wrong with your analysis: detect the problem, fix it, start over. You can use multiple 
control and test sets: this will give you an idea of how the predictive power varies from 
one control set to another one. Too much variance is an issue that should be 
addressed. 
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Predictive power 
 
Using our above example with two binary features A, B taking on two values 0, 1, we 
can break the observations from the control data set into 8 categories 
 

 
 
 Let denote as n1, n2 … n8 the number of observations in each of these 8 categories, 
and let us introduce the following quantities: 
 

P00 = n5 / (n1 + n5), P01 = n6 / (n2 + n6), P10 = n7 / (n3 + n7), P11 = n8 / (n4 + n8) 
p = (n5 + n6 + n7 + n8) / (n1 + n2 + … + n8). 

 
Let’s assume that p, measuring the overall proportion of fraud, is less than 50% (that is, 
p < 0.5, otherwise we can swap between fraud and non-fraud). For any r between 0 and 
1, define the W function (shaped like a W), based on a parameter a (0 < a < 1, 
typically a = 0.5 - p) as follows: 
 

 W(r) = 1 - (r / p), if 0 < r < p 
 W(r) = a (r - p) / (0.5 - p), if p < r < 0.5 
 W(r) = a (r - 1 + p) / (p - 0.5), if 0.5 < r < 1 - p 
 W(r) = (r - 1 + p) / p, if 1 - p < r < 1 

  
Typically, r = P00, P01, P10 or P11. The W function has the following properties: 
 

 It is minimum and equal to 0 when r  = p or r = 1 - p, that is, when r does not 
provide any information about fraud / non fraud, 

 It is maximum and equal to 1when r = 1 or r = 0, that is, when we have perfect 
discrimination between fraud and non-fraud, in a given bin. 

 It is symmetric: W(r) = W(1 - r) for 0 < r < 1. So if you swap Good and Bad (G and 
B), it still provides the same predictive power. 

 
Now let’s define the predictive power: 
 

H = P00 W(P00) + P01 W(P01) + P10 W(P10) + P11 W(P11) 
 
The function H is the predictive power for the feature subset {A, B} having four bins 00, 
01, 10, and 11, corresponding to (A = 0, B = 0), (A = 0, B = 1), (A = 1, B = 0) and (A = 1, 
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B = 1). Although H appears to be remotely related to the entropy, our H was designed to 
satisfy desirable properties, and to be parameter-driven, thanks to a. Unlike entropy, our 
H is not based on physical concepts or models; it is actually a synthetic (though useful) 
metric. 
 
Note that the weights P00… P11 in H guarantee that bins with low frequency (that is, low 
triggering rate) have low impact on H. Indeed, I recommend setting W(r) to 0 for any bin 
that has less than 20 observations. For instance, the triggering rate for bin 00 is (n1 + 
n5) / (n1 + … + n8), its size is n1 + n5, and r = P00 = n5 / (n1 + n5) for this bin. If n1 + n5 = 0, 
set P00 to 0 and W(P00) to 0. I actually recommend to do this not just if n1 + n5 = 0, but 
also whenever n1 + n5 < 20, especially if p is low (if p is very low, say p < 0.01, you need 
to over-sample bad transactions when building your training set, and weight the counts 
accordingly). Of course, the same rule applies to P01, P10, and P11. Note that you should 
avoid feature subsets that have a large proportion of observations spread across a large 
number of almost empty bins, as well as feature subsets that produce a large number of 
empty bins: observations outside the training set are likely to belong to an empty or 
almost empty bin, and it leads to high-variance predictions. To avoid this drawback, 
stick to binary features, select up to 20 features, and use our (hybrid) hidden decision 
tree methodology for scoring transactions. Finally, Pkl  is the naive estimator of the 
probability P(A = k, B = l) for k, l = 0,1. 
 
The predictive power H has interesting properties: 
 

 It is always between 0 and 1, equal to 0 if the feature subset has no predictive 
power, and equal to 1 if the feature subset has maximum predictive power. 

 A generic version of H (not depending on p) can be created by setting p = 0.5. 
Then the W functions are not shaped like a W anymore, they are shaped like a V. 

 

2. Data structure, computations 
 
You can pre-compute all the bin counts nk for the top 20 features (that is, features with 
highest predictive power) and store them in a small hash table with at most 2 * 
220 entries (approx. 2 million; the factor two is because you need two measurements per 
bin: number of B’s, and number of G’s). An entry in this hash table would look like 
 

$Hash{01101001010110100100_G} = 56, 
 
meaning that Bin # 01101001010110100100 has 56 good (G) observations. 
 
The hash table is produced by parsing your training set one time, sequentially: for each 
observation, compute the flag vector (which rules are triggered, that is the 
01101001010110100100 vector in this example), check if it’s good or bad, and update 
(increase count by 1) the associated hash table entry accordingly, with the following 
instruction: 

$Hash{01101001010110100100_G}++ 
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Then whenever you need to measure the predictive power of a subset of these 20 
features, you don’t need to parse your big data set again (potentially billion of 
observations), but instead, just access this small hash table: this table contains all you 
need to build your flag vectors and compute scores, for any combination of features that 
is a subset of the top 20. 
 
You can even do better than top 20, maybe top 30. While this would create a hash table 
with 2 billion entries, most of these entries would correspond to empty bins and thus 
would not be in the hash table. Your hash table might contain only 200,000,000 entries, 
maybe too big to fit in memory, and requiring a Map Reduce / Hadoop implementation. 
Even better: build this hash table for the top 40 features. Then it will fully solve your 
feature selection problem described earlier. However now, your hash table could have 
up to 2 trillion entries. But if your dataset only has 100 billion observations, then of 
course your hash table cannot have more than 100 billion entries. In this case, I suggest 
that you create a training set with 20 million observations, so that your hash table will 
have at most 20 million entries (and probably less than 10 million non-empty bins). 
Thus, it can fit in memory. 
 
You can compute the predictive power of a large number (say 100) of feature subsets 
by parsing the big 40-feature input hash table obtained in the previous step, then for 
each flag vector and G/B entry in the input hash table, loop over the 100 target feature 
subsets to update counts (the nk’s) for these 100 feature subsets: these counts are 
stored / updated in an output hash table. The key in the output hash table has two 
components: feature ID and flag vector. You then loop over the output hash table to 
compute the predictive power for each feature subset. This step can be further 
optimized. 
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5. Fast Clustering for Big Data  

 
Here we discuss two potential algorithms that can perform fast clustering on big data 
sets, as well as the graphical representation of such complex clustering structures. By 
fast, we mean a computational complexity of order O(n) and even faster such as O(n / 
log n). This is much faster than good Hierarchical Agglomerative Clustering which are 
typically O(n2 log n). By big data, we mean several millions, possibly billions of 
observations. 
 
Potential applications: 
 

 Creating a keyword taxonomy to categorize the entire universe of cleaned 
(standardized), valuable English keywords. We are talking of about 10 million 
keywords made up of one, two or three tokens, that is, about 300 times the 
number of keywords found in a good English dictionary. The purpose might be to 
categorize all bid keywords that could be purchased by eBay and Amazon on 
Google (for pay-per-click ad campaigns), to better price them. This is the 
application discussed in this chapter. 

 Clustering millions of documents (e.g. books on Amazon.com) or 
 Clustering web pages, or even the entire Internet, which consists of about 100 

million top websites and billions of web pages. 
 
We also discuss whether it makes sense to perform such massive clustering, and how 
Map Reduce can help. 
 

1. Building a keyword taxonomy 
 
Here's the answer, from my earlier article What MapReduce can't do. Step 2 is the 
clustering part. 
 
Step #1: pre-processing 
 
You gather tons of keywords over the Internet with a web crawler (crawling Wikipedia or 
Google), and compute the frequencies for each keyword, and for each “keyword pair”. A 
“keyword pair” is two keywords found on a same webpage, or close to each other on a 
same web page. Also by keyword, I mean stuff like "California insurance", so a keyword 
usually contains more than one token, but rarely more than three. With all the keyword 
frequencies, you can create a table (typically containing many million keywords, even 
after keyword cleaning), where each entry is a pair of keywords and 3 numbers, e.g. 
 

A=”California insurance”, B=”home insurance”, x=543, y=998, z=11 
 
where 
 

http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html
http://www.analyticbridge.com/profiles/blogs/what-mapreduce-can-t-do
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 x is the number of occurrences of keyword A in all the web pages crawled 
 y is the number of occurrences of keyword B in all the web pages crawled 
 z is the number of occurrences where A and B form a pair (e.g. they are found on 

a same page) 
 
This “keyword pair” table can be easily and efficiently built using MapReduce 
(distributed architecture). Note that the vast majority of keywords A and B do not form a 
“keyword pair”, in other words, z=0. So by ignoring these null entries, your “keyword 
pair” table is still manageable, and might contain as little as 100 million entries. 
 
Note: This step #1 constitutes the final step of a number of interesting applications.  For 
instance, it is used in search engine technology to identify or recommend keywords 
related to some other keywords. See example here.  
 
Step #2: clustering 
 
To create a taxonomy, you want to group the keywords found into similar clusters. One 
way to do it is to compute a dissimilarity d(A, B) between two keywords A, B. For 
instances d(A, B) = z / (xy)1/2, although other choices are possible. Note that the 
denominator prevents extremely popular keywords (e.g. “free”) from being close to all 
the keywords, and from dominating the entire keyword relationship structure: indeed, it 
favors better keyword bonds, such as “lemon” with “law” or “pie”, rather than “lemon” 
with “free”. 
 
The higher d(A, B), the closer keywords A and B are to each other. Now the big problem 
is to perform clustering - any kind of clustering, e.g. hierarchical - on the “keyword pair” 
table, using any kind of dissimilarity metric. We now discuss our solution, and a 
potential alternate solution. 
 

2. Fast clustering algorithm 
 
While this algorithm is described in the context of keyword clustering, it is 
straightforward to adapt it to other contexts. Here we assume that we have n = 
10,000,000 unique keywords and m = 100,000,000 keyword pairs {A, B}, where 
d(A,B)>0. That is, an average of r = 10 related keywords attached to each keyword. 
Our algorithm incrementally proceeds in several (5 or 6) rounds, as follows: 
 
BEGIN 
 
Initialization (Round #0): The small data (or seeding) step 
 
Select 10,000 seed keywords, create (say) 100 categories and create a hash table 

$hash where the key is one of the 10,000 seed keywords, and the value is a list of 
categories the keyword is assigned to. 
 

For instance, $hash{"cheap car insurance"} = {"automotive", "finance"} 

http://frenchlane.com/kw8.html
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The choice of the initial 10,000 seed keywords is very important. I suggest to pick up the 
top 10,000 keywords, in terms of number of associations: that is, keywords A with many 
B's where d(A, B) > 0. This will speed up the convergence of the algorithm. 
 
Round #1: The big data step 
 
Browse the table of m keyword pairs, from beginning to end. 
 

When you find a pair {A, B} where (say) $hash{A} exists and $hash{B} does not, do: 
 

 $hash{B} = $hash{A};  

 $weight{B} = d(A, B) 

 

When you find a pair {A, B} where both A and B are already in $hash, do 
 

 if $d(A,B) > $weight(B) then { $hash{B} = $hash{A}; $weight{B} = $d(A, 

B); } # Note: B gets re-categorized to A's category 

 if $d(A,B) > $weight(A) then { $hash{A} = $hash{B}; $weight{A} = $d(A, 

B); } # Note: A gets re-categorized to B's category 

 
Round #2: Repeat Round #1 ($hash and $weight are kept in memory and keep growing 
at each subsequent round) 
 
Round #3: Repeat Round #1, one more time 
 
Round #4: Repeat Round #1, one more time 
 
Round #5: Repeat Round #1, one more time 
 
END 
 
The computational complexity is qm = O(n), with q being the number of rounds. This is n 
= 10,000,000 times faster than good clustering algorithms. However, all these hash 

table accesses will slow it a bit to O(n log n), as $hash and $weight grow bigger at each 
subsequent round. 
 
Would pre-sorting the big table of m pairs help? Sorting by d(A, B) would allow us to 
drastically reduce the number of hash table accesses (by making all the re-
categorizations not needed anymore), but sorting is O(n log n), so we would not gain 
anything. Note that sorting can be efficiently performed with Map Reduce. The reduce 
step in this case, consists of merging a bunch of small, sorted tables. 
 
This clustering algorithm seems easy to implement using Map Reduce (a distributed 
architecture), however since the big table only has 100,000,000 entries, it might fit in 
RAM. 
 

http://nlp.stanford.edu/IR-book/html/htmledition/time-complexity-of-hac-1.html
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You can improve the computational complexity by keeping the most important m / log n 
entries (based on volume and d(A,B)) in the big table, and deleting the remaining 
entries. In practice, deleting 65% of the big table (the very long tail only, but not the 
entire long tail, from a keyword distribution point of view) will have very little impact on 
the performance: you will have a large bucket of un-categorized keywords, but in terms 
of volume, these keywords might represent less than 0.1%. 
 
Comments 
 

 Alternate algorithm: One could use Tarjan's strongly connected components 
algorithm to perform the clustering. To proceed, you first bin the distances: d(A, 
B) is set to 1 if it is above some pre-specified threshold, 0 otherwise. This is a 
graph theory algorithm: each keyword represents a node, each pair of keywords 
where d(A, B) = 1, represents an edge. The computational complexity of the 
algorithm is O(n + m), where n is the number of keywords and m is the number of 
pairs (edges). To take advantage of this algorithm, you might want to store the 
big "keyword pair" table in a graph database (a type of NoSQL database). 
 

 Visualization. How do you represent these keywords, with their cluster structure 
determined by d(A, B), in a nice graph? 10 million keywords would fit in a 3,000 x 
3,000 pixels image. For those interested in graphical representations, see 
the Fruchterman and Rheingold algorithm, extensively used to produce such 
graphs. Note that its computational complexity is O(n3) though, so we need to 
very significantly improve it for this keyword clustering application - including the 
graphical representation. The graphical representation could be a raster image 
with millions of pixels, like a heat map where color represents category and, 
when you point to a pixel, a keyword value shows up (rather than a vector image 
with dozens of nodes, see graph below). Neighboring pixels would represent 
strongly related keywords. 

  

https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/NoSQL_(concept)
https://en.wikipedia.org/wiki/Force-directed_graph_drawing
https://www.google.com/search?source=ig&rlz=&q=heat+map


40 
 

6. Structuring Unstructured Data  

You have gathered gigabytes or terabytes of unstructured text, for instance scraping the 
Internet, or pieces of email from your employees or users, or tweets, or millions of 
products that you want to categorize (only product description and product name is 
available - sometimes with typos). Now you want to make sense of it, and extract value, 
possibly design a nice search engine so that your customers can easily find your 
products. The core algorithm that you need is an automated cataloguer, also called 
indexer. I explain here in layman's terms how it works. First, let's assume that the data 
consists of 
 

 Pages or articles (a web page or the body of an email, etc.) 
 Subject lines (or page titles), 
 Authors (for a web page or an email). 

 

Typically, these “pages” are stored as large repositories containing millions or billions of 
(sometimes compressed) text files spread across a number of folders and sub-folders, 
or multiple servers. Sometimes a time stamp is attached to each document, and can be 
leveraged to increase the accuracy of the indexer. 

The technique also works even if you only have pages (no user information, no titles). If 
you have pages and authors, you can classify the pages separately, then the authors 
separately (or in parallel), then blend the results to maximize accuracy. The same 
indexation algorithm (sometimes called tagging algorithm) is used in both cases. 
Despite the fact that classifying billions of documents seems mathematically unfeasible 
due to the computational complexity of traditional clustering algorithms (the time spent 
to cluster is growing much faster than linearly, as a function of the size of your 
repository), this algorithm is different, run very fast, and is easy to implement using a 
distributed architecture. 

The indexer algorithm creates a taxonomy of your pages (or products, articles, 
documents etc.) Each page is assigned a category and sub-category. 

 
1. Indexation algorithm 
 

 Step 1: Create a data dictionary (that is, a frequency table, see section 8 in 
chapter 25) of all one-token and two-token keywords found in all pages (both in 
the title and in the body of the article). This assumes that you crawled all your 
articles to extract all the text. 

 Step 2: Filter / clean results. Ignore keywords with less than 5 occurrences. 
Check all n-grams of a keyword (data science and science data) and eliminate n-
grams with low frequency, for each keyword 

 Step 3: Look at top 300 entries, called seed keywords. Manually assign seed 
keywords to 10-20 categories, (these categories are manually pre-selected, after 
looking at the top 300 entries.) For instance, the top category data plumbing will 
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have the following seed keywords: data engineer, data architect, data 
warehouse, Hadoop, Spark, data lake, IoT and many more. Don't forget to have 
a top category called Unknown. 

 Step 4. Based on keywords found in the title and body of an article, assign the 
article in question to the top category that has the biggest overlap with the article, 
in terms of seed keywords. Note that keywords found in the title might be 
assigned a higher weight than those found in the body. Likewise, a different 
weight can be attached to each seed keyword, in each top category. 

 
This technique is called indexation because it is very similar to the creation of a search 
engine. A business application is described in chapter 20. 
 

2. Potential improvement 
 

These improvements will boost the performance (accuracy). 

 Add 3-token keywords in your dictionary, not just 1- and 2-token. For 3-token 
keywords, you have 3! (factorial 3) = 6 n-grams. Usually, only one or two of these 
6 n-grams will show up in the articles, for any keyword (data science central will 
show up, but central science data won't).  

 Use stop words to clean your data. Examples: it, where, how, why, for and so on. 
Be careful though: IT Job cannot be reduced to Job by filtering out the token IT. 
You can replace plurals by singular, and normalize the keywords. 

 Some one-token words don't make sense. Do not break “San Francisco” into 
“San” and “Francisco”. Used a table of keywords that should not be split. 

 
Even without improvements, the methodology will work well, because you focus on top 
keywords in terms of frequency. For instance, in Best San Francisco Hotels, the 
keywords Best San and Francisco Hotels won't show up at the top, and if they do, you 
can remove them, as you manually review the top 3,000 entries (a manual process that 
takes 30 minutes).  
 
Finally, you can use the BerkeleyDB open source software (combined with a bunch of 
lookup tables such as stop keywords, synonyms and so on) to do many of these tasks.  
  

https://en.wikipedia.org/wiki/Berkeley_DB
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7. Testing for Randomness 

 

This chapter is intended for practitioners who might not necessarily be statisticians or 
statistically-savvy. The mathematical level is kept as simple as possible, yet I present an 
original, simple approach to test for randomness, with an interesting application to 
illustrate the methodology. This material is not something usually discussed in textbooks 
or classrooms (even for statistical students), offering a fresh perspective, and out-of-the-
box tools that are useful in many contexts, as an addition or alternative to traditional 
tests that are widely used. This chapter is written as a tutorial, but it also features an 
interesting research result in the last section. 

 

1. Context 
 

Let us assume that you are dealing with a time series with discrete time increments (for 
instance, daily observations) as opposed to a time-continuous process. The approach 
here is to apply and adapt techniques used for time-continuous processes, to time-
discrete processes. More specifically (for those familiar with stochastic processes) we 
are dealing here with discrete Poisson processes. The main question that we want to 
answer is: Are some events occurring randomly, or is there a mechanism making the 
events not occurring randomly? What is the gap distribution between two successive 
events of the same type? 

In a time-continuous setting (Poisson process) the distribution in question is modeled by 
the exponential distribution. In the discrete case investigated here, the discrete Poisson 
process turns out to be a Markov chain, and we are dealing with geometric, rather than 
exponential distributions. Let us illustrate this with an example. 

 
Example 
 
The digits of 21/2 are believed to be distributed as if they were occurring randomly. Each 
of the 10 digits 0, 1, ... , 9 appears with a frequency of 10% based on observations, and 
at any position in the decimal expansion of 21/2, on average the next digit does not seem 
to depend on the value of the previous digit (in short, its value is unpredictable.)  An 
event in this context is defined, for example, as a digit being equal to (say) 3. The next 
event is the first time when we find a subsequent digit also equal to 3. The gap (or time 
elapsed) between two occurrences of the same digit is the main metric that we are 
interested in, and it is denoted as G. If the digits were distributed just like random 
numbers, the distribution of the gap G between two occurrences of the same digit, 
would be geometric, that is,  

 
with p = 1/10 in this case, as each of the 10 digits (0, 1, ..., 9) seems -- based on 
observations -- to have a frequency of 10%. We will show that this is indeed the case: In 

https://api.ning.com/files/5-p*hFjvMILtpGTnraDMGiHyzoo*BAzx-6uGqC*qWotbXGPcooq*QrxztHtYNJ445jQVoln*tAwqSZaOYQz-GglD*Y-Zicz2/Capture.PNG
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other words, in our example, the gap G is very well approximated by a geometric 
distribution of parameter p = 1/10, based on an analysis of the first 10 million digits of 
21/2.    
 
What else should I look for, and how to proceed? 
 
Studying the distribution of gaps can reveal patterns that standard tests might fail to 
catch. Another statistic worth studying is the maximum gap, see chapter 14. This is 
sometimes referred to as extreme events / outlier analysis. Also, in our above example, 
studying gaps between groups of digits (not just single digits, but for instance how 
frequently the “word” 234567 repeats itself in the sequence of digits, and what is the 
distribution of the gap for that word. For any word consisting of 6 digits, p = 1 / 
1,000,000.  In our case, our data set only has 10 million digits, so you may find 234567 
maybe only 2 times, maybe not even once, and looking at the gap between successive 
occurrences of 234567, is pointless. Shorter words make more sense. This and 
other issues are discussed in the next section. 

 
2. Methodology 

 
The first step is to estimate the probabilities p associated with the model, that is, the 
probability for a specific event, to occur at any time. It can easily be estimated from your 
data set, and generally, you get a different p for each type of event. Then you need to 
use an algorithm to compute the empirical (observed) distribution of gaps between two 
successive occurrences of the same event. In our example, we have 10 types of events, 
each associated with the occurrence of one of the 10 digits 0, 1,..., 9 in the decimal 
representation of 21/2.  The gap computation can be efficiently performed as follows: 
 
Algorithm to compute the observed gap distribution 
 
Do a loop over all your observations (in our case, the 10 first million digits of 21/2, stored 
in a file; each of these 10 million digits is one observation). Within the loop, at each 
iteration t, do:  
 

 Let E be the event showing up in the data set, at iteration t. For instance, the 
occurrence of (say) digit 3 in our case. Retrieve its last occurrence stored in an 

array, say LastOccurrences[E] 

 Compute the gap G as G = t - LastOccurrences[E] 

 Update the LastOccurrences table as follows: LastOccurrences[E] = t 
 Update the gap distribution table, denoted as GapTable (a two-dimensional array 

or better, an hash table) as follows: GapTable[E, G]++ 
 

Once you have completed the loop, all the information that you need is stored in the 
GapTable summary table. 
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Statistical testing 
 
If some events occur randomly, the theoretical distribution of the gap, for these events, 
is known to be geometric, see above formula in first section. So you must test whether 
the empirical gap distribution (computed with the above algorithm) is statistically 
different from the theoretical geometric distribution of parameter p (remember that each 
type of event may have a different p.) If not statistically different, then the assumption of 
randomness should be discarded: you've found some patterns. This work is typically 
done using a Kolmogorov- Smirnov test. If you are not a statistician but instead a BI 
analyst or engineer, other techniques can be used instead, and are illustrated in the last 
section: 
 

 You can simulate events that are perfectly randomly distributed, and compare the 
gap distribution obtained in your simulations, with that computed on your 
observations. See here how to do it, especially the last comment featuring an 
efficient way to do it. This Monte-Carlo simulation approach will appeal to 
operations research analysts. 

 
 In Excel, plot the gap distribution computed on your observations (one for each 

type of event), add a trendline, and optionally, display the trendline equation and 
its R-Squared. When choosing a trendline (model fitting) in Excel, you must 
select the Exponential one. This is what we did (see next section) and the good 
news is that, despite the very limited selection of models that Excel offers, 
Exponential is one of them. You can actually test other trendlines in Excel 
(polynomial, linear, power, or logarithmic) and you will see that by far, 
Exponential offers the best fit -- if your events are really randomly distributed. 

 
Further advice 
 
If you have collected a large number of observations (say 10 million) you can do the 
testing on samples of increasing sizes (1,000, 10,000, 100,000 consecutive 
observations and so on) to see how fast the empirical distribution converges (or not) to 
the theoretical geometric distribution. You can also compare the behavior across 
samples (cross-validation), or across types of events (variance analysis). If your data 
set is too small (100 data points) or your events too rare (p less than 1%), consider 
increasing the size of your data set if possible.     
 
Even with big data, if you are testing a large number of rare events (in our case, tons of 
large “words” such as occurrences 234567 rather than single digits in the decimal 
representation of 21/2 expect many tests to result in false negatives (failure to  detect 
true randomness.) You can even compute the probability for this to happen, assuming 
all your events are perfectly randomly distributed. This is known as the curse of big 
data. 

 
 
 

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://math.stackexchange.com/questions/580901/r-generate-sample-that-follows-a-geometric-distribution
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/the-curse-of-big-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/the-curse-of-big-data
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3. Application to Number Theory Problem 

 

Here, we further discuss the example used throughout this chapter to illustrate the 
concepts. Mathematical constants (and indeed the immense majority of all numbers) 
are thought to have their digits distributed as if they were randomly generated, see 
chapter 10 for details. 
 
Many tests have been performed on many well-known constants (see here), and none 
of them was able to identify any departure from randomness. The gap test illustrated 
here is less well known, and when applied to 21/2, it was also unable to find departure 
from randomness. In fact, the fit with a random distribution, as shown in the figure 
below, is almost perfect. 
 

 
 
There is a simple formula to compute any digit of 21/2 separately, see here, however it is 
not practical. Instead, we used a table of 10 million digits published here by NASA. The 
source claims that digits beyond the first five million have not been double-checked, so 
we only used the first 5 million digits. The summary gap table, methodological details, 
and the above picture, can be found in my spreadsheet. You can download it here.  
 

The above chart shows a perfect fit between the observed distribution of gap lengths 
(averaged across the 10 digits 0, 1, ..., 9) between successive occurrences of a same 
digit in the first 5 million decimals of 21/2, and the geometric distribution model, using the 
Exponential trendline in Excel. 

I also explored the last 2 million decimals available in the NASA table and despite the 
fact that they have not been double-checked, they also display the exact same random 

https://en.wikipedia.org/wiki/Diehard_tests
https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://apod.nasa.gov/htmltest/gifcity/sqrt2.10mil
https://api.ning.com/files/yK2V4Dt3ezW*2thKGMSiCr8AgYCEyd7S24Xj2cQtxoZ*k2ZzsQ9hW8ew3oL*FNnR4d05VjEg*2p0PaYdw13jPPVPOMdj8iC5/sqrt2digitgap.xlsx
https://api.ning.com/files/yK2V4Dt3ezXVDLy3DD6-7S17-3bZUTVwlEzirv4qgGq-kt*gqJwyDkdvNdlYLtQj5bJGm-4dEKqUDlyxvVxb21SLjakR1BvB/Capture.PNG
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behavior. Maybe these decimals are all wrong but the mechanism that generates them 
preserves randomness, or maybe all or most of them are correct. 

 
A counter-example 
 
The number 0.123456789101112131415161718192021... known as the 
Champernowne constant, and obtained by concatenating the decimal representations of 
the natural numbers in order, has been proved to be “random”, in the sense that no digit 
or group of digits, occurs more frequently than any other. Such a number is known as 
a normal number. However, it fails miserably the gap test, with the limit distribution for 
the gaps (if it even exists) being totally different from a geometric distribution. I tested it 
on the first 8, 30, 50, 100 and 400 million decimals, and you can try too, as an exercise. 
All tests failed dramatically. 
 
Ironically, no one known if 21/2 is a normal number, yet it passed the gap test incredibly 
well. Maybe a better definition of a “random” number, rather than being normal, would 
be a number with a geometric distribution as the limit distribution for the gaps. Can you 
create an artificial number that passes this test, yet exhibits strong patterns of non-
randomness? Is it possible to construct a non-normal number that passes the gap test? 
 
Potential use in cryptography 
 
A potential application is to use digits that appear to be randomly generated (like white 
noise, and the digits of 21/2 seem to fit the bill) in documents, at random positions that 
only the recipient could reconstruct, perhaps three or four random digits on average for 
each real character in the original document, before encrypting it, to increase security -- 
a bit like steganography. Encoding the same document a second time would result in a 
different kind of white noise added to the original document, and peppered randomly, 
each time differently -- with a different intensity, and at different locations each time. 
This would make the task of hackers more complicated. 

 
4. Conclusion 

 
Finally, this is an example where intuition can be wrong, and why you need data 
science. In the digits of 21/2, while looking at the first few thousand digits (see picture 
below), it looked to me like it was anything but random. There were too many 99, two 
few 37 (among other things), according to my intuition and visual inspection (you may 
call it gut feelings.) It turns out that I was wrong. Look at the first few thousand digits 
below, chances are that your intuition will also mislead you into thinking that there are 
some patterns. This can be explained by the fact that patterns such as 99 are easily 
detected by the human brain and do stand out visually, yet in this case, they do occur 
with the right frequency if you use analytic tools to analyze the digits.   

https://en.wikipedia.org/wiki/Champernowne_constant
https://en.wikipedia.org/wiki/Normal_number
https://www.datasciencecentral.com/profiles/blogs/interesting-data-science-application-steganography
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First few hundred digits of 21/2. Do you see any pattern? 
  

https://api.ning.com/files/ZCTcWkdHpEXmtiXE1gBxuqNw*LwvCiTw873I0mJw7UDcXMHx51LD1zi6VOtdru5n1Adwqe-bqcM6lVfsF0Gr40stDXHJH7iu/Capture.PNG
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8. Central Limit Theorem Revisited 

 
In this chapter, we explore in layman’s terms the most fundamental statistics theorem. 
We investigate a special but interesting and useful case, which is not discussed in 
textbooks, data camps, or data science classes. This material is part of a series about 
off-the-beaten-path data science and mathematics, offering a fresh, original and simple 
perspective on a number of topics.  
 
The theorem discussed here is the central limit theorem. It states that if you average a 
large number of well-behaved observations or errors, eventually, once normalized 
appropriately, it has a standard normal distribution. Despite the fact that we are dealing 
here with a more advanced and exciting version of this theorem (discussing the 
Lyapunov condition), we focus on applications 

In short, we are dealing here with not-so-well-behaved observations, and we show that 
even in that case, the limiting distribution of the “average” can be normal (Gaussian.). 
More precisely, we show when it is and when it is not normal, based on simulations and 
non-standard (but easy to understand) statistical tests. 
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Figure 1: Cases #1, 2 and 3 (section 2) show convergence to the Gaussian distribution 
(Click here for a higher resolution picture) 

 
1. A special case of the Central Limit Theorem 

 
Let's say that we have n independent observations X1,..., Xn and we compute a 
weighted sum 

S = a1X1 + ... + anXn. 
 

Under appropriate conditions to be discussed later, (S - E(S)) / Stdev(S) has a normal 
distribution of mean 0 and variance 1. Here E denotes the expectation and Stdev 
denotes the standard deviation, that is, the square root of the variance. 

This is a non-basic case of the central limit theorem, as we are dealing with a weighted 
sum. The classic, basic version of the theorem assumes that all the weights a1, ..., an 
are equal. Furthermore, we focus here on the particular case where 
 

 The highest weights (in absolute value) are concentrated on the first few 
observations, 

 The weight ak tends to 0 as k tends to infinity.    
 
The surprising result is the fact that even with putting so much weight on the first few 
observations, depending on how slowly ak converges to 0, the limiting distribution is still 
Gaussian.  
 
Context 
 
You might wonder: how is this of any practical value in the data sets that I have to 
process in my job? Interestingly, I started to study this type of problems long ago, in the 
context of k-NN (nearest neighbors) classification algorithms. One of the questions, to 
estimate the local or global intensity of a stochastic point process, and also related to 
density estimation techniques, was: how many neighbors should we use, and which 
weights should we put on these neighbors to get robust and accurate estimates? It 
turned out that putting more weight on close neighbors, and increasingly lower weight 
on far away neighbors (with weights slowly decaying to zero based on the distance to 

https://api.ning.com/files/V0BiFi-tkRteQyHhPbj8RQVNOvcClBQt-DYM6WnxSg9v3b0wVsxx8nvQbTgIxG6eN2MTdYobMA-XCzY0ZmZgl-1uDLF2Js7A/special.PNG
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the neighbor in question) was the solution to the problem. I actually found optimum 
decaying schedules for the ak's, as k tends to infinity. You can read the detail here.  

 
2. Simulations, testing, and conclusions 

 
Let's get back to the problem of assessing when the weighted sum S = a1X1 + ... + anXn, 
after normalization, converges to a Gaussian distribution. By normalization, I mean 
considering (S - E(S)) / Stdev(S), instead of S.  
 

In order to solve this problem, we performed simulations as follows: 

 
Simulations 
 
Repeat m = 10,000 times: 
 

 Produce n = 10,000 random deviates X1, ..., Xn uniformly distributed on [0, 1] 
 Compute S = a1X1 + ... + anXn based on a specific set of weights a1, ..., an 
 Compute the normalized S, denoted as W = (S - E(S)) / Stdev(S). 

 
Each of the above m iterations provides one value of the limiting distribution. In order to 
investigate the limiting distribution (associated with a specific set of weights), we just 
need to look at all these m values, and see whether they behave like deviates from a 
Gaussian distribution of mean 0 and variance 1. Note that we found n = 10,000 and m = 
10,000 to be large enough to provide relatively accurate results. We tested various 
values of n before settling for n = 10,000, looking at what (little) incremental precision 
we got from increasing n (say) from 500 to 2,000 and so on. Also note that the random 
number generator is not perfect, and due to numerical approximations made by the 
computer, indefinitely increasing n (beyond a certain point) is not the solution to get 
more accurate results. That said, since we investigated 5 sets of weights, we performed 
5 x n x m = 500 million computations in very little time. A value of m = 10,000 provides 
about two correct digits when computing the percentiles of the limiting distribution 
(except for the most extreme ones), provided n is large enough. The source code is 
provided in the last section. 
 
Analysis and results 
 

We tested 5 sets of weights, see Figure1: 

 Case 1: ak = 1, corresponding to the classic version of the Central Limit 
Theorem, and with guaranteed convergence to the Gaussian distribution. 

 Case 2: ak = 1 / log 2k, still with guaranteed convergence to the Gaussian 
distribution 

 Case 3: ak = k-1/2, the last exponent (-1/2) that still provides guaranteed 
convergence to the Gaussian distribution, according to the Central Limit Theorem 

http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00071/abstract
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with the Lyapunov condition (more on this below.) A value below -1/2 violates the 
Lyapunov condition. 

 Case 4: ak = k-1, the limiting distribution looks Gaussian (see Figure 1) but it is 
too thick to be Gaussian, indeed the maximum is also too low, and the kurtosis is 
now significantly different from zero, thus the limiting distribution is not Gaussian 
(though almost). 

 Case 5: ak = k-2, not converging to the Gaussian distribution, but instead to an 
hybrid continuous distribution, half-way Gaussian, half-way uniform. 

 

Note that by design, all normalized S's have mean 0 and variance 1. 

We computed (in Excel) the percentiles of the limiting distributions for each of the five 
cases. Computations are found in this spreadsheet. We compared the cases 2 to 5 with 
case 1, computing the differences (also called deltas) for each of the 100 percentiles. 
Since case 1 corresponds to a normal distribution, we actually computed the deltas to 
the normal distribution, see Figure 2. The deltas are especially large for the very top or 
very bottom percentiles in cases 4 and 5. Cases 2 and 3 show deltas close to zero (not 
statistically significantly different from zero), and this is expected since these cases also 
yield a normal distribution. To assess the statistical significance of these deltas, one can 
use the model-free confidence interval technique described here: it does not require any 
statistical or probability knowledge to understand how it works. Indeed you don't even 
need a table of the Gaussian distribution for testing purposes here (you don't even need 
to know what a Gaussian distribution is) as case 1 automatically provides one. 
 
The Lyapunov connection 
 
For those interested in the theory, the fact that cases 1, 2 and 3 yield convergence to 
the Gaussian distribution is a consequence of the Central Limit Theorem under the 
Lyapunov condition. More specifically, and because the samples produced here come 
from uniformly bounded distributions (we use a random number generator to simulate 
uniform deviates), all that is needed for convergence to the Gaussian distribution is that 
the sum of the squares of the weights -- and thus Stdev(S) as n tends to infinity -- must 
be infinite. This result is mentioned in A. Renyi's book Probability Theory (Dover edition, 
1998, page 443.) 
 
Note that in cases 1, 2, and 3, the sum of the squares of the weights is infinite. In cases 

4 and 5, it is finite, respectively equal to 2/6 and 4/90 (see here for details.) I am very 
curious to know what the limiting distribution is for case 4.  

 
3. Generalizations  
 

Here we discuss generalizations of the central limit theorem, as well as potential areas 
of research 

 
 

https://api.ning.com/files/V0BiFi-tkRveDH*fsjizzkiLw4osdSb*41lIgTZVfnHJA*2bNLAi7Iwl6WwmYmBV2a0Mv8HroCqq-*tXvQzn*69lGluMTozn/special.xlsx
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://en.wikipedia.org/wiki/Riemann_zeta_function
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3.1. Correlated observations  
 

One of the simplest ways to introduce correlation is to define a stochastic auto-
regressive process using  

Yk = pYk-1 + qXk 
 
where X1, X2, ... are independent with identical distribution, with Y1 = X1 and 
where p, q are positive integers with p + q = 1. The Yk's are auto-correlated, but clearly, 
Yk is a weighted sum of the Xj's (1≤ j ≤ k), and thus, S = a1Y1 + ... + anYn is also a 
weighted sum of the Xk's, with higher weights on the first Xk's. Thus we are back to the 
problem discussed in this chapter, but convergence to the Gaussian distribution will 
occur in fewer cases due to the shift in the weights.  
 
More generally, we can work with more complex auto-regressive processes with a 
covariance matrix as general as possible, then compute S as a weighted sum of the 
Xk's, and find a relationship between the weights and the covariance matrix, to 
eventually identify conditions on the covariance matrix that guarantee convergence to 
the Gaussian distribution.  
 
3.2. Generalization to non-random (static) observations 
 

Is randomness really necessary for the central limit theorem to be applicable and 
provable? What about the following experiment: 

 Compute all unordered sums S made up of n integers, 0 or 1, with repetitions 
allowed. For instance, if n = 2, the four possibilities are 0+0, 0+1, 1+0, 1+1. For 
an arbitrary n, we have 2n possibilities. 

 Normalize S as usual. For normalization, here use E(S) = n/2 and Stdev(S) = n1/2 

/ 2. 
 
Do these 2n normalized values of S (generated via this non-random experiment) follow 
a Gaussian distribution as n tends to infinity? Ironically, one way to prove that this is the 
case (I haven't checked if it is the case or not, but I suspect that it is) would be to 
randomly sample m out of these 2n values, and then apply the central limit theorem to 
the randomly selected values as m tends to infinity. Then by increasing m until m is as 
large as 2n we would conclude that the central limit theorem also holds for the non-
random (static) version of this problem. The limiting distribution definitely has a 
symmetric, bell-like shape, just like the Gaussian distribution, though this was also the 
case in our above "case 4" example -- yet the limit was not Gaussian.  
 
3.3. Other interesting stuff related to the Central Limit Theorem 
 
There is a lot of interesting stuff on the Wikipedia entry, including about the Lyapunov 
condition. But the most interesting things, at least in my opinion, were the following: 
 

https://en.wikipedia.org/wiki/Central_limit_theorem
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 The area S of a convex hull of n points X1, ..., Xn also converges to a normal 
distribution, once standardized, that is when considering  (S - E(S)) / Stdev(S). 

 Under some conditions, the result below applies, with C being a universal 
constant: 

 
 

 If instead of a weighted average S, we consider the maximum M = max(X1, ..., 
Xn), then we also have a limiting distribution for (M - E(M)) / Stdev(M) after proper 
standardization. This is known as the Fisher–Tippett–Gnedenko theorem in 
extreme value theory. The limit distribution is not Gaussian. What would happen 
if instead of the maximum or weighted average, we consider the empirical 
percentiles? See also chapter 16. 

 The digits for the vast majority of numbers, in all number representation systems, 
can be used to emulate Brownian motions, thanks to the central limit theorem. 
See appendix B in this book. 

 

Another potential generalization consists of developing a central limit theorem that is 
based on L1 rather than L2 measures of centrality and dispersion, that is, the median 
and absolute deviations rather than the mean and variance. This would be useful when 
the observations come from a distribution that does not have a mean or variance, such 
as Cauchy. 

Also, does the limit distribution in case 4 depend on the distribution of the Xk's -- in this 
case uniform -- or is it a universal distribution that is the same regardless of the Xk's 
distribution? Unfortunately, the answer is negative: after trying with the square of 
uniform deviates for the Xk's, the limit distribution was not symmetric, and thus different 
from the one obtained with uniform deviates. 

 
4. Appendix: source code 

 

Below is the source code (Perl) used to produce the simulations:  

 

$seed=100; 
$c=-0.5; # the exponent in a(k) = k^c  
$n=10000; 
open(OUT,">out.txt"); 
for ($m=0; $m<10000; $m++) { 
  $den=0; 
  $num=0; 
  $ss=0; 
  for ($k=1; $k<=$n; $k++) { 
    $r=rand(); 
    $aux=exp($c*log($k)); # k^c 

    $num+=$r*$aux;  
    $den+=$aux; 

https://en.wikipedia.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem
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    $ss+=($aux*$aux); 
  } 
  $dev=$num/$den; 
  $std=sqrt(1/12) * (sqrt($ss)/$den); # 1/12 for Uni[0,1] 
  $dev2=($dev-0.5)/$std; 
  print OUT "$m\t$dev2\n"; 
} 
close(OUT); 

 

Also, Figure 2 below is referenced earlier in this chapter. 

 

 
Figure 2: Two weight sets (green and purple) produce non-Gaussian limit distributions 

 

 
 
 

https://api.ning.com/files/V0BiFi-tkRuYKJKie-wk5iIFIerTOvqPfkGNFmqZzSEy3rUbTDeZmQP*SpMJDsSwQVcH8PAGlHVQpCbTcNBKsT-LSwaFmWtn/Capture.PNG
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9. More Tests of Randomness 

We explore here some deterministic sequences of numbers, behaving like stochastic 

processes or chaotic systems, together with another interesting application of the 

central limit theorem.  

In this chapter, you will learn some modern techniques to detect whether a sequence 
appears as random or not, whether it satisfies the central limit theorem (CLT) or not -- 
and what the limiting distribution is if CLT does not apply -- as well as some tricks to 
detect abnormalities. Detecting lack of randomness is also referred to as signal versus 
noise detection, or pattern recognition. 

It leads to the exploration of time series with massive, large-scale (long term) auto-
correlation structure, as well as model-free, data-driven statistical testing. No statistical 
knowledge is required: we will discuss deep results that can be expressed in simple 
English. Most of the testing involved here uses big data (more than a billion 
computations) and data science, to the point that we reached the accuracy limits of our 
machines.  So there is even a tiny piece of numerical analysis in this article. 

Potential applications include testing randomness, Monte Carlo simulations for 
statistical testing, encryption, blurring, and steganography (encoding secret messages 
into images) using pseudo-random numbers. A number of open questions are 
discussed here, offering professional statisticians new research topics both in 
theoretical statistics and advanced number theory. The level here is state-of-the-art, but 
we avoid jargon and some technicalities to allow beginners and non-statisticians to 
understand and enjoy most of the content.  An Excel spreadsheet, attached to this 
document, summarizes my computations and will help you further understand the 
methodology used here. 
 
Interestingly, I started to research this topic by trying to apply the notorious CLT (see 
previous chapter) to non-random (static) variables -- that is, to fixed sequences of 
numbers that look chaotic enough to simulate randomness. Ironically, it turned out to be 
far more complicated than using CLT for regular random variables. So I start here by 
describing what the initial CLT problem was, before moving into other directions such as 
testing randomness, and the distribution of the largest gap in seemingly random 
sequences.  As we will see, these problems are connected.  
 

1. Central Limit Theorem for Non-Random Variables 
 
Here we are interested in sequences generated by a periodic function f(x) that has an 

irrational period T, that is f(x+T) = f(x). Examples include f(x) = sin x with T = 2, or f(x) 

= {x}  where  > 0 is an irrational number, { } represents the fractional part and T = 1/. 
The kth element in the infinite sequence (starting with k = 1) is f(k).  The central limit 
theorem can be stated as follows: 
 

http://www.datasciencecentral.com/profiles/blogs/interesting-data-science-application-steganography
https://en.wikipedia.org/wiki/Fractional_part
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Under certain conditions to be investigated -- mostly the fact that the sequence seems 
to represent or simulate numbers generated by a well-behaved stochastic process -- we 
would have: 

 
In short, U(n) tends to a normal distribution of mean 0 and variance 1 as n tends to 
infinity, which means that as both n and m tends to infinity, the values U(n+1), U(n+2) 
... U(n+m) have a distribution that converges to the standard bell curve. 
 
In this chapter, we are dealing exclusively with sequences that are equidistributed over 

[0, 1], thus  = 1/2 and  = 1/121/2. In particular, we investigate f(x) = {x} where  > 0 is 
an irrational number and { } the fractional part. While this function produces a sequence 
of numbers that seems fairly random, there are major differences with truly random 
numbers, to the point that CLT is no longer valid. The main difference is the fact that 
these numbers, while somewhat random and chaotic, are much more evenly spread 
than random numbers. True random numbers tend to create some clustering as well as 
empty spaces.  Another difference is that these sequences produce highly auto-
correlated numbers. 
 
As a result, we propose a more general version of CLT, redefining U(n) by adding two 
parameters a and b:  

 
This more general version of CLT can handle cases like our sequences. Note that the 
classic CLT corresponds to a = 1/2 and b =0. In our case, we suspect that a = 1 and b is 
between 0 and -1. This is discussed in the next section.  
 
Note that if instead of f(k), the kth element of the sequence is replaced by f(k2) then the 
numbers generated behave more like random numbers: they are less evenly distributed 
and less auto-correlated, and thus the CLT might apply. We haven't tested it yet.  

 
2. Testing Randomness: Max Gap, Auto-Correlations and More 

 

The sequence f(1), f(2), … generated by our function f(x) is called an -sequence or 

perfect process (see appendix B in this book.) Here we compare properties of -
sequences with those of random numbers on [0, 1] and we highlight the striking 
differences. Both sequences, when n tends to infinity, have a mean value converging to 
1/2, a variance converging to 1/12 (just like any uniform distribution on [0, 1]), and they 
both look quite random at first glance. But the similarities almost stop here.   
 
 
 
 

https://en.wikipedia.org/wiki/Equidistributed_sequence
https://api.ning.com/files/lFg-2*UqyS7c3VI1rJZ-56pQ-GyU5xXXkHlDEUSKvuwlpdSIRwDUfjr3xOgRJrcmHLIZsg5POMw3AEUtxkYMs0yg5m2eTCSz/Capture1.PNG
https://api.ning.com/files/lFg-2*UqyS56ZvvpU4DRshu2WGmCT-Qy7KhoDkR33qA-NoS0R3KKs8pyNdgUK7tmwvNckoY0upDSVU2kpnieorvFjugeKavG/Capture2b.PNG
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Maximum gap 
 
The maximum gap among n points scattered between 0 and 1 is another way to test for 
randomness. If the points were truly randomly distributed, the expected value for the 
length of the maximum gap (also called longest segment) is known and is equal to 

 
See this article for details, or the book Order Statistics published by Wiley, page 135. 
The max gap values have been computed in the spreadsheet (see section below to 

download the spreadsheet) both for random numbers and for -sequences. It is pretty 
clear from the Excel spreadsheet computations (and confirmed in chapter 17) that the 
average maximum gaps have the following expected values, as n becomes very large: 
 

 Maximum gap for random numbers: log(n)/n as expected from the above 
theoretical formula 

 Maximum gap for -sequences:  c/n (c is a constant close to 1.5; the result 
needs to be formally proved) 

 

So -sequences have points that are far more evenly distributed than random numbers, 

by an order of magnitude, not just by a constant factor! This is true for the eight -

sequences (eight different values of ) investigated in the spreadsheet, corresponding 
to eight “nice” irrational numbers (more on this in the research section below, about 
what a “nice” irrational number might be in this context.)  
 
Auto-correlations 
 
Unlike random numbers, values of f(k) exhibit strong, large-scale auto-correlations: f(k) 
is strongly correlated with f(k+p) for some values of p as large as 100. The successive 
lag-p auto-correlations do not seem to decay with increasing values of p. To the 
contrary, it seems that the maximum lag-p auto-correlation (in absolute value) seems to 
be increasing with p, and possibly reaching very close to 1 eventually. This is in stark 
contrast with random numbers: random numbers do not show auto-correlations 
significantly different from zero, and this is confirmed in the spreadsheet. Also, the vast 
majority of time series have auto-correlations that quickly decay to 0. This surprising 
lack of decay could be the subject of some interesting number theoretic research. 
These auto-correlations are computed and illustrated in the Excel spreadsheet (see 
section below) and are worth checking out. Exact values are computed in chapter 13. 
 
Convergence of U(n) to a non-degenerate distribution 
 
Figures 2 and 3 in the next section (extracts from our spreadsheet) illustrate why the 
classic central limit theorem (that is, a = 1/2, b =0 for the U(n) formula) does not apply 

to -sequences, and why a = 1 and b = 0 might be the correct parameters to use 
instead. However, with the data gathered so far, we can't tell whether a = 1 and b = 0 is 
correct, or whether a = 1 and b = -1 is correct: both exhibit similar asymptotic behavior, 

https://math.stackexchange.com/questions/13959/if-a-1-meter-rope-is-cut-at-two-uniformly-randomly-chosen-points-what-is-the-av
https://www.amazon.com/Order-Statistics-Herbert-David/dp/0471389269
https://api.ning.com/files/KtY2yaJFKB6Voi*GralKMEEv*VZ4x3sYQ1rrR46fXestPxL*UBN-2KCB0r7MTCxVzmrWO3LBNkUB8DmmuV8TDBm370qFI7nv/Capture.PNG
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and the data collected is not accurate enough to make a final decision on this. The 
answer could come from theoretical considerations rather than from big data analysis.  
Note that the correct parameters should produce a somewhat horizontal band for U(n) 
in figure 2, with values mostly concentrated between -2 and +2 due to normalization 
of U(n) by design. And a = 1, b = 0, as well as a = 1, b = -1, both do just that, while it is 
clear that a = 1/2 and b = 0 (classic CTL) fails as illustrated in figure 3. You can play 
with parameters a and b in the spreadsheet, and see how it changes figure 2 or 3, 
interactively.  
 
One issue is that we computed U(n) for n up to 100,000,000 using a formula that is ill-
conditioned: multiplying a large quantity n by a value close to zero (for large n) to 
compute U(n), when the precision available is probably less than 12 digits. This might 
explain the large, unexpected oscillations found in Figure 2. Note that oscillations are 
expected (after all, U(n) is supposed to converge to a statistical distribution, possibly the 
bell curve, even though we are dealing with non-random sequences) but such large-
scale, smooth oscillations, are suspicious.  
 

3. Excel Spreadsheet with Computations 
 

Click here to download the spreadsheet. The spreadsheet has 3 tabs: One for -
sequences, one for random numbers -- each providing auto-correlation, max gap, and 
some computations related to estimating a and b for U(n) -- and a tab summarizing n = 

100,000,000 values of U(n) for -sequences, as shown in figures 2 and 3.  That tab, 
based on data computed using a Perl script, also features moving maxima and moving 
minima, a concept similar to moving averages, to better identify the correct parameters 
a and b to use in U(n).  
 
Confidence intervals (CI) can be empirically derived to test a number of assumptions, as 
illustrated in Figure 1: in this example, based on eight measurements, it is clear that 

maximum gap CI's for -sequences are very different from those for random numbers, 

meaning that -sequences do not behave like random numbers. 
 

 
 

Figure 1: max gap times n (n = 10,000), for eight -sequences (top) and  
eight sequences of random numbers (bottom) 

http://datashaping.com/tctl.xlsx
https://api.ning.com/files/KtY2yaJFKB6KsHYx84NGKv2T24dHWq4PXxXtg7d**3gwNuzqLMLQUR2jrHDa3mMAiyU80buVj7F1Z39Of4ro7UpF1I2UN83c/Capture.PNG
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Figure 2: U(n) with a = 1, b = 0 (top) and moving max / min bands  

(bottom) for -sequences 

https://api.ning.com/files/KtY2yaJFKB6nBIDr4NLvNg3f*p-xVEt9yMsro5RPphWM*x34ZiC5dcJ1JViH6ZyVQjrTqqO*g2hn80uBmyYTEcLykRWkI3NQ/CaptureA.PNG
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Figure 3: U(n) with a = 0.5, b = 0 (top) and moving max / min bands (bottom) 

for sequences 

 
4. Potential Research Areas 

 

Here we mention some interesting areas for future research.  By sequence, we mean -
sequence as defined in section 2, unless otherwise specified.  
 

 Using f(kc) as the kth element of the sequence, instead of f(k). Which values 
of c > 0 lead to equidistribution over [0, 1], as well as yielding the classic version 

of CLT with a = 1/2 and b = 0 for U(n)? Also what happens if f(k) = {p(k)} where 
p(k) is the kth prime number and { } represents the fractional part? This sequence 
was proved to be equidistributed on [0, 1] (this by itself.is a famous result of 
analytic number theory, published by Vinogradov in 1948) and has a behavior 
much more similar to random numbers, so maybe the classic CLT applies to this 
sequence? Nobody knows.  

 
 What is the asymptotic distribution of the moments and distribution of the 

maximum gap among the n first terms of the sequence, both for random numbers 
on [0, 1] and for the sequences investigated in this article? Does it depend on the 

https://api.ning.com/files/KtY2yaJFKB5il*-FhIyyJS7ibpjMnMP-64KqHhPHEfWrgQlJKkEHnkRG5CJeeLCt88F-b3AAOpwl1lDF0J3wvTkYjcKc3764/Captureb.PNG
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parameter ? Same question for minimum gap and other metrics used to test 
randomness, such as point concentration, defined for instance in the article On 
Uniformly Distributed Dilates of Finite Integer Sequences? 

 

 Does U(n) depend on ? What are the best choices for , to get as much 
randomness as possible? In a similar context, 21/2 - 1 and (51/2 - 1)/2 are found to 
be good candidates: see this Wikipedia article (read the section on additive 

recurrence.) Also, what are the values of the coefficients a and b in U(n), for -
sequences? It seems that a must be equal to 1 to guarantee convergence to a 

non-degenerate distribution. Is the limiting distribution for U(n) also normal for -
sequences, when using the correct a and b? 

 

 What happens if  is very close to a simple rational number, for instance if the 

first 500 digits of  are identical to those of 3/2? 
 
Generalization to higher dimensions 
 
So far we worked in dimension 1, the support domain being the interval [0, 1]. In 

dimension 2, f(x) = {x} becomes f(x, y) = ({x}, {y}) with , , and / irrational; f(k) 
becomes f(k,k). Just like the interval [0, 1] can be replaced by a circle to avoid boundary 
effects when deriving theoretical results, the square [0, 1] x [0, 1] can be replaced by the 
surface of the torus. The maximum gap becomes the maximum circle (on the torus) with 
no point inside it. The range statistic (maximum minus minimum) becomes the area of 
the convex hull of the n points.  For a famous result regarding the asymptotic behavior 
of the area of the convex hull of a set of n points, see previous chapter and check out 
the sub-section entitled “Other interesting stuff related to the Central Limit 
Theorem.” Note that as the dimension increases, boundary effects become more 
important.  
 

 
Figure 4: bi-variate example with c = 1/2,  = 311/2,  = 171/2  

and n = 1000 points 

http://www.sciencedirect.com/science/article/pii/S0022314X99924204
http://www.sciencedirect.com/science/article/pii/S0022314X99924204
https://en.wikipedia.org/wiki/Low-discrepancy_sequence
https://api.ning.com/files/5yCEGsYwHQr1dk1G9i2cH1fchLFoDRoH4ONMOJ-6vFsDU1vxyjxKyeEior6HtwcVBGmeNsvaMaUnCpUO6Ogz2CBD72UOYKTy/biv.PNG
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Figure 4 shows an unusual example  in two dimensions, with strong departure from 
randomness, at least when looking at the first 1,000 points. Usually, the point pattern 
looks much more random, albeit not perfectly random, as in Figure 5. 

 

. 

Figure 5: bi-variate example with c = 1/2,  = 131/2,  = 261/2  
and n = 1000 points 

 
Computations are found in this spreadsheet. Note that we've mostly discussed the 
case c = 1 in this chapter. The case c = 1/2 creates interesting patterns, and the 
case c = 2 produces more random patterns. The case c = 1 creates very regular 
patterns (points evenly spread, just like in one dimension.) 
  

https://api.ning.com/files/QzmRjEe-2pZ3iaGKOuGtjwCfeTA7dpgyYjRCGBMY8WSco0FnNqXlGyGv67job4C6PfHwvKQsMeE7Znnok-7y-OddV0W5Vww7/bivariate.xlsx
https://api.ning.com/files/QzmRjEe-2paSdrJZvK-BHRQxwI*tUYGdGk28ST-vzHjO4HlXin1L4YcJzzRuwYVkmXWnmXnR003FmDBZ2QUYnKl3NryeeMnF/vvv.PNG
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10. Random Weighted Sums  

 
You won't learn this in textbooks, college classes, or data camps. Some of the material 
in this chapter is very advanced yet presented in simple English, with an Excel 
implementation for various statistical tests, and no arcane theory, jargon, or obscure 
theorems. It has a number of applications, in finance in particular. This chapter covers 
several topics under a unified approach, so it was not easy to find a title. In particular, 
we discuss: 
 

 When the central limit theorem fails: what to do, and case study 
 Various original statistical tests, some unpublished, for instance to test if an 

empirical statistical distribution (based on observations) is symmetric or not, or 
whether two distributions are identical 

 The power and mysteries of stable (also called divisible) statistical distributions 
 Dealing with weighted sums of random variables, especially with decaying 

weights 
 Fun number theory problems and algorithms associated with these statistical 

problems 
 Decomposing a (theoretical or empirical / observed) statistical distribution into 

elementary components, just like decomposing a complex molecule into atoms 

 

The focus is on principles, methodology, and techniques applicable to, and useful in 
many applications. For those willing to do a deeper dive on these topics, many 
references are provided. This chapter, written as a tutorial, is accessible to 
professionals with elementary statistical knowledge, like stats 101. It is also written in a 
compact style, so that you can grasp all the material in hours rather than days. This 
simple chapter covers topics that you could learn in MIT, Stanford, Berkeley, Princeton 
or Harvard classes aimed at PhD students. Some is state-of-the-art research results 
published here for the first time, and made accessible to the data science of data 
engineer novice. I think mathematicians (being one myself) will also enjoy it. Yet, 
emphasis is on applications rather than theory.  

Finally, we focus here on sums of random variables. The next chapter will focus on 
mixtures rather than sums, providing more flexibility for modeling purposes, or to 
decompose a complex distribution in elementary components. In both cases, my 
approach is mostly non-parametric, and based on robust statistical techniques, capable 
of handling outliers without problems, and not subject to over-fitting. 

Finally, many statistical tests are introduced in this chapter, in addition to those 
mentioned in the previous chapters. 
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1. Central Limit Theorem: New Approach 
 
Let us consider a weighted sum of n independent and identically distributed random 
variables, with finite variance and mean equal to zero: 

 

 
 
When the weights are identical, the central limit theorem (CLT) states that this 
converges to a Gaussian distribution.  Regardless of the weights or n, we have: 
 

 
 
This is also true when n tends to infinity.  Without loss of generality, we assume here 
that all these random variables have their expectation equal to 0.  Now, let us 
decompose the weighted sum into two components. First, let us introduce a partition 
of N = {1, ..., n} into two subsets I and J. For instance, the set I consists of the odd 
integers in N, and J consists of the even integers in N. Or I consists of the integers 
smaller than n/2, and J consists of the integers larger or equal to n/2. The 
decomposition is as follows: 

 
The variables Zn, Vn and Wn have the same variance as X1. Let us define pn = vn / sn, 
and qn = wn / sn. At the limit as n tends to infinity, assuming the limits exist, we have 

 
When the weights ak's are identical (corresponding to the standard CLT) then the 
factors p and q can be made arbitrarily close to any real  number (by choosing I and J 
appropriately) and thus the limit distribution satisfies the following property, presented 
here as a theorem: 
 
Theorem 
 
If the weights ak are identical (classic CLT framework) then Z can be written as any 
linear combination pV + qW of tho independent random variables V and W that have the 
same exact distribution as Z (with same variance), provided that p2 + q2 = 1. 
 

http://storage.ning.com/topology/rest/1.0/file/get/2808361228?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808361359?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808375633?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808379284?profile=original
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Note that by convergence and limit, here we mean convergence in distribution. A 
distribution that satisfies the property stated in the above theorem is called a stable 
distribution. Evidently the Gaussian distribution is one example of a stable distribution. 
But is it the only one? That is, does this property uniquely characterize the Gaussian 
distribution?  
 
Let us introduce the concept of semi-stable distribution. A random variable Z has 
a semi-stable distribution if for any strictly positive integer n, it can be written as the 
sum of n independent random variables, divided by n1/2, with each random variable 
having the same distribution as Z. Gaussian distributions are one example. All stable 
distributions are also semi-stable (see exercise below), but the converse might not be 
true. 
 
Let's say that the variables Xk have a semi-stable distribution, but one that is non-
Gaussian. For each value of n including at the limit as n tends to infinity, Zn would have 
(by construction) that exact same semi-stable distribution, which is non-Gaussian. But 
the central limit theorem states that at the limit, the distribution must be Gaussian. This 
contradiction makes you think that the only semi-stable distribution is the Gaussian one. 
I won't spend much time on this paradox, but I invite you to think about it. There are 
other stable and semi-stable distributions, as we shall see in the next section. Generally 
speaking, they have a thick tail and infinite variance. The Gaussian one is the only one 
with a finite variance. 

 
Exercise 
 
Prove that any stable distribution is also semi-stable. Hint: For a stable distribution, 
Z can be written as Z = (2/3)1/2{ (V + W) / 21/2 } + (1/3)1/2U = (V + W + U) / 31/2, 
with U, V, W, (V + W) / 21/2  having the same distribution as Z. This easily generalizes to 
4, 5 or more variables, and can be proved by induction.  Here, U, V and W are 
independent.  
 

2. Stable and Attractor Distributions 
 
The initial problem I was interested in, is to approximate a random variable Z with a 
complicated distribution, by a weighted sum of independent, identically distributed 
random variables that have a simple distribution. These random variables, denoted 
as X1, X2 and so on throughout this article, are also called kernels.   
 
We have seen that if these kernels have a stable distribution, then Z must also have a 
stable (and identical) distribution. So, unless we want to restrict ourselves to the small 
family of stable distributions, we must consider unstable kernels. From now on, we will 
mostly focus on (unstable) kernels that have a uniform distribution on [-1/2, 1/2]. 
 
The next question is: can any Z (regardless of its distribution) be represented (that is, 
decomposed) in this manner? It is similar to asking whether any real function can be 
represented by a Taylor series. The answer, in both cases, is no. The kind of random 
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variables Z that can be represented in this manner are called attractors. Their 
distribution is called an attractor distribution. We are curious to find out 
 

 Which distributions can be attractors, 
 Whether Z's distribution depends on the choice of the kernels, and 
 Whether an attractor distribution must necessarily be a stable distribution, even if 

the kernel is not. 

So clearly, we are here in a context where the assumptions of the CLT (central limit 
theorem) are violated, and the CLT does not apply. Let us introduce one additional 
notation:  

 
With this notation, Zn can be re-written as 

 
Depending on the weights ak, the coefficient bnk for any fixed k, may not depend on n, 
as n tends to infinity. 
 
Using decaying weights 
 
We shall consider, moving forward, decaying weights of the form ak = 1/kc, where c is a 
positive parameter in the interval [0.5, 1]. If c is less than or equal to 0.5, then we are 
back under the CLT conditions and Z has a Gaussian distribution, even if the kernel has 
a uniform distribution. If c is larger than 0.5, then we have the following: 
 

 The distribution of Z is NOT a Gaussian one (see chapter 8 for details.) 
 For any fixed k, bnk does not depend on n, as n tends to infinity. For instance, if c = 

1, then bnk tends to 61/2ak /  as n tends to infinity. 
 
Decaying weights have plenty of applications. For instance, I used a decaying weighted 
sum of nearest neighbor distances in a k-NN clustering problems, rather than the kth 
nearest neighbor alone, to boost robustness. The resulting distribution of Z was rather 
special; the details are available in this article.  
 
Exact distribution of Z 
 
This topic is more advanced for statisticians, as it is based on the characteristic function 
of a statistical distribution. For physicists, mathematicians, signal processing experts, 
and engineers, it is not very advanced, in the sense that it is a simple application of 
the convolution theorem and Fourier transforms. I assume here that c = 1.  
 
The characteristic function of Z is a product of characteristic functions of uniform 
distributions (the kernels): 

https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9574.00071
https://en.wikipedia.org/wiki/Convolution_theorem
http://mathworld.wolfram.com/CharacteristicFunction.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://storage.ning.com/topology/rest/1.0/file/get/2808380009?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808380108?profile=original
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The infinite product is converging. But this is not the characteristic function of a semi-
stable distribution, unlike with c = 1/2 or c = 0. To find the density attached to Z, one has 
to take the inverse Fourier transform of the characteristic function: 
 

 
 
The characteristic function can be re-written as G(t)H(t), with 
 

 
 
Written that way, Z appears as the sum of two independent random variables with 
characteristic functions respectively equal to H(t) and G(t). H(t) corresponds to the 
kernel distribution: uniform on [-1/2, 1/2]. As for G(t), you get a good approximation if 
you only use the first 20 factors (n = 20) in the above infinite product. Indeed, G(t) is not 
very much different from a constant function equal to 1, corresponding to a Dirac 
distribution when you take the inverse Fourier transform, especially when t is close to 
zero. 
 

Note that we have:  

 
 
See here for the above infinite product formula for the sine function. The asymptotic 
approximation on the right-hand side is based on the Taylor series for the sine function. 
This is what makes this representation particularly interesting, and beautiful. However, 
since Z and the kernel have the same variance, and since the sum of two independent 
random variables has a variance greater than or equal to that of each summand, the 
distribution attached to G (if it exists) must be improper. In other words, G may not be a 
characteristic function. 
 
More about stable distributions and their applications 
 
In some sense, stable distributions are invariant under linear transformations, while 
semi-stable distributions are invariant under addition. The Wikipedia entry for stable 
distributions is worth reading, especially the section related to the CLT. Examples of 
stable distributions, besides the Gaussian one, include the Levy and Cauchy 
distributions; both of them have infinite variance (sometimes called heavy tail.) Stable 
distributions are also related to the Levy process, with applications to financial markets. 

https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/Stable_distribution
https://www.datasciencecentral.com/profiles/blogs/four-interesting-math-problems
https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_process
http://storage.ning.com/topology/rest/1.0/file/get/2808380590?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808380834?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808381772?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808382790?profile=original
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The following references provide additional insights about the topics discussed here: 

 

 Stable Distributions Models for Heavy Tailed Data (book published in 2018; 
focuses on multivariate distributions, with application to financial modeling, 
$370 on Amazon) 

 Limit Distributions for Sums of Independent Random Variables (seminal book 
published in 1954; costs $686 on Amazon, for a used book!) 

 Heavy Tails in Theory and Practice (book published in 2001; $200 on Amazon) 
 Random Summation: Limit Theorems and Applications (book published in 1996; 

costs $245 on CRC Press; focuses on sums where the number of summands is 
itself random; costs $41 on Amazon) 

 Indecomposable distributions (Wikipedia entry) 
 

Stable distributions were once considered just a mathematical curiosity. Around 1960 
researchers began to discover evidence of heavy tail fluctuations in financial data. This 
line of research led to the discovery of fractals. By now, stable models are firmly 
established in the area of finance. Stable distributions are also used in electrical 
engineering and hydrology. Applications in other areas of science are emerging rapidly, 
and the subject continues to gain momentum.  

 

3. Non CLT-compliant Weighted Sums, and their Attractors 
 
In this section, we investigate what happens when using decaying weights ak = 1/kc, 
with c = 1, and with uniform kernels on [-0.5, 0.5], as discussed in the previous section. 
The busy reader can jump to the conclusion at the bottom. For the statistician, data 
scientist, or machine learning architect, I present simple, interesting statistical tests that 
were used during my analysis, to obtain my results and conclusions. 
 
Testing for normality 
 
In our main test, we divided N = {1, ..., n} into two subsets I and J as follows: I contains 
the integers less than 20; and J the integers greater or equal to 20. We also tested other 
partitions of N, see tests for semi-stability, below. Here, n was set to 100. We sampled 
from 5 different distributions, generating m = 20,000 deviates for each one: 
 

 A Gaussian distribution for comparison purpose (Gaussian A) 
 Another Gaussian distribution (Gaussian B) to assess variations across two 

samples from a same distribution 
 Vn, Wn, and Zn   

 
The testing was done in Excel. By construction, all these distributions have a theoretical 
mean and median equal to zero, and a variance equal to 1/12 (that's the variance of the 
kernel), as evidenced by the estimates in the table below. The number P.80 represents 
the 80th percentile. The number P.25 + P.75 is zero if the distribution is symmetric. This is 
the case in this example.  

http://fs2.american.edu/jpnolan/www/stable/chap1.pdf
https://www.amazon.com/Stable-Distributions-John-Nolan/dp/0817641599
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209
https://www.stt.msu.edu/~mcubed/RVbook.html
https://www.amazon.com/Limit-Distributions-Independent-Random-Vectors/dp/B01A0BIZ82
https://www.crcpress.com/Random-Summation-Limit-Theorems-and-Applications/Gnedenko-Korolev/p/book/9780849328756
https://www.amazon.com/Random-Summation-Limit-Theorems-Applications/dp/0849328756
https://en.wikipedia.org/wiki/Indecomposable_distribution
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The sample size (m = 20,000) gives about two correct decimals in the table. The rule of 
thumb is that the precision is equal to about 1/m1/2 except for Max and Min, which are 
always highly volatile. Clearly, the two Gaussian A and B look identical as expected, the 
distribution of Vn and Zn look identical too though clearly non Gaussian, and the 
distribution of Wn looks Gaussian. In fact it is not Gaussian, but close: the sample size is 
too small to pinpoint the difference. Likewise, Vn and Wn do not have the same exact 
distribution (almost) but the sample size is too small to pinpoint the difference. This 
framework actually serves as a great benchmark to assess the power of the statistical 
tests involved.   
 

We also performed visual tests to measure the difference between pairs of percentile 
distributions, see figure below. 

http://storage.ning.com/topology/rest/1.0/file/get/2808383262?profile=original
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The yellow curve shows the empirical (observed) percentiles delta between the two 
Gaussians A and B. The differences are negligible. The red curve shows the percentile 
delta between the (almost identical) distributions of Vn and Wn. To the contrary, the 
three other curves are comparing distributions that are significantly different. For 
instance, the black curve represents the difference between Gaussian A and the 
distribution of Vn. These percentile tests are similar to a Kolmogorov-Smirnov test, 
except that Kolmogorov-Smirnov is based on the empirical cumulative distribution 
(CDF) while ours is based on the empirical percentile function, which is the inverse of 
the CDF. They clearly show when distributions are statistically different.  
 
All the Excel computations are available in this spreadsheet.  
 
Testing for symmetry and dependence on kernel 
 
One can compare R(x) = | 2 Median - P.x - P.1-x | with that of a symmetric distribution, for 
various values of x between 0 and 0.5, to check if a distribution is symmetric around the 
median. The theoretical value of R(x) is zero regardless of x, if your empirical 
distribution is symmetric. Here P.x represents the xth percentile. Other tests for 
symmetry can be found here. 
 
In this test, we used a highly non-symmetric kernel: a mixture of Bernoulli and uniform 
distributions. We discovered that while the limit (attractor) distribution is much less 
asymmetric than the kernel, it is still clearly non symmetric. This also means that the 
distribution of Z depends on the kernel: when the kernel has a symmetric distribution, 
Z also has a symmetric distribution.   
 

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
http://storage.ning.com/topology/rest/1.0/file/get/2808384496?profile=original
https://stats.stackexchange.com/questions/50603/how-do-i-test-for-a-symmetric-distribution
http://storage.ning.com/topology/rest/1.0/file/get/2220289349?profile=original
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Testing for uni-modality and other peculiarities 
 
All standard attractors investigated in the literature have a unimodal distribution. We 
haven't tested if Z is unimodal, but we believe it is, regardless of the kernel. To test if a 
distribution is unimodal, several tests have been devised: the bandwidth test, the dip 
test, the excess mass test, the MAP test, the mode existence test, the run test, the span 
test, and the saddle test. The dip test is available in R. Read more here. Some of these 
tests, in case of multimodality, can tell you how many modes (or clusters) are in your 
data sets. 
 
Other potential tests, not discussed here, could be used to check if Z has an an 
unbounded support domain, or to check if its density is bounded. The answer is 
believed to be positive in both cases. An example of unbounded density is f(x) = 0.25 / 
|x|1/2 with x in [-1, 1]. We could also test for infinite mean or infinite variance (a feature 
all stable distributions have, except the Gaussian) however it is irrelevant here since by 
construction the mean is zero, and the variance is equal to the variance of the kernel. 
 
Testing for semi-stability 
 
As stated in the first section, if the limiting distribution is semi-stable, it must 
satisfy Z = pV + qW, with p = q = 1/21/2. I tried various combinations for the subsets of 
indices I and J, but could not get close to p= q. Indeed, the closest you can get is 
with I = {1} and J = {2, 3, ..., n}. When n tends to infinity, this leads to p = 0.78 and q = 

0.63 (approximately); the exact values are p = 61/2 /  and q = (2 - 6)1/2 / . 
 
If you try ak = 1/kc, with c = 0.6 rather than c = 1, you might be able to get p = q with a 
judicious choice of I and J. Likewise, if you try with ak = 1/(k + 5) rather than ak = 1/k, it 
might work. However the resulting Z, V and W still have different distributions, so it fails 
to prove that Z is semi-stable. It does not disprove it either.  
 
So how do you choose I and J to get p = q, assuming this equality is reachable in the 
first place? Whether or not it is feasible depends on how fast the weights decay. This is 
actually a number theory problem.  For instance, if n = 18, ak = 1/(k+5), I = {1, 4, 6, 8, 
10, 12, 14, 15, 18} and J = {2, 3, 5, 7, 9, 11, 13, 16, 17}, then we get very close to p = q. 
This configuration was obtained using a greedy algorithm, as described fox example in 
this article.  
 
Out of curiosity, we generated two independent samples of Z, say Z' and Z''. We 
checked whether Z and (Z' + Z'') / 21/2 had the same distribution, using the tests 
described in the above sub-section. It turns out that the two distributions are clearly 
different (they have the same mean and variance, but not the same kurtosis), thus Z is 
not semi-stable. In fact,(Z' + Z'') / 21/2 looks surprisingly close to a Gaussian distribution, 
while Z does not. This result is in contrast with what other authors wrote on the 
subject, 70 years ago, stating that any attractor must be semi-stable. The explanation is 
that these authors used different assumptions than ours, when analyzing converging 
weighted sums. Finally, note that (Z' + Z'') / 21/2 cannot be Gaussian: if it was, 

https://cran.r-project.org/web/packages/diptest/index.html
https://en.wikipedia.org/wiki/Multimodal_distribution
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1038
https://en.wikipedia.org/wiki/Greedy_algorithm
https://www.datasciencecentral.com/profiles/blogs/new-representation-of-numbers-with-very-fast-converging-fractions
https://www.datasciencecentral.com/profiles/blogs/new-representation-of-numbers-with-very-fast-converging-fractions
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209
https://www.amazon.com/Limit-Distributions-Independent-Random-Variables/dp/0201024209
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both Z' and Z'' would have to be Gaussian too according to Cramer's theorem, and this 
is clearly not the case. 
 

4. Conclusions 
 
The framework discussed here produces a Gaussian distribution as the limit distribution 
for the weighted sum, if the weights are decaying slowly. This is just the standard CLT. 
If the weights are decaying a bit too fast -- faster than 1/k1/2  but not faster than 1/k -- the 
following issues and benefits arise: 
 

 The limiting distribution (attached to Z) is not Gaussian: good, that is what we 
were looking for. 

 The limiting distribution (also called attractor) may not be stable either, offering 
more flexibility. It might not even be symmetrical, depending on the kernel. We 
haven't checked if the attractor must be unimodal (even if the kernel is not) 
however in all our tests, it was unimodal.  

 Few distributions can be an attractor, so the amount of flexibility offered with fast-
decaying weights is still limited. In fact, attractors don't look very much different 
from Gaussian distributions, though they are clearly not Gaussian; this offers 
limited possibilities for modeling. 

 The limiting distribution depends both on the choice for the kernel, and the first 
few terms in the weighted sum, unlike with the classic CLT; it is a combination of 
a normal distribution, with a non-normal distribution. The non-normal part is 
attached to the first few terms of the weighted sum. This is indeed not bad, as it 
allows you to decompose these sums into two parts: the sum of the first 10 terms 
or so (non-normal) and the remaining of the sum (almost normal.) This is helpful 
for modeling purposes, allowing you to separate background noise (Gaussian-
like tail) from the true signal. 

 
A better tool to decompose a potential attractor into an infinite collection of basic 
kernels, is a mixture model, rather than a weighted sum. In that case, any distribution 
can be an attractor. This is discussed in the next chapter. 
  

https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%99s_decomposition_theorem
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11. Mixture Models  

In this chapter, emphasis is on science, not just on data. State-of-the art material is 
presented in simple English, from multiple perspectives: applications, theoretical 
research asking more questions than it answers, scientific computing, machine learning, 
and algorithms. I attempt here to lay the foundations of a new statistical technology, 
hoping that it will plant the seeds for further research on a topic with a broad range of 
potential applications. It is based on mixture models. Mixtures have been studied and 
used in applications for a long time, and it is still a subject of active research. Yet you 
will find here plenty of new material. 
 
Content 
 

 Introduction and Context 
 Approximations Using Mixture Models 

o The error term 
o Kernels and model parameters 
o Algorithms to find the optimum parameters 
o Convergence and uniqueness of solution 
o Find near-optimum with fast, black-box step-wise algorithm 

 Example 
o Data and source code 
o Results 

 Applications 
o Optimal binning 
o Predictive analytics 
o Test of hypothesis and confidence intervals 
o Deep learning: Bayesian decision trees 
o Clustering 

 Interesting problems 
o Gaussian mixtures uniquely characterize a broad class of distributions 
o Weighted sums fail to achieve what mixture models do 
o Stable mixtures 
o Nested mixtures and Hierarchical Bayesian Systems 
o Correlations 

 

1. Introduction and Context 
 
In the previous chapter, I attempted to approximate a random variable representing real 
data, by a weighted sum of simple kernels such as uniformly and independently, 
identically distributed random variables. The purpose was to build Taylor-like series 
approximations to more complex models (each term in the series being a random 
variable), to 
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 Avoid over-fitting, 
 Approximate any empirical distribution (the inverse of the percentiles function) 

attached to real data, 
 Easily compute data-driven confidence intervals regardless of the underlying 

distribution, 
 Derive simple tests of hypothesis, 
 Perform model reduction,  
 Optimize data binning to facilitate feature selection, and to improve visualizations 

of histograms 
 Create perfect histograms, 
 Build simple density estimators, 
 Perform interpolations, extrapolations, or predictive analytics, 
 Perform clustering and detect the number of clusters, 
 Create deep learning Bayesian systems. 

 

Why I've found very interesting properties about stable distributions during this research 
project, I could not come up with a solution to solve all these problems. The fact is that 
these weighed sums would usually converge (in distribution) to a normal distribution if 
the weights did not decay too fast -- a consequence of the central limit theorem. And 
even if using uniform kernels (as opposed to Gaussian ones) with fast-decaying 
weights, it would converge to an almost symmetrical, Gaussian-like distribution. In short, 
very few real-life data sets could be approximated by this type of model. 

I also tried with independently but NOT identically distributed kernels, and again, failed 
to make any progress. By “not identically distributed kernels”, I mean basic random 
variables from a same family, say with a uniform or Gaussian distribution, but with 
parameters (mean and variance) that are different for each term in the weighted sum. 
The reason being that sums of Gaussian's, even with different parameters, are still 
Gaussian, and sums of Uniform's end up being Gaussian too unless the weights decay 
fast enough. Details about why this is happening are provided in the last section.  

Now, in this chapter, starting in the next section, I offer a full solution, using mixtures 
rather than sums. The possibilities are endless.  

 
2. Approximations Using Mixture Models 
 
The problem is specified as follows. You have an univariate random variable Y that 
represents any of your quantitative features in your data set, and you want to 
approximate or decompose it using a mixture of n elementary independent random 
variables called kernels and denoted as X(n, k) for k = 1, ..., n, with decreasing 
probability weights p(n, k) that converge to zero. The approximation of Y based on the 
first n kernels, is denoted as Y(n). By approximation, I mean that the data-generated 
empirical distribution of Y is well approximated by the known, theoretical distribution 
of Y(n) and that as n tends to infinity, both become identical (hopefully). 
 

https://www.statisticshowto.datasciencecentral.com/empirical-distribution-function/
https://en.wikipedia.org/wiki/Empirical_distribution_function
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Moving forward, N denotes your sample size, that is the number of observations; N can 
be very large, even infinite, but you want to keep n as small as possible.  
 
Generalizations to the multivariate case is possible but not covered in this article. The 
theoretical version of this consists in approximating any known statistical distribution 
(not just empirical distributions derived from data sets) by a small mixture of elementary 
(also called atomic) kernels. 
 
In statistical notation, we have: 

 
We also want Y(n) to converge to Y, in distribution, as n tends to infinity. This implies 
that for large n, the weights p(n, k) must tend to zero as k tends to infinity.  
 
The error term 
 
There are various ways to define the distance between two distributions, say between 
Y(n) and Y. See here for details; one of the most popular ones is the Kolmogorov-
Smirnov metric. Or you can also use the distance between the inverse of the cumulative 
distributions, see chapter 14 for details (read the section on testing for normality, in 
particular the percentile test.) Regardless of the metric used, the error term is denoted 
as E(n) = ||Y - Y(n)||. Of course, the problem, for a given value of n, is to minimize E(n). 
As n tends to infinity, by carefully choosing the parameters in the model (that is, the 
weights, as well the the means and variances of the kernels,)  the error E(n) is 
supposed to converge to 0. Note that the kernels are independent random variables, but 
not identically distributed: a mix of kernels with different means and variances is not 
only allowed, but necessary to solve this optimization problem. 
 
Kernels and model parameters 
 
Besides the weights, the other parameters of the models are the parameters attached to 
each kernel X(n, k). Typically, each kernel X(n, k) is characterized by two 
parameters: a(n, k) and b(n, k). In the case of Gaussian kernels, a(n, k) is the mean 
and b(n, k) is the variance; b(n, k) is set to 1. In the case of Uniform kernels 
with Y taking on positive values, a(n, k) is the lower bound of the support interval, 
while b(n, k) is the upper bound; in this case, since we want the support domains to 
form a partition of the set of positive real numbers (the set of potential observations), we 
use, for any fixed value of n,  a(n, 1) = 0 and  b(n, k) = a(n, k+1). 
 
Finally, the various kernels should be re-arranged (sorted) in such a way that X(n, 1) 
always has the highest weight attached to it, followed by X(n, 2), X(n, 3) and so on. The 
methodology can also be adapted to discrete observations and distributions, as we will 
discuss later in this chapter.  

https://en.wikipedia.org/wiki/Statistical_distance
https://storage.ning.com/topology/rest/1.0/file/get/1173127669?profile=original
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Algorithms to find the optimum parameters  
 
The goal is to find optimum model parameters, for a specific n, to minimize the 
error E(n). And then try bigger and bigger values of n, until the error is small enough. 
This can be accomplished in various ways. 
 
The solution consists in computing the derivatives of E(n) with respect to all the model 
parameters, and then finding the roots (parameter values that make the derivatives 
vanish, see for instance section 12 in chapter 28.) For a specific value of n, you will 
have to solve a non-linear system of m equations with m parameters. In the case of 
Gaussian kernels, m = 2n. For uniform kernels, m = 2n + 1 (n weights, n interval lower 
bounds, plus upper bound for the rightmost interval.) No exact solution can be found, so 
you need to use an iterative algorithm. Potential modern techniques used to solve this 
kind of problem include: 
 

 Swarm gradient optimization 
 EM algorithm 
 Stochastic search (see also here) 
 Stochastic gradient descent 

 
You can also use Monte-Carlo simulations, however here you face the curse of 
dimensionality, the dimension being the number m of parameters in your model. In 
short, even for n as small as n = 4 (that is, m = 8), you will need to test trillions of 
randomly sampled parameter values (m-dimensional vectors) to get a solution close 
enough to the optimum, assuming that you use raw Monte-Carlo techniques. The speed 
of convergence is an exponential function of m. Huge improvements to this method are 
discussed later in this section, using some kind of step-wise algorithm to find local 
optima, reducing it to a 2-dimensional problem. By contrast, speed of convergence is 
quadratic for gradient-based methods, if E(n) is convex in the parameter space. Note 
that here, E(n) may not always be convex though.   
 
Convergence and uniqueness of solution  
 
In theory, both convergence and the fact that there is only one global optimum, are 
guaranteed. It is easy to see that, under the constraints imposed here on the model 
parameters, two different mixture models must have two distinct distributions. In the 
case of Uniform kernels, this is because the support domains of the kernels form a 
partition, and are thus disjoint. In the case of Gaussian kernels, as long as each kernel 
has a different mean, no two mixtures can have the same distribution: the proof is left as 
an exercise. To put it differently, any relatively well behaved statistical distribution 
is uniquely characterized by its set of parameters associated with its mixture 
decomposition. When using Gaussian kernels, this is equivalent to the fact that any 
infinitely differentiable density function is uniquely characterized by its coefficients in its 
Taylor series expansion. This is discussed in the last section. 
 

https://www.datasciencecentral.com/profiles/blogs/swarm-optimization-goodbye-gradients
https://www.statisticshowto.datasciencecentral.com/em-algorithm-expectation-maximization/
https://www.sciencedirect.com/science/article/abs/pii/S0031320312000167
https://link.springer.com/article/10.1007/s11634-015-0209-7
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
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The fact that under certain conditions, some of the optimization algorithms described in 
the previous subsection, converge to the global optimum, is more difficult to establish. It 
is always the case with the highly inefficient Monte Carlo simulations. In that case, the 
proof is pretty simple and proceeds as follows 

 Consider the discrete case where Y takes only on positive integer values (for 
example, your observations consist of counts,) and use the discrete Uniform 
kernel. 

 In that case, the solution will converge to a mixture model where each kernel 
support domain is a set with one value, and its associate weight is the frequency 
of that value, in your observed data. This is actually the global optimum, with E(n) 
converging to 0 as n tends to infinity.  

 Continuous distributions can be approximated by discrete distributions after 
proper re-scaling. For instance, a Gaussian distribution can be perfectly 
approximated by sequences of increasingly granular binomial distributions. Thus, 
the convergence to a global optimum, can be derived from the convergence 
obtained for the discrete approximations.  

 
The stopping rule, that is, deciding when n is large enough, is based on how fast E(n) 
continue to improve as n increases. Initially, for small but increasing values of n, E(n) 
will drop sharply, but for some value of n usually between n = 3 and n = 10, 
improvements will start to taper off, with E(n) slowing converging to 0. If you plot E(n) 
versus n, the curve will exhibit an elbow, and you can decide to stop at the elbow. See 
the elbow rule in chapter 25 (section 3.)  
 
Finally, let us denote as a(k) the limit of a(n, k) as n tends to infinity; b(k) and p(k) are 
defined in a similar manner. Keep in mind that the kernels must be ordered by 
decreasing value of their associated weights. In the continuous case, a theoretical 
question is whether or not these limits exist. With Uniform kernels, p(n, k), as well 
as b(n, k) - a(n, k), that is, the length of the kth interval, should both converge to 0, 
regardless of k, as n tends to infinity.  The limiting quotient represents the value of Y's 
density at the point covered by the interval in question. Also, the sum of p(n, k) over 
all k's, should still be equal to one, at the limit as n tends to infinity. In practice, we are 
only interested in small values of n, typically much smaller than 20. 
 
Find near-optimum with fast step-wise algorithm 
 
A near optimum may be obtained fairly quickly with small values of n, and in practice 
this is good enough. To further accelerate the convergence, one can use the following 
step-wise algorithm, with the Uniform kernel. At iteration n+1, modify only two adjacent 
kernels that were obtained at iteration n (that is, kernels with adjacent support domains) 
as follows: 
 

 Increase the upper bound of the left interval, and decrease the lower bound of 
the right interval accordingly. Or do the other way around. Note that the 
cumulative density within each interval, before or after modification, is always 
equal to 1, since we are using uniform kernels. 
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 Adjust the two weights, but keep the sum of the two weights unchanged. 

 
So in fact you are only modifying two parameters (degrees of freedom is 2.) Pick up the 
two adjacent intervals, as well as the new weights and lower/upper bounds, in such a 
way as to minimize E(n+1). 
 

3. Example 
 
Here, I illustrate some of the concepts explained earlier, with an example based on 
simulated data. The source code and the data is provided so that my experiment can be 
replicated, and the technical details understood.  The 10,000 data points generated 
(representing Y) are deviates from a skewed, non-symmetrical negative binomial 
distribution, taking integer values between 0 and 110. Thus we are dealing with discrete 
observations and distributions. The kernels have discrete uniform distributions, for 
instance uniform on {5, 6, 7, 8, 9, 10, 11} or on {41, 42, 43, 44}. The choice of a non-
symmetrical target distribution (for Y) is to illustrate the fact that the methodology also 
works for non-Gaussian target variables, unlike the classic central limit theorem 
framework applying to sums (rather than mixtures) and where convergence is always 
towards a Gaussian. Here instead, convergence is towards the simulated negative 
binomial target.    
 

I tried to find online tools to generate deviates from any statistical distribution, but 
haven't found any interesting ones. Instead, I used R to generate the 10,000 deviates, 
with the following commands: 

 

 
 
The first line of code generates the 10,000 deviates from a negative binomial 
distribution, the second line produces its histogram with 50 bins (see picture below, 
where the vertical axis represents frequency counts, and the horizontal axis represents 
values of Y.)  The third line of code exports the data to an output file that will first be 
aggregated and then used as an input for the script that (1) computes the model 
parameters, and (2) computes and minimizes the error E(n). 

https://storage.ning.com/topology/rest/1.0/file/get/1177714890?profile=original
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Histogram for the 10,000 deviates (negative binomial distribution) used in our example 

 
Data and source code 
 
The input data set for the script that processes the data, can be found here. It consists 
of the 10,000 negative binomial deviates (generated with the above R code), and 
aggregated / sorted by value. For instance, the first entry (104) means that among the 
10,000 deviates, 104 of them have a value equal to 0. The second entry (175) means 
that among the 10,000 deviates, 175 of them have a value equal to 1. And so on. 
 
The script is written in Perl (you are invited to write a Python version) but it is very easy 
to read and well documented. It illustrates the raw Monte-Carlo simulations with 4 
discrete uniform kernels. So it is very inefficient in terms of speed, but easy to 
understand, with few lines of code. You can find it here. It produced the distribution 
(mixture of 4 kernels) that best approximates the above histogram, see picture below. 

https://storage.ning.com/topology/rest/1.0/file/get/1180507775?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1180558170?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1183586605?profile=original
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Approximation of above histogram with mixture model, using 4 uniform kernels 

 
Results  
 
The chart below shows a contour plot for the error E(2), when using n = 2 discrete 
uniform kernels, that is two intervals, with lower bounds of the first interval displayed on 
the vertical axis, and upper bounds on the horizontal axis. The upper bound of the 
second (rightmost) interval was set to the maximum observed value, equal to 110. 
Ignore the curves above the diagonal; they are just a mirror of the contours below. 
Outside the kernel intervals, densities were kept to 0. Clearly the best kernel (discrete) 
intervals to approximate the distribution of Y, are visually around {1, 2, ... , 33}  and {34, 
..., 110} corresponding to a lower bound of 1, and an upper bound of 33 for the first 
interval; it yields an error E(2) less than 0.45. 
 
The contour plot below was produced using the contour function in R, using this data 
set as input, and the following code: 
 

 
 
The interesting thing is that the error function E(n), as a function of the mixture model 
parameters, exhibits large areas of convexity containing the optimum parameters, 
when n = 2. This means that gradient descent algorithms (adapted to the discrete space 
here) can be used to find the optimum parameters. These algorithms are far more 
efficient than Monte-Carlo simulations.   

https://www.statisticshowto.datasciencecentral.com/contour-plots/
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
https://storage.ning.com/topology/rest/1.0/file/get/1182661742?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1182661742?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1180758197?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1181636658?profile=original
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Contour plot showing the area where optimum parameters are located, minimizing E(1) 
 
I haven't checked if the convexity property still holds in the continuous case, or when 
you include the weight parameters in the chart, or for higher values of n. It still might, if 
you use the fast step-wise optimization algorithm described earlier. This could be the 
best way to go numerically, taking advantage of gradient descent algorithms, and 
optimizing only a few parameters at a time. 
 
Now I discuss the speed of convergence, and improvements obtained by increasing the 
number of kernels in the model. Here, optimization was carried out via very slow, raw 
Monte-Carlo simulations. The table below shows the interval lower bounds and weights 
associated with the discrete uniform kernel, for n = 4, obtained by running 2 million 
simulations. The upper bound of the rightmost interval was set to the maximum 
observed value, equal to 110. For any given n, only simulations performing better than 
all the previous ones are displayed: in short, these are the records. Using n = 5 does not 
significantly improve the final error E(n). Low errors with n = 2, 3, and 4 were 
respectively 0.41, 0.31, and 0.24. They were obtained respectively at iterations 7,662 
(n = 2), 96,821 (n = 3) and 1,190,575 (n=4). It shows how slow Monte-Carlo converges, 
and the fact that the number of required simulations grows exponentially with the 
dimension n. The Excel spreadsheet, featuring the same table for n = 2, 3, 4, and 5, can 
be found here. 

https://storage.ning.com/topology/rest/1.0/file/get/1183671040?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1181591524?profile=original
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4. Applications 
 

The methodology proposed here has many potential applications in machine learning 
and statistical science. These applications were listed in the introduction. Here, I just 
describe a few of them in more details.  

 
Optimal binning 
 
These mixtures allow you to automatically create optimum binning of univariate data, 
with bins of different widths and different sizes. In addition, the optimum number of bins 
can be detected using the elbow rule described earlier. Optimum binning is useful in 
several contexts: visualization (to display meaningful histograms), in decision trees, and 
in feature selection procedures. Some machine learning algorithms, for instance the one 
described in chapter 2, rely on features that are not too granular and properly binned, to 
avoid over-fitting and improve accuracy and processing time. These mixture models are 
handy tools to help with this. 
 
For more on optimal binning, read this article (2013) or check the relevant R package 
smbinning. 
 
 
 
 

https://arxiv.org/abs/physics/0605197
https://www.datasciencecentral.com/profiles/blogs/optimal-binning-for-scoring-modeling-r-package
https://storage.ning.com/topology/rest/1.0/file/get/1183610037?profile=original


83 
 

Predictive analytics 
 

Since this methodology creates a simple model to fit with your data, you can use that 
model to predict frequencies, densities, (including perform full density estimation), 
intensities, or counts attached to unobserved data points, especially if using kernels with 
infinite support domains, such as Gaussian kernels. It can be used as a regression 
technique, or for interpolation or extrapolation, or for imputation (assigning a value to a 
missing data point), all of this without over-fitting. Generalizing this methodology to 
multivariate data will make it even more useful. 

 
Test of hypothesis and confidence intervals 
 
These mixtures help build data-driven intermediate models, something in-between a 
basic Gaussian or exponential or whatever fit (depending on the shape of the kernels) 
and non-parametric empirical distributions. It also comes with core parameters (the 
model parameters) automatically estimated. Confidence intervals and tests of 
hypothesis are easy to derive, using the approximate mixture model distribution to 
determine statistical significance, p-values, or confidence levels, the same way you 
would do with standard, traditional parametric distributions.  
 
Clustering 
 

Mixture models were invented long ago for clustering purposes, in particular under a 
Bayesian framework. This is also the case here, and even more so as this methodology 
gets extended to deal with multivariate data. One advantage is that it can automatically 
detect the optimum number of clusters thanks to its built-in stopping rule, known as the 
elbow rule. Taking advantage of convexity properties in the parameter space, to use 
gradient descent algorithm for optimization, the techniques described in this chapter 
could perform unsupervised clustering faster than classical algorithms, and be less 
computer intensive.    

 
Deep learning:  Bayesian decision trees 
 

See the subsection on nested mixtures, in section 5, for details.  

 

5. Interesting Problems 
 

We discuss here, from a more theoretical point of view, two fundamental results 
mentioned earlier, as well as new topics of interest about mixtures, including stable, 
nested mixtures and potential use in deep learning. All mixtures here may be infinite, 
and the kernels (in the mixture model) can be correlated. 
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Gaussian mixtures uniquely characterize a broad class of distributions  
 
Let us consider an infinite mixture model with Gaussian kernels, each with a different 
mean ak, same variance equal to 1, and weights pk that are strictly decreasing. Then the 
density associated with this mixture is 
 

 
 
Two different sets of (ak, pk) will result in two different density functions, thus the 
representation uniquely characterizes a distribution.  Also, the exponential functions in 
the sum can be expanded as Taylor series. Thus we have: 
 

 
 
Density functions infinitely differentiable at y = 0, can be represented in this way. 
Convergence issues are beyond the scope of this chapter. 
 
Weighted sums fail to achieve what mixture models do 
 
It is not possible, using an infinite weighted sum of independent kernels of the same 
family, to represent any arbitrary distribution. This fact was established in chapter 10 in 
the case where all the kernels have the exact same distribution. It is mostly an 
application of the central limit theorem. Here we generalize this theorem to kernels from 
a same family of distributions, but not necessarily identical. By contrast, the opposite is 
true if you use mixtures instead of weighted sums. 
 
With a weighted sum of Gaussian kernels of various means and variances, we always 
end up with a Gaussian distribution (see here for explanation.) With Uniform kernels (or 
any other kernel family) we can prove the result as follows: 
 

 Consider a sum of n kernels from a same family. Say n1 of them have (almost) 
the same parameters, another n2 of them have the same parameters but different 
from the first group, another n3 of them have the same parameters but different 
from the first two groups, and so on, with n = n1 + n2 + ... 

 Let n tends to infinity, with n1, n2 and so on also tend to infinity. The weighted 
sum in each group will converge to Gaussian, by virtue of the central limit 
theorem. 

 The overall sum across all groups will tend to a sum of Gaussian, and thus must 
be Gaussian. This depends on how fast the weights are decaying. Details about 
the decaying rate, for the result to be correct, are provided in the previous 
chapter.  

 

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://storage.ning.com/topology/rest/1.0/file/get/1184838489?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1184937631?profile=original
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By contrast, a mixture or any number of Gaussian kernels with different means is not 
Gaussian.  

 
Stable mixtures 
 
Just like the Gaussian family is stable with respect to weighted sums, in the sense that 
the weighted sum of independent Gaussian is Gaussian (it is indeed the only type of 
distribution with finite variance, stable under addition, see previous chapter), is it 
possible to find families of kernel distributions that are stable when mixed? In order to 
answer this question, it is enough to identify two different kernels X and Z belonging to a 
same family, such that the densities (regardless of the kernel parameters) satisfy 
 

 
 
with Y also belonging to the same family, regardless of the weight p. Note that X and Z 
can be correlated here. Clearly, the Gaussian family is not stable under mixing. 
 
However, there is actually a large number of stable kernels for mixture models. Let g 
and h be arbitrary density functions. Then we have the following result: 
 

 
 
In short, for mixtures, we have an infinite class of stable kernel families, of all shapes. 
Interestingly, if you choose two Gaussian with different means for g and h, then the 
resulting kernel (a mixture itself), is stable under mixing. That is, it belongs to the same 
family. So a mixture of different Gaussian constitutes a stable family of distributions for 
mixtures, but not for weighted sums. Yet the Gaussian kernel itself is not stable for 
mixtures, while it is the only stable family for weighted sums. 
 
Note that stable kernels are not limited to two components. It easily generalizes 
to n components.  
 
Nested mixtures and Hierarchical Bayesian Systems 
 
In the previous subsection on stable mixtures, we've seen that the components 
(kernels) of a mixture can be mixtures themselves. So you can recursively build a tree 
of nested mixtures, with as many nodes as you wish, and as deep as you wish. What's 
more, all the mixtures, at any level in the hierarchy, can share the same arbitrary family 
of distributions (with any number of parameters), each mixture with its own set of 
parameters. This is just a standardized deep learning, Bayesian hierarchical system. 
For instance, with the notations used in the previous subsection, P(Y), P(Z | Y) and 
P(X | Y) have the same distribution, up to a change in parameters. This also works if the 
distributions are multivariate. 

https://storage.ning.com/topology/rest/1.0/file/get/1186854204?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1189631355?profile=original
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For a standard treatment of nested mixtures, see here (Deep Gaussian Mixture Models, 
paper submitted for publication in November 2017) and here (Hierarchical Mixture 
Models for Nested Data Structures, undated).  
 
Correlations 
 
A sum Y = X + Z of independent random variables is always correlated with each of its 
summands (unless Y is constant, which is not possible if X and Z are independent.) This 
is also true for mixtures. Using the same mixture (with two components) as in the 
subsection on stable mixtures, prove the following: 
 

 
 

Here  and  are used to denote the correlation and standard deviation, respectively. 
How does this formula generalize to any number of kernels?  

A consequence is that for kernels with identical variances (as in the theoretical model), 
ordered by decreasing weights, the successive correlations between a component 
(kernel) and the target distribution Y, are also decreasing. This is a bit like a principal 
component analysis, and it can also be used for data reduction. The difference here is 
that the components are created from scratch, using the algorithms described in section 
2. In practice, unequal kernel variances are allowed: they boost the speed of 
convergence, but the price to pay, depending on the kernel family being used, is that 
two different sets of parameters can lead to the same target distribution Y. The solution 
may no longer be unique.  
 
Note that if instead of a mixture, we consider the weighted sum Y = pX + qZ, 
with X and Z independent, the correlation formulas above (as well as the conclusions) 
are still valid; the only thing that changes is the formula for the variance of Y.   
 
 
  

https://arxiv.org/abs/1711.06929
https://www.statisticalinnovations.com/wp-content/uploads/Vermunt2005.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1207634209?profile=original
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12. Heavily Auto-correlated Time Series 

We investigate a large class of auto-correlated, stationary time series, proposing a new 
statistical test to measure departure from the base model, known as Brownian motion. 
We also discuss a methodology to deconstruct these time series, in order to identify the 
root mechanism that generates the observations. The time series studied here can be 
discrete or continuous in time, they can have various degrees of smoothness (typically 
measured using the Hurst exponent) as well as long-range or short-range correlations 
between successive values. Applications are numerous, and we focus here on a case 
study arising from some interesting number theory problem. In particular, we show that 
one of the times series investigated in my article on randomness theory [see Appendix 
B, read section 4.1.(c)] is not Brownian despite the appearance. It has important 
implications regarding the problem in question. Applied to finance or economics, it 
makes the difference between an efficient market, and one that can be gamed. 

This chapter it accessible to a large audience, thanks to its tutorial style, illustrations, 
and easily replicable simulations. Nevertheless, we discuss modern, advanced, and 
state-of-the-art concepts. This is an area of active research.   

 

1. Introduction and time series deconstruction 
 
We are dealing with a series of N observations or events denoted as z1, ..., zN and 
indexed by time. The respective times of arrival are denoted as T1, ..., TN. Events are 
equally spaced in time, and typically, N is large while time intervals are small, thus 
providing a good approximation to a time-continuous process. The time series 
discussed here are assumed to have stationary increments with unit variance and zero 
mean. We will define what this means exactly when needed. 
 
1.1. Example 
 

The picture below shows typical examples of the time series that we are dealing with in 
this chapter. The X-axis represents the time. These are discrete approximations of time-
continuous series found in many contexts, in particular in finance. 
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Smooth (bottom) versus rugged time series (top) 

 

Interestingly, these two examples come from number theory, and are studied later in 
this article. In each case, it consists of 22,000 observations. The chart at the top is a 
classic example of a Brownian motion, while the one at the bottom exhibits long-range 
auto-correlations not found in traditional Brownian motions. The statistical tests 
discussed in section 2 help assess which type of time series we are dealing with. .   

 

1.2. Deconstructing time series 
 
The observed time series considered here are typically the result of a cumulative 
process. The parent process { yn } causing the pattern usually results (but not always as 
we shall see) in { zn } being a Brownian motion or a fractional Brownian motion. The 
parent process, sometimes called differential process, is defined as follows: 
 

 
 
The square root factors in the above formula are needed, as increments zn - zn-1 are 
very small, since { zn }  mimics a time-continuous process. For instance, in the above 
figure, we have 750 observations in a time interval of length 1. And indeed, if you do the 
reverse operation, starting with the parent process -- consisting (say) of independent 
and identically distributed random variables with mean 0 and variance 1 -- then 

https://storage.ning.com/topology/rest/1.0/file/get/1739211504?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1728291392?profile=original
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The square root factor is clearly mandatory here, by virtue of the central limit theorem, 
to keep the variance finite and non-zero in { z(n) }. For details, see chapter 1 in my book 
on applied stochastic processes. 
 
Note: 
 
If your observed { zn } is stationary, proceed as follows. Shift the time axis (that is, shift 
the Tn values) so that the new origin is far in the future. This is implemented and 
illustrated in my spreadsheet (shared later in this article) via the offset parameter, and it 
fixes issues near the origin. Indeed, if { zn } is stationary, then time location does no 
matter as far as probabilistic properties are concerned, because of the very definition of 
stationarity. By doing so, the parent process { yn } is also (almost) stationary. 
 

1.3. Correlations, Fractional Brownian motions 
 
The traditional setting consists of { yn } being a white noise, that is, a sequence of 
independent and identically distributed random variables with mean 0 and variance 1 in 
this case. The resulting time-continuous limit of { zn } is then called a Brownian motion. 
In most cases investigated here, the yn's are not independent and exhibit auto-
correlations. The resulting process is then called a fractional Brownian motion. And in 
some cases, { yn } may not even be stationary. We will show what happens then.  
The stronger the long-range correlations in { yn }, the smoother { zn } looks like. The 
degree of smoothness is usually measured using the Hurst exponent, described in the 
next section.  
 
2. Smoothness, Hurst exponent, and Brownian test 
 
The traditional and simple metric to measure the smoothness in your data is called 
the detrending moving average, and it is abbreviated as DMA. It is the mean square 
error between your observations and its various moving averages  of order m = 1, 2, 3, 
and so on. The exact definition can be found in this article (Statistical test for fractional 
Brownian motion based on detrending moving, by Grzegorz Sikoraa, 2018, see section 
2). Other criteria are also used, such as FA and DFA. A comparison of these metrics 
can be found in this article (Comparing the performance of FA, DFA and DMA using 
different synthetic long-range correlated time series, by Ying-Hui Shao et al., 2018). 
DMA, along with other metrics, are used in our computations. 
 
With the notation DMA(m) to emphasize the fact that it depends on m, we have this 
well-known result: 

 
This is an asymptotic result, meaning that it becomes more accurate as m grows to 
infinity. The constant H is known as the Hurst exponent. See here (section 2) for 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://arxiv.org/pdf/1803.08553.pdf
https://arxiv.org/pdf/1208.4158.pdf
https://arxiv.org/pdf/1803.08553.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1728171645?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1739508899?profile=original
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details. H takes on values between 0 and 1, with H = 1/2 corresponding to the Brownian 
motion (see also chapter 1 in this book.) Higher values correspond to smoother time 
series, and lower values to more rugged data. 
 
Let's N be the number of observations in your time series. We used N = 22,000 in all 
our examples, and typically, m of the order N1/2. The above asymptotic result is not 
applicable in our context, and we use a slightly different methodology. 
 
2.1. Our Brownian tests of hypothesis 
 
Testing the Brownian character of a time series is typically done using the above 
formula with the Hurst exponent. See here and here for details. Our approach here is 
different, as we are more interested in small-range and mid-range correlations, than in 
long-range ones. We use the notation S(N, m) instead of DMA(m), since this metric also 
depends on your sample size N.  
 
We performed two types of tests. The first one is based on S(N, m), and we used m = 
100, 200, up to 500. We used the correlation R between { S(N, m) } and { m } computed 
on these 5 values of m, with N = 22,000. Since the correlation is very close to 1 in all 
examples, the actual test statistic is -log(1 - R). Its distribution can be empirically 
computed by simulations. The second test is based on auto-correlations of lag m, 
with m = 1, 100, 200, 300, 400 and 500, both for the observations { zn } and the 
deconstructed time series { yn }. The result with detailed computations, using 6 time 
series A, B, C, D, E, F, are available in my spreadsheet in section 2.2. 
 
2.2. Data 
 
We tested the methodology on different types of time series. The results are illustrated 
in the pictures below, and replicable using my spreadsheet. The time series { z(n) } 
were constructed as follows: 
 

 Step 1: Create a base process { xn }. 
 Step 2: Standardize { xn } so that its mean and variance become 0 and 1 

respectively. The resulting sequence is { yn }. 
 Step 3: Create the cumulative process { zn } using the formula in section 1.2. 

 
The time Tn was set to T(n) = 600 + n/750. That's what makes the series { zn } look like 
continuous in time.   
 

The six time series (simulations) investigated here are constructed as follows. They are 
also pictured in section 3.1. Here INT is the integer part function.  

 

 Series A: Use xn+1 = bxn - INT(bxn) with x1 = log 2 and b = (1 + 51/2)/2. 

 Series B: Use xn+1 = bxn - INT(bxn) with x1 = /4 and b = (1 + 51/2)/2. 

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Brownian_motion
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://arxiv.org/pdf/1803.08553.pdf
https://www.quora.com/Is-there-a-statistical-test-to-test-whether-a-time-series-behaves-like-a-Brownian-motion
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 Series C: Here xn is a Bernouilli deviate of parameter 1/2. The xn's are 
independent.  

 Series D: Use xn+1 = b + xn - INT(b + xn) with x1 = 1 and b = 21/2. In addition, 
use z'n = zn - n

1/2/2, rather than the standard zn.  

 Series E: Use xn+1 = b + xn - INT(b + xn) with x1 = log 2 and b = 16. In addition, 
use z'n defined by z'n+1 = z'n + zn+1/(Tn)

3, with z'1 = z1 and T1 =24, rather than the 
standard zn.  

 Series F: Use xn+1 = b + xn - INT(b + xn) with x1 = 0 and b = (1 + 51/2)/2. 
 
Series A and B are generated by a b-process, while series D, E, and F are generated by 
a perfect process. The purpose of this study was to compare b-processes with perfect 
processes, and their ability to generate Brownian motions of fractional Brownian 
motions. Perfect processes and b-processes were introduced in my article on the theory 
of randomness, see Appendix B in this book. Series D is actually pictured in section 
4.1(c) in that appendix. Series C corresponds to the classic Brownian motion.  
 
The data and computations are available in my spreadsheet, here. Both columns D and 
I represent the same exact { yn } in the spreadsheet. But column D is used to build { zn }, 
while column I assumes that you only observe { zn } and must compute { yn } from 
scratch, by deconstructing { zn }.  
 

3. Results and conclusions 
 

In this section, we summarize our findings. Many illustrations are provided.  

 
3.1. Charts and interpretation 
 
The first three series A, B, C in our picture below feature processes that behave pretty 
much like Brownian motions, with an Hurst exponent H equal or close to 1/2. Series A 
and B are two realizations of the exact same processes, as b is identical in both cases. 
Series C illustrates a perfect Brownian motion, with H = 1/2.  
 
Note that the auto-correlations in the deconstructed time series { yn } rapidly drop to 0, 
while the correlations in { zn } are very high, but slowly drop to a value between 0.80 and 
0.90 when m = 500. As a result, S(N, m), as a function of m, is a perfect straight line 
(m is the order of the moving average; N = 22,000 is the total number of observations.)  

https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://storage.ning.com/topology/rest/1.0/file/get/1740793992?profile=original
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Time series D, E, and F, pictured below, behave very differently from A, B, and C. 
Series D exhibits very high auto-correlations in { zn } while auto-correlations in { yn } 
slowly drop to 0. It is smoother than A, B, and C. As a result, S(N, m), as a function 
of m, is no longer a straight line: it is now a convex function. If this was a financial time 
series, it would correspond to a non-efficient market. So the statistical tests described in 
section 2 can be used to test market efficiency.  
 
The smoothness is even more pronounced in series E. In this case, auto-correlations in 
{ yn } are long-range and do not drop to zero. Series F, to the contrary, is very rugged. 
Auto-correlations in { zn } are lower than in the other examples, and S(N, m) is now 
mostly concave. There are still long-range auto-correlations if you look at { yn }. We are 
dealing with a mixture of smoothness and bumpiness, though the smooth part is not 
visible with the naked eye. The rugged part also shows up in the first half of the S(N, m) 
curve, which is concave, while the smooth part shows up in the second half of 
the S(N, m) curve, which is convex.       

https://storage.ning.com/topology/rest/1.0/file/get/1735694819?profile=original
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3.2. Conclusions 
 

We have explored four types of time series, and characterized them using auto-
correlation indicators: 

 

 Brownian-like with very short-range auto-correlations in the deconstructed time 
series { yn }. Examples: series A and B. 

 Brownian for series C, with no auto-correlation in the deconstructed time series 
{ yn }. 

 Smooth, fractional Brownian-like for series D (in series E, { yn } is not stationary, 
so it is not Brownian at all). 

 Rugged, fractional Brownian-like for series E 

 
The tests presented here can be integrated in a Python library. The initial purpose was 
to compare b-processes (series A and B) with perfect processes (series D, E and F). 
These two processes have been found here to be very different. Indeed, perfect 
processes are so peculiar that the standard division by n1/2 in the construction of { zn } 
[section 1.2.] does not work. Factors other than n1/2 must be used, and even then, the 

https://storage.ning.com/topology/rest/1.0/file/get/1735698946?profile=original
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final time series { zn } is not a perfect Brownian motion, not even close: it usually has a 
smooth component and long-range auto-correlations in { yn }. This makes perfect 
processes less attractive than b-processes, for use in cryptographic applications. But 
more attractive, to model inefficient markets or less than perfect randomness. 
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13. Multivariate Time Series  

 
We study some interesting multivariate time series, using a number theory problem 
related to the material in Appendix B, and building on the univariate time series studied 
in the previous chapter. The multivariate case is discussed in section 2 as well as in the 
last section of this chapter, featuring a gaming application.  
 
So many fascinating and deep results have been written about the number (1 + 51/2)/2 
and its related sequence - the Fibonacci numbers - that it would take years to read all of 
them. This number has been studied both for its applications (population growth, 
architecture) and its mathematical properties, for over 2,000 years. It is still a topic of 
active research. 
 
I show here how I used the golden ratio for a new number guessing game (to generate 
chaos and randomness in ergodic time series) as well as new intriguing results, in 
particular: 

 

 Proof that the rabbit constant is not normal in any base; this might be the first 
instance of a non-artificial mathematical constant for which the normalcy status is 
formally established. 

 Beatty sequences, pseudo-periodicity, and infinite-range auto-correlations for the 
digits of irrational numbers in the numeration system derived from perfect 
stochastic processes 

 Properties of multivariate b-processes, including integer or non-integer bases. 
 Weird behavior of auto-correlations for the digits of normal numbers (good 

seeds) in the numeration system derived from stochastic b-processes 
 A strange recursion that generates all the digits of the rabbit constant 

 

This chapter also features techniques to de-correlate time series.  

 

1. Some Definitions 
 

We use the following concepts in this article: 

 A normal number is a number that has its digits uniformly distributed. If you pick 
up a number at random, its binary digits are uniformly distributed: the proportion 
of zero's is 50% and the digits are not auto-correlated, among other things. No 

one knows if constants such as , log 2, 21/2, or the Euler constant, are normal or 
not. 
 

 Rather than normal numbers, we rely on the concept of good seeds, which is a 
generalization to numeration systems where the base b might not be an integer. 

http://mathworld.wolfram.com/RabbitConstant.html
http://mathworld.wolfram.com/NormalNumber.html
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In such systems, the vast majority of numbers (good seeds) have digits that are 
distributed according to some specific equilibrium distribution, usually not a 
uniform distribution. Also they have a specific auto-correlation structure. Any 
number with a different digit distribution or auto-correlation structure is called 
a bad seed. Typically, rational numbers are bad seeds. Examples of numeration 
systems, with their equilibrium distribution, are discussed here, also in Appendix 
B and in my book on stochastic processes.   
 

 The concept of numeration system can be extended to non-integer bases. Two 
systems have been studied in detail: perfect processes and b-processes, see 
Appendix B. The b-process generalizes traditional numeration systems. In that 
system, a sequence xn+1 = bxn - INT(bxn) is attached to a seed x1, where INT 
represents the integer part function, and b is a real number larger than 1. The nth 
digit of the seed x1 is defined as INT(bxn). When b is an integer, it corresponds to 
the traditional base-b numeration system.  

 
 The perfect process of base b is defined by the recursion xn+1 = b + xn - INT(b + 

xn) and a seed x1, where b is a positive irrational number. In that system, the nth 
digit of the seed x1 is defined as INT(2xn). All seeds including x1 = 0 are good 
seeds. Also, xn+1 = nb + x1 - INT(nb + x1). A table comparing b-processes with 
perfect processes is provided in section 4.1(b) in Appendix B. Perfect processes 
are related to Beatty sequence (see also here.) 

 
 By gentle chaos, we mean systems that behave completely chaotically, but that 

are ergodic. By ergodicity, we mean that these systems have equilibrium 
distributions, also called attractor distributions in the context of dynamical 
systems, or a stable distribution (see chapter 10) in the context or probability 
theory. The equilibrium can be found using a very long sequence xn starting with 
any good seed, or using x1 only and a large number of different (good) seeds.   

 

2. Digits Distribution in b-processes  
 
It is known that the digits are not correlated, and that the digit distribution is uniform 
if b is an integer. If the base b is not an integer, the digits take values 0, 1, 2, and so on, 
up to INT(b). Then, the digit distribution and auto-correlation (for good seeds) is known 
only for special bases, such as the golden ratio, the super-golden ratio, and the plastic 
number: see section 4.2 in Appendix B for details. Also, the lag-k auto-correlation in 
base b is equal to the lag-1 auto-correlation in base bk. The picture below shows the 
empirical lag-1 auto-correlation for b in ]1, 4]. The bumps are real and not caused by 
small sample sizes in our computations.  

https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
http://mathworld.wolfram.com/BeattySequence.html
https://en.wikipedia.org/wiki/Beatty_sequence
https://en.wikipedia.org/wiki/Ergodicity
https://en.wikipedia.org/wiki/Attractor
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Figure 1: Lag-1 auto-correlation in digit distribution of good seeds, for b-processes 

 
Figure 1 shows that the lag-1 auto-correlation, for any good seed, is almost always 
negative. In particular, it is always negative if b is in ]1, 2[. It is minimum for the golden 
ratio b = (1 + 51/2)/2 and in that case, its value is (-3 + 51/2)/2. This fact can be proved 
using results in Appendix B (see section 3.2.(a) about the golden ratio process.)  
 
Finally, unlike perfect processes that have long range (indeed, infinite range) auto-
correlations just like periodic time series, for b-processes auto-correlations are decaying 
exponentially fast. See Chapter 12 for illustrations. For an exact formula for the cross-
correlation between the two components of a bivariate perfect process, see section 3.1 
in Chapter 15, or see here. 
 
The digit distribution, for b in ]1, 2], is pictured in section 4.3.(b) in Appendix B. If b is in 
]1, 2[, the digits are binary and the proportion of zero's is always less than 50%. .  
 

3. Strange Facts and Conjectures about the Rabbit Constant 
 
The rabbit constant R = 0.709803442861291 ... is related to Fibonacci numbers (and 
thus to the golden ratio) used to model demographics in rabbit populations. It is typically 
defined by its sequence of binary digits in the ordinary binary numeration system (a 
special case of b-processes with b = 2) and it has an interesting continued fraction 
expansion, see here.  
 
We use here a different approach to construct this number, leading to some interesting 
results. First, let us introduce a new constant. We call it the twin rabbit constant, and it is 
denoted as R*. 
 

https://math.stackexchange.com/questions/3212314/correlation-between-two-sequences-of-irrational-numbers
http://mathworld.wolfram.com/RabbitConstant.html
https://oeis.org/A000301
https://storage.ning.com/topology/rest/1.0/file/get/2174191063?profile=original
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The twin rabbit constant R* is built as follows:    
 

 xn = n (-1 + 51/2)/2 - INT(n (-1 + 51/2)/2) for n = 1, 2, and so on 
 dn =INT(2xn) is equal to 0 or 1 
 R* = d1/2 + d2/4 + d3/8 + d4/16 + d5/32 + ...  = 0.6470592723139 ... 

 
The rabbit constant R is built as follows, using the same sequence xn: 
 

 xn = n (-1 +51/2)/2 - INT(n (-1 +51/2)/2) for n = 1, 2, and so on 
 g(n) = INT(xn) 
 en = g(n+1) - g(n) and is thus equal to 0 or 1 
 R = e1/2 + e2/4 + e3/8 + e4/16 + e5/32 + ...  = 0.709803442861291 ... 

 
Note that xn is a perfect process with b = (-1 + 51/2)/2. We have the following properties: 
 
3.1. Facts and Conjectures 
 

Here are a few surprising facts: 

 

 The digits dn and en, respectively of R* and R, are identical about 88% of the 
time. The exact figure is probably (4 - 51/2)/2. 

 If dn and en are different, dm and em are different, with m  > n, and for all values 
between n and m, the digits are identical, then m - n must be equal to 5, 8 or 13. 
This is still a conjecture; I haven't proved it. 

 The function g(n) satisfies the recurrence relation g(n) = n - g(g(n-1)) with g(0) = 
0. I published the proof in 1988, in Journal of Number Theory (download the 
proof).  

 The lag-1 auto-correlation in the digit sequence { en } is equal to (1 - 51/2)/2. You 
can try to prove this fact, as an exercise. This is lower than the lowest value that 
can be achieved with any good seed, in any b-process. We have the same issue 
with the sequence { dn }. Thus, the binary digit sequences { en } and { dn } of 
the rabbit and twin rabbit numbers cannot generate a good seed (or normal 
number) in any base.  

 The proportion of digits equal to zero in the rabbit number, is (3 - 51/2)/2, also too 
low to be a good seed, regardless of the base. For the twin rabbit number, the 
proportion is 50%. 

 
It would be interesting to study the more general case where b is any positive irrational 
number, constructing twin numbers using the same methodology, and analyze their 
properties.  Some of the candidate numbers include those listed in the Beatty sequence. 
Here we only focused on b = (-1 + 51/2)/2. As a general result, the binary digits of the 
twin numbers generated this way, can never generate a good seed in any base, 
because they are too strongly auto-correlated. 
 
 

https://storage.ning.com/topology/rest/1.0/file/get/2177532845?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2177532845?profile=original
http://mathworld.wolfram.com/BeattySequence.html
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4. Gaming Application 
 
We use this technology in a generic number guessing game. The gaming platform 
features pre-computable winning numbers, and payout based on the distance between 
guesses and winning numbers. This system is described in chapter 18. It mimics  a 
stock market or lottery game depending on the model parameters. At its core, among 
many sequences, we also use the golden ration b-process { xn } described in section 3.2 
in the Appendix. Here b = (1 + 51/2)/2. Of course, we start with a good seed.  
 

In order to make the number guessing process more challenging, we de-correlate the 
digits. For this purpose, we consider two options.  

 
4.1. De-correlating Using Mapping and Thinning Techniques  
 
This option consists of de-correlating the sequence { xn }. The first step is to map { xn } 
onto a new sequence { yn }, so that the new equilibrium distribution becomes uniform on 
[0, 1]. This is achieved as follows: 
 

If xn <  b -1, then yn = xn / (b - 1) else yn = (xn - (b-1)) / (2-b).  
 
Now the { yn } sequence has a uniform equilibrium distribution on [0, 1]. However, this 
new sequence has a major problem: high auto-correlations, and frequently, two or three 
successive values that are identical (this would not happen with a random b, but 
here b is the golden ratio -- a very special value -- and this is what is causing the 
problem.) 
 
A workaround is to ignore all values of xn that are larger than b - 1, that is, discarding yn 
if xn is larger than b - 1. This is really a magic trick. Now, not only the lag-1 auto-
correlation in the remaining { yn } sequence is equal to 1/2, the same value as for the full 
{ xn } sequence with b = 2, but the lag-1 auto-correlation in the remaining sequence of 
binary digits (digits are defined as INT(byn) is also equal to zero, just like for ordinary 
digits in base 2.  
 
4.2. Dissolving the Auto-correlation Structure Using Multivariate b-processes 
 
An interesting property of b-processes is the fact that auto-correlations in { xn } are 
decaying exponentially fast. In fact, for any good seed, the lag-k auto-correlation in 
base b is equal to the lag-1 auto-correlation in base bk. Note that if b is an integer, the 
lag-1 auto-correlation is equal to 1/b.  
 
Another interesting property is the fact that two sequences { xn } and { yn } using 
different (good) seeds x1 and y1, and the same base b, are independent if the seeds are 
independent in base b. The concept of independent seeds will be formally defined in a 
future article, but it is rather intuitive. For instance, the seeds x1 and y1 = x3 are not 
independent, regardless of the base. 
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Thus, in order to dilute the auto-correlations by a factor bk, one has to interlace k 
sequences using the same base b for each sequence, but using k independent good 
seeds, one for each sequence. Doing so, we are actually working with multivariate b-
processes that are not cross-correlated. The same mechanism can be applied 
recursively to each of the k sequences, eventually resulting in multiple layers of nested 
sequences (a tree structure) to further reduce auto-correlations. Finally, re-mapping the 
resulting process may be necessary to obtain a uniform equilibrium distribution. 
 
Note that if b is an integer, there is no need to de-correlate as the sequence of digits is 
automatically free of auto-correlations. Also, in that case, no re-mapping is needed as 
the equilibrium distribution is uniform to begin with.  
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14. Statistical Tests: Summary  

 
We have explored many statistical tests in the previous chapters. Here is a summary. 
More generic model-free tests are discussed in Part 5 of this book. 
 
Many of the following statistical tests are rarely discussed in textbooks or in college 
classes, much less in data camps. Yet they help answer a lot of different and interesting 
questions. I used most of them without even computing the underlying distribution under 
the null hypothesis, but instead, using simulations to check whether my assumptions 
were plausible or not. In short, my approach to statistical testing is model-free, data-
driven. Some are easy to implement even in Excel. Some of them are illustrated here, 
with examples that do not require statistical knowledge for understanding or 
implementation. 

This material should appeal to managers, executives, industrial engineers, software 
engineers, operations research professionals, economists, and to anyone dealing with 
data, such as biometricians, analytical chemists, astronomers, epidemiologists, 
journalists, or physicists. Statisticians with a different perspective are invited to discuss 
my methodology and the tests described here. In my case, I used these tests mostly in 
the context of experimental mathematics, which is a branch of data science that few 
people talk about. In that context, the theoretical answer to a statistical test is 
sometimes known, making it a great benchmarking tool to assess the power of these 
tests, and determine the minimum sample size to make them valid. 
 
I provide here a general overview, as well as my simple approach to statistical testing, 
accessible to professionals with little or no formal statistical training. Detailed 
applications of these tests are found in my recent book and throughout this book. 
Precise references to these documents are provided as needed, in this article. 
 

1. General Methodology 
 
Despite my strong background in statistical science, over the years, I moved away from 
relying too much on traditional statistical tests and statistical inference. I am not the only 
one: these tests have been abused and misused, see for instance section 3 in chapter 
28, on p-hacking. Instead, I favored a methodology of my own, mostly empirical, based 
on simulations, data- rather than model-driven. It is essentially a non-parametric 
approach. It has the advantage of being far easier to use, implement, understand, 
and  interpret, especially to the non-initiated. It was initially designed to be integrated in 
black-box, automated decision systems. Here I share some of these tests, and many 
can be implemented easily in Excel. Also keep in mind that the methodology presented 
here works with data sets that have at least a few thousand observations. The bigger 
the better. 
 
 

https://en.wikipedia.org/wiki/Experimental_mathematics
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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The concept 
 

I illustrate the concept on a simple problem, but it generalizes easily to any test. Here 
you want to test whether  a univariate data set consists of numerical values 
(observations) that follow a normal distribution, or not. In order to do so, in a nutshell, 
you can proceed as follows: 

 

 Normalize your data, so that the mean is zero and variance is equal to one. 
 Simulate 10 samples (of same size as your data set) from a normal distribution of 

mean zero and variance one. The easiest way to do this, in Excel, might be to 
simulate 25 uniform deviates with the function RAND, then average and 
normalize, for each normal deviate being created. There are more efficient ways 
to do it though, see here. 

 Compute the percentile distribution for your normalized data, as well as for the 10 
simulated samples that you created. Easy to do in Excel, see section 2.4. 

 Look at how much variance there is between the percentiles distributions 
computed on the 10 simulated data sets. This will give you an idea of what the 
natural or internal variance is.  

 Compare the percentile distribution computed on your real data, with those from 
the simulated data. Does it look like the curve is similar to those produced with 
the simulated data? Or is there some kind of departure? Maybe it clearly grows 
more slowly initially, then catches up later, compared to the 10 curves resulting 
from simulation? 

 

Ideally, you would want to have more than one real data set, to compare variations 
between real samples, with variations between simulated samples, and then cross-
differences between real data and simulated samples. If your data set is large enough 
(say 3,000 observations) one way to achieve this is to split your data set into three 
subsets. 

Now that you have an idea of the principles, we can dive in the details. The above test 
is one of those described in more detail in the next section, with Excel spreadsheets to 
illustrate the computations. 

 

2. Off-the-beaten-path Statistical Tests 
 

Below is our selection of unusual statistical tests, as well as some well-known tests 
presented in an non-standard (yet simpler) way.  

 
 
 
 
 
 

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
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2.1. Testing for symmetry 
 

This test is used to check if the underlying distribution of your data has the same shape 
(mirrored) both on the left side and the right side of the median. It can be performed as 
follows. 

One can compare R(x) = | 2 Median - P.x - P.1-x | with that of a symmetric distribution, for 
various values of x between 0 and 0.5, to check if a distribution is symmetric around the 
median. The theoretical value of R(x) is zero regardless of x, if your empirical 
distribution is symmetric. Here P.x represents the x-th percentile. Other tests for 
symmetry can be found here. See illustration in chapter 10.   
 
2.2. Testing for un-imodality and other peculiarities 
 
To test if a distribution is unimodal, several tests have been devised: the bandwidth test, 
the dip test, the excess mass test, the MAP test, the mode existence test, the run test, 
the span test, and the saddle test. The dip test is available in R. Read more here. Some 
of these tests, in case of multimodality, can tell you how many modes (or clusters) are in 
your data sets. 
 
Other potential tests could be used, for instance to check if your data 
 

 Has an unbounded support domain (values can be arbitrarily large in absolute 
value given a large enough sample size), 

 If its support domain has some gaps (no value can exist in some particular sub-
interval), 

 If its empirical density function (histogram) is bounded (an example of unbounded 
density is f(x) = 0.25 / |x|1/2 with x in [-1, 1]) 

 Or test for infinite mean or infinite variance  
 

2.3. Testing whether or not there is some structure in your data 
 
I investigated a metric that measures the presence or absence of a structure or pattern 
in a data set. The purpose is to measure the strength of the association between two 
variables, and generalizes the correlation coefficient in a few ways. In particular, it 
applies to non-numeric data, for instance a list of pairs of keywords, with a number 
attached to each pair, measuring how close to each other the two keywords are. You 
would assume that if there is no pattern, these distance distributions (for successive 
values of the sample size) would have some kind of behavior uniquely characterizing 
the absence of structure, behavior that can be identified via simulations. Any deviation 
from this behavior would indicate the presence of a structure. See here for more details. 
 
2.4. Testing for normality, with Excel 
 
Traditional tests exist, for instance Chi-square or Kolmogorov-Smirnov. This also works 
for any distribution, not just the normal (Gaussian) one. And you can use it to compare 
too sets of data, or two-subsets corresponding to two different time periods, to check 

https://stats.stackexchange.com/questions/50603/how-do-i-test-for-a-symmetric-distribution
https://cran.r-project.org/web/packages/diptest/index.html
https://en.wikipedia.org/wiki/Multimodal_distribution
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1038
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
https://www.statisticshowto.datasciencecentral.com/chi-square-test-normality/
https://www.statisticshowto.datasciencecentral.com/kolmogorov-smirnov-test/
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whether they have the same distribution or not, regardless of what that distribution is. 
Instead of comparing empirical PDF's (probability distribution function) as in 
Kolmogorov-Smirnow, I use empirical percentiles (the inverse of the PDF), which are 
very easy to compute in Excel. See illustration (with Excel spreadsheet) in this article. I 
call it the percentile test.  I typically use it after normalizing the data, so that the median 
value is zero. 
 
Among other things, I have used the percentile test to solve stochastic integral 
equations, that is, to find the exact equilibrium distribution attached to some chaotic 
dynamical systems. See my previous book, page 18 (download the spreadsheet listed 
below the chart on page 18) and page 74. 
 
Note: A curious normality test consists in splitting your data Z  in two subsets X and Y of 
same size, and testing whether (X + Y)/21/2 has the same distribution as Z. Explanations 
are provided in chapter 10, and it works as long as the underlying theoretical variance is 
not infinite. 
 
2.5. Tests for time series 
 
Many assumptions could be tested, when dealing with time series observations. 
Sometimes, it is useful to first normalize the data by removing the trend, periodicity, 
outliers, and some noise. You could test if the data exhibits change points, that is, a 
sudden and long-term increase or decrease in observed values, usually the result of 
some event that took place at some point in time; see here for illustration. Or whether 
the change is more subtle, for instance there is no discontinuity, but the slope (trend) 
suddenly changes at one point. Or test whether some auto-correlations (lag-1, lag-2, 
and so on) are present. You can even compare the whole correlation structures of two 
paired time series, to check if they come from the same statistical model. Or you can 
perform model fitting: for instance, you suspect that your data follows an ARIMA time 
series model; then 
 

 You estimate the coefficients of that tentative model, 
 Then simulate values from the exact same model with same coefficients (it is 

much better to simulate several instances of that model to get an idea of what 
natural variations between same-model time series should be), 

 Then test - by comparing the correlation structure in the observed and simulated 
data - whether the model is a good fit, 

 Then try again with a different model to see if you can get a better fit. 
 
In my case, I used some home-made tests to check whether a time series exhibits 
some sort of periodicity, and, as a result, I found that pseudo-random generators 
available in some programming languages, have a very short period, making them unfit 
for industrial applications. See my previous book, page 33. 
 
 
 

https://www.datasciencecentral.com/profiles/blogs/new-perspective-on-central-limit-theorem-and-related-stats-topics
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/weird-mathematical-object-fractional-exponential
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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2.6 Gap test, with Excel 
 
Along with the percentile test described in section 2.4, this is one of my favorite tests to 
detect patterns. It is best illustrated in chapter 9. In essence, the gap test consists of 
measuring the largest gap with no observation, in a set of ordered values 
(observations). That is, the largest interval with no data point. It generalizes to higher 
dimensions, where the gap can be a square or circle with no data point in it. The exact 
distribution of the gap area or length, assuming data points are uniformly distributed, is 
known. If the data points take on integer values only, the distribution is a geometric one, 
readily available in Excel. More on this in my previous book, page 84. The test can also 
be used for outlier detection: a point too far away from its nearest neighbor could be an 
outlier.  
 
2.7. Sparsity test 
 
Is your data voluminous but sparse, a bit like the night sky where trillions of stars 
occupy a tiny portion of the sky? Or is it full of holes of moderate sizes, like Gruyere 
cheese? We tested this assumption in a setting that is similar to fractional factorial 
tables. You can check it out in my previous book, page 71.  
 
Along the same topic, are apparent patterns real, or an illusion? For instance, in the 
night sky, many stars seem to be very close to each other despite the vast emptiness of 
the universe. Are there too many of them (called twin points) to just be a coincidence? 
An answer to this question, based on a statistical test, is provided here. See also a 
related problem about Mars craters, here.  
 
2.8. Elbow test 
 
The elbow test is traditionally used as a rule-of-thumb to detect the number of clusters 
when implementing a clustering algorithm, see section 3 in chapter 25 for illustration. I 
also used it to determine how many digits are accurately computed, when using high 
precision libraries available in some programming language. The answer was far below 
what is advertised in the manuals, especially when working with a mathematically ill-
conditioned problem that requires an unstable iterative algorithm for computations, as in 
some chaotic dynamical systems. See my book, page 48. 
 
2.9. Testing for accelerating growth 
 
This could be used, for instance to check if glaciers are melting down at an accelerating 
pace. It is based on the distribution of records, and in particular, the arrival times of 
these records. Again simulations can be performed for this test. It is illustrated in section 
2 in chapter 28, focusing on the distribution of arrival times of extreme events: the exact 
distribution, in the absence of growth, does not depend on the distribution of the 
observations (neither observed nor extreme values) making it a pretty generic non 
parametric test.  
 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-
https://www.datasciencecentral.com/profiles/blogs/mars-craters-an-interesting-stochastic-geometry-problem
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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2.10. Run test 
 
I used the run test in the context of stock trading, to assess how likely a run (say, 6 
successive days with stock prices going up) is followed by a reversal, trying to find 
patterns to increase gains. The same can apply to sport bets. In general, run tests can 
be used in situations in which the underlying process behaves like a Markov chain. It 
helps you assess the probability of getting a + or - after any sequence of ups and 
downs, such as ++-+---+-+++. This test has also been used (among many other tests) to 

check if the distribution of the digits of some number (say  in base 2) appears to be 
uniform and without auto-correlations. Note that in the case of a random walk, for 
instance when throwing a dice, even after an extremely improbable run of 1,000 heads, 
the chance of obtaining an head next time is still 50%. The same seems to be true with 

the digits of  in base 2: after any sequence of 1,000 consecutive digits all equal to 1, 
the chance that the next digit is 1, is also 50%. This is indeed true regardless of the 
combination of 0's and 1's in the previous 1,000 digits. So the run test can be used to 
measure departures from randomness. 
 
 
 

  

https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test
https://www.datasciencecentral.com/page/search?q=markov+chain
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15. Modern Resampling Techniques  

This crash course features a new fundamental statistics theorem -- even more important 
than the central limit theorem -- and a new set of statistical rules and recipes. We 
discuss concepts related to determining the optimum sample size, the optimum k in k-
fold cross-validation, bootstrapping, new re-sampling techniques, simulations, tests of 
hypotheses, confidence intervals, and statistical inference using a unified, robust, 
simple approach with easy formulas, efficient algorithms and illustration on complex 
data. 
 

Little statistical knowledge is required to understand and apply the methodology 
described here, yet it is more advanced, more general, and more applied than standard 
literature on the subject. The intended audience is beginners as well as professionals in 
any field faced with data challenges on a daily basis. This chapter presents statistical 
science in a different light, hopefully in a style more accessible, intuitive, and exciting 
than standard textbooks, and in a compact format yet covering a large chunk of the 
traditional statistical curriculum and beyond. 

 
In particular, the concept of p-value is not explicitly included in this tutorial. Instead, 
following the new trend after the recent p-value debacle (addressed here by the 
president of the American Statistical Association), it is replaced with a range of values 
computed on multiple sub-samples.  
 
Our algorithms are suitable for inclusion in black-box systems, batch processing, and 
automated data science. Our technology is data-driven and model-free. Finally, our 
approach to this problem shows the contrast between the data science unified, bottom-
up, and computationally-driven perspective, and the traditional top-down statistical 
analysis (see here) consisting of a collection of disparate results that emphasizes the 
theory.  
 
Contents 
 

 Re-sampling and Statistical Inference 
o Main Result 
o Sampling with or without Replacement 
o Illustration 
o Optimum Sample Size  
o Optimum K in K-fold Cross-Validation 
o Confidence Intervals, Tests of Hypotheses 

 Generic, All-purposes Algorithm 
o Re-sampling Algorithm with Source Code 
o Alternative Algorithm 
o Using a Good Random Number Generator 

 

https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://en.wikipedia.org/wiki/Resampling_(statistics)
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 Applications 
o A Challenging Data Set 
o Results and Excel Spreadsheet 
o A New Fundamental Statistics Theorem 
o Some Statistical Magic 
o How does this work? 
o Does this contradict entropy principles? 

 Conclusions 
 

1. Re-sampling and Statistical Inference 
 
We are dealing with a set of N (possibly multivariate) observations, called population. 
We want to split it into M subsets called sub-samples, each with n observations. In each 
sub-sample, observations may or may not be duplicated. The total number of data 
points in all the sub-samples is nM. Usually, nM is less than or equal to N, however 
here, we allow nM to be of any size, even larger than N. The purpose is to study the 
empirical distribution of some statistical quantities of interest, such as mean, variance, 
percentiles, correlations, mean squared error, and so on. In particular, we want to 
determine how large the sample size N must be, in order to achieve a pre-specified 
level of accuracy, typically measured by the width of some confidence intervals. 
 

In each sub-sample, observations are drawn from the population, either with or without 
replacement. Whenever possible, drawing without replacement is the preferred method 
as it leads to maximum variance reduction, with no duplicated observations. Interesting 
cases include: 

 

 Leaving-one-out method: Each sub-sample consists of N-1 distinct 
observations. We just remove one observation in turn from the population, to 
create each sub-sample.  

 Adding-one-over method: This is the dual version of the leaving-one-out 
method, but it is never mentioned in the literature. Each sub-sample consists 
of N+1 observations, with N distinct observations. One observation (different for 
each sub-sample) is duplicated in each sub-sample.  

 Bootstrapping: Each sub-sample consists of N observations, drawn with 
replacement from the original population. So the proportion of duplicated 
observations in each sub-sample is high. The expected number of distinct 
observations in each sub-sample is of the order (1 - e-1) N.  

 K-fold cross-validation: In this machine learning technique, the original data set 
is split into K subsets, with one of them used for validation, and K-1 used for 
training. Typically, sampling is done without replacement, and the sub-samples 
form a partition of the original data set.  

 
If you want to measure some quantity T, say the mean value, you can do it using the 
entire population with N observations, or using the M sub-samples. The formula below 
is fundamental to solve most statistical inference problems in this context. 
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1.1. Main Result 
 
If V denotes the variance of some estimated quantity T using the entire population, 
and W the variance using the M sub-samples, then: 

 
Here  is a positive constant, and the weight wk represents the multiplicity of the kth 
observation across the M sub-samples. It is assumed that the N observations are 
independently and identically distributed, and that T can be computed as a combination 
of sums over the observations: this is the case for the estimated mean, variance, 
correlation, and many other estimators. Even when these assumptions are violated, the 
above results can still be used as a rule of thumb, thanks to the central limit theorem. 
An example is discussed in section 3. 
 
We are mostly interested in the ratio F. In particular, if sampling is done without 
replacement, then F = N1/2/(nM)). The quantity F represents the ratio of the confidence 
interval widths, when comparing the re-sampled estimate (numerator) versus the 
population estimate (denominator). Thus F is a precision indicator used to determine 
ideal sample sizes. The smaller F, the better. Note that F is always larger or equal to 1. 
Also, the ratio of two F's associated with two different re-sampling schemes can be used 
to determine which one is the most efficient. 
 
1.2. Sampling with or without Replacement 
 

We have two cases: 

 

 Without replacement. There is no duplicate observation in the sub-samples: in 
this case, all the weights are equal to 0 or 1, and nM is smaller or equal to N. In 
the cross-validation example, nM = N and all weights are equal to 1. 

 With replacement. There may be duplicates: in this case, some weights are 
higher than 1, penalizing the variance W(T). 

 
In both cases, the weights can be explicitly and efficiently computed at once for multiple 
values of n, using the algorithm in section 2. Thus, it is easy to compute F. In addition, 
we have the following results: 
 

If sampling without replacement, then 

https://storage.ning.com/topology/rest/1.0/file/get/2229137744?profile=original
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If sampling with replacement, on average we have: 

 
Also, in that case, the expected number of distinct (non-duplicate) observations across 
the M sub-samples, is equal to 

 
These results are easy to prove. The proof is left as an exercise, see also here. 
 
1.3. Illustration 
 
Here we illustrate the computation with the following simple example, with N = 5, M = 2, 
and n = 3: 
 

 Population = (1, 2, 3, 4, 5) 
 Sample 1 = (2, 4, 4) 
 Sample 2 = (2, 4, 5) 

 
In this case, w1 = 0, w2 = 2, w3 = 0, w4 = 3, w5 = 1. 
 
1.4. Optimum Sample Size  
 
The F, V and W statistics can be used to determine the minimum sample size needed to 
achieve the desired level of accuracy for the estimator T. The width of your confidence 
interval being proportional to N-1/2, by multiplying N by a factor 4, you increase accuracy 
by a factor 2.   
 
Another option to determine the sample size, especially when some of the assumptions 
are violated (the fact that the observations must be identically and identically distributed) 
consists in extrapolating the variance V or W as N increases, to find when N is large 
enough so that (say) V is small enough. This is discussed in section 3. 
 
1.5. Optimum K in K-fold Cross-Validation 
 
The number of sub-samples used in cross-validation is usually denoted as K (rather 
than M) and one of the main problems is to determine the optimum K. Typically, K is 
small, between 2 and 20. The statistics T of interest, in this case, is a goodness-of-fit 
metric, for instance the mean squared error for predictions computed on the control sub-
sample. The model is trained on K-1 sub-samples, called training sets. One approach to 
this problem is to plot T as a function of K, and check when an increase in K stops 

https://math.stackexchange.com/questions/3209949/expected-proportion-of-distinct-observations-when-sampling-n-observations-with
https://storage.ning.com/topology/rest/1.0/file/get/2229284188?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229289046?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229302326?profile=original
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producing a significant improvement (error reduction) in T. Then you reached the 
ideal K. This can be automated using our elbow rule algorithm (see section 3 in chapter 
25.) 
 
1.6. Confidence Intervals, Tests of Hypotheses 
 
Confidence intervals (CI) for an estimate T are easy to obtain. The first step consists of 
computing the empirical percentiles for T, based on M sub-samples, each 
with n observations. Then, a 90% CI is defined as [T.05, T.95] with 
 

 T.05 being the 5th percentile for T, computed across the M sub-samples. If M = 
100, then T.05 is the fifth lowest value of T among the 100 computed values (one 
for each sub-sample.) 

 T.95 being the 95th percentile for T, computed across the M sub-samples. If M = 
100, then T.95 is the fifth highest value of T among the 100 computed values (one 
for each sub-sample.) 

 
To narrow the width T.95 - T.05 of the 90% confidence interval, one must increase n and 
N. To test with a 90% confidence level whether an estimate T is equal to a particular, 
pre-specified value t, one has to check whether t is in the 90% confidence interval 
[T.05, T.95]. All of this is illustrated in section 3. 

 
2. Generic, All-purposes Algorithm 

 

In this section we share a generic algorithm that performs most of the computations 
described earlier. 

 
2.1. Re-sampling Algorithm with Source Code 
 
This algorithm generates the M samples, each with n observations, based on the 
original data set with N observations. It can perform re-sampling with or without 
replacement, and covers all cases. In the case of re-sampling without replacement, it 
sequentially browses the list of N observations, incrementally building the sub-samples 
by adding one new observation each time. Thus each sub-sample consists of a block 
of n consecutive observations from the original data set. This feature is useful when 
processing time series data. The sub-samples contain duplicate observations if and only 
if nM is larger than N. 
 
The algorithm computes the estimate T for each sample and each value of n, as well as 
the weights w1, w2, and so on, for each n. Here, T is the mean. In section 3, a different 
version computes the correlation for bivariate data, instead of the mean. The 
computations are done efficiently: the computational complexity is O(nM). 
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Source code: 
 
See picture below, or download the text file version here.  
 

 
 

The above version performs re-sampling without replacement. For re-sampling with 
replacement, replace the line  

$idx=(int(($sample*$N)/$M)+$n)%$N  

by  

$idx=int($N*rand()).  
 
Notes: 

 $weight2 is the sum of squared weights at iteration n 

 $used is the number of distinct observations in the M sub-samples at iteration n 

https://storage.ning.com/topology/rest/1.0/file/get/2229955300?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2229951445?profile=original
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 % is the symbol representing the modulo operator 
 

In section 2.2 we discuss sampling without replacement, picking up observations 
randomly rather than sequentially.  

 
2.2. Alternative Algorithm 
 
If the N observations in the original population are somewhat clustered, it is better not to 
create sub-samples consisting of blocks of successive observations, when sampling 
without replacement. In this case, one can proceed iteratively as follows: 
 

 Initialization: Iteration k = 1. Select the first observation randomly among 
the N observations in the original population. Assign it to sub-sample number 1. 

 Loop: At iteration k+1, randomly and repeatedly pick up an observation among 
the N observations in the original population, until you find one that has not been 
picked up already in a previous iteration. Assign the newly found observation to 
segment number (k+1) modulo M.  

 Stop when each sub-sample has n observations.  
 
The number of trials required at iteration k, to find an observation that has not been 
picked up already in a previous iteration, is equal to N / (N - k + 1) on average. Thus the 
computational complexity of this procedure is 

 
 
2.3. Using a Good Random Number Generator 
 

Modern programming languages and even Excel provide reliable pseudo-random 
number generators, capable of generating up to 1015 distinct values. This limit is due to 
machine precision, but it is more than enough for our purpose, especially since re-
sampling methods are particularly useful for relatively small data sets.  

However, Perl is a notable exception, capable of generating only 32,767 distinct 
pseudo-random numbers; see here for details. This is why we created our own 
generator.  With our generator, the kth deviate is equal to the fractional part of kb log(k), 
with b = (1 + 21/2)/7. These deviates are uniformly distributed on [0, 1] and exhibit no 
auto-correlation. Proving the random character of these deviates is an interesting and 
difficult number theory problem, beyond the scope of this tutorial.  
 
We also used our generator to create the original data set with N observations, in 
section 2.1. 
 
 

 
 

https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://storage.ning.com/topology/rest/1.0/file/get/2229575336?profile=original
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3. Applications 
 
In this section, we use a more complex data set to illustrate the concepts discussed 
earlier, to obtain new theoretical results, and to create new statistical recipes. The 
framework described here could be called statistics 2.0. One amazing feature discussed 
in section 3.4 is a recipe to design an estimator more accurate than the best possible 
estimator available for a fixed value of N, without increasing N (the number of 
observations) in essence seemingly working with much more information than the data 
set actually contains, as if N was larger than it actually is. 
 
3.1. A Challenging Data Set 
 
The data set consists of N bi-variate observations (xk, yk) with k = 1, 2,  ..., n. It is built 
as follows: xk is the fractional part of b1k, and yk is the fractional part of b2k, with b1 = - 1 
+ 51/2/2 and b2 =  2/51/2. The data (the two variables) is stored in two 

arrays a1[] and a2[], using the code below: 
 

 
 
The data set is a realization of a bi-variate perfect process with N = 100,000 points. 
These processes are studied in chapter 13 and appendix B. In particular, each of the 
two variables exhibits strong, long-range (indeed, infinite range) auto-correlations. The 
exact values of these auto-correlations are known, making this data set a good 
candidate to benchmark statistical tests. The cross-correlation T between the two 
variables is also known and equal to 

 
 
In particular, with the values of b1 and b2 chosen here, the cross-correlation, as N tends 
to infinity, is equal to T = 1/20, see here.  Pretty close to zero, but distinct from zero. The 
brackets in the above formula represent the fractional part function. 
 
We make statistical inference about the cross-correlation T, using M = 20 sub-samples, 
each containing up to n = 5,000 points. Sampling is done without replacement, 
and nM = N. So there is no duplicate observation in the sub-samples. The source code, 
adapted from section 2.1, becomes 

https://math.stackexchange.com/questions/3212314/correlation-between-two-sequences-of-irrational-numbers
https://storage.ning.com/topology/rest/1.0/file/get/2279254084?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2280812814?profile=original
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The source code is available in text format, here. 
 
3.2. Results and Excel Spreadsheet 
 
We computed the cross-correlation T for all sub-sample sizes n between n = 2 and n = 
5,000, for the M = 20 sub-samples, using the code in section 3.1. We then computed (in 
Excel), for each n, the percentiles T.05 and T.95, as well as the width L = T.95 - T.05 of the 
confidence intervals, across the M sub-samples. The results are available in this 
spreadsheet. You can change the percentile thresholds (0.05 and 0.95) in the 
spreadsheet to interactively visualize the impact on the charts. These thresholds are 
stored in cells AC2 and AD2. The two charts of interest are shown below. 

https://storage.ning.com/topology/rest/1.0/file/get/2280461125?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281515783?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281515783?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2280410248?profile=original
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Figure 1: Width L of the confidence interval for T, as a function of n (the dotted line is 

an approximation) 
 

 
Figure 2: Upper and lower bounds of the confidence interval for T, as a function of n 

 
The true, theoretical value of T (when N is infinite) is T = 1/20 = 0.05. The charts speak 
for themselves: they provide the confidence intervals and suggest that indeed, based on 
our computations, a value of 0.05 for T is highly plausible, and that T is clearly not equal 
to 0 (it would be zero if the two irrational bases b1 and b2 used to build our data set, 
were not related.) But there is much more to that, as we shall see in section 3.3 and 
3.4.  
 

Note that we did not use any statistical theory to arrive to our conclusions, not even the 
concept of random variable, statistical distribution, or the central limit theorem.  

https://storage.ning.com/topology/rest/1.0/file/get/2281769557?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2281784263?profile=original
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3.3. A New Fundamental Statistics Theorem 
 
In the example in section 3.2, the assumptions of the central limit theorem are severely 
violated, in particular, the observations are not independent at all. In other cases, 
observations may have different variances and are not identically distributed. Yet, the 
width L of the confidence interval (L = T.95 - T.05, using M = 10 or M = 20) is very well 
approximated by a power function of n as illustrated in Figure 1. Actually, this is also 
true with L = T.90 - T.10, and indeed, with any percentile thresholds (that is, with any 
confidence level, to use the standard statistical terminology.) 
 
In our example in Figure 1, the relationship is L = 8.781 / n0.894 which becomes more 
and more accurate as n increases (see the dotted line.) Generally speaking, the 
relationship is L = A/nB, where A and B are two constants that depend on your data set. 
This leads to the following theorem: 
 
Theorem: The width L of any confidence interval is asymptotically equal (as n tends to 
infinity) to a power function of n, namely L = A / nB where A and B are two positive 
constants depending on the data set, and n is the sample size. We discuss here the 
conditions required for the theorem to be valid.  
 
The exponent B bears some resemblance with the Hurst exponent in time series, 
see here and here. The standard case, when the data is well behaved and satisfies the 
assumptions of the central limit theorem (CLT), yields B = 1/2. The constant A is linked 
to the estimated variance attached to a single observation, and is further discussed in 
chapter 16. Any departure from B = 1/2 indicates that the data has some patterns, and 
that the CLT assumptions are violated. The same is true with the Hurst exponent. In 
some sense, the above theorem is a generalization of the CLT. Other generalizations 
exist, see for instance here, but the one featured in our theorem is of an entirely 
different nature. It can be used to very accurately determine the value of n (and thus N) 
needed to achieve a specific level of accuracy for an estimator T, even when the CLT 
assumptions are severely violated.   
 
In our example, we picked up T.05 and T.95, as opposed to (say) T.25 and T.75, because 
the thresholds 0.05 and 0.95 provide a better fit with the power function, and especially, 
a more symmetrical confidence interval. Finally, L is the difference between two values 
of the empirical percentile distribution for T. This distribution is known to converge to 
that of a normal distribution under certain conditions, and this fact can be used if you 
are interested in digging into the mathematical details. Note that T.95 and T.05 are not 
independent random variables.  
 
You can use our theorem on smaller data sets, for instance with M = 10 and n = 2,000, 
that is, N = 20,000 observations. 
 
 
 

https://www.datasciencecentral.com/profiles/blogs/confidence-intervals-without-pain
https://www.datasciencecentral.com/profiles/blogs/long-range-correlation-in-time-series-tutorial-and-case-study
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Detrended_fluctuation_analysis
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem


118 
 

3.3. Some Statistical Magic 
 
With N between 98,000 and 100,000 observations, the value for the cross-correlation 
estimator T discussed in section 3.1 and 3.2 is quite stable, and oscillates between 
0.049962093 and 0.050143847, with an average of 0.050039804. The exact value 
(when N is infinite) is 0.050000000. There is an intuitive way to get a much more 
precise estimate without increasing the sample size, and this applies to any data set 
and any estimator. 
 
Let us look at the value computed on each of the 20 sub-samples, when n is between 
2,500 and 5,000, using increments of 1,000 in n. In particular, let us focus on the 5% 
and 95% percentiles (T.05 and T.95). The median value computed on these 52 percentile 
data points is 0.049992500.  
 
Note that in practice, the sample size N is determined in advance. You have to assume 
that the best possible estimate is obtained by taking all the 100,000 observations into 
account. In our case, this yields -- by pure chance -- an unexpectedly very good value 
of 0.050011877, more accurate than (say) with N = 99,999 or 99,998, but less accurate 
than with N = 98,900 (with N = 98,900 the estimated value is 0.050002867 and it is one 
of the very best that you can get from the data set.) Of course, in practice, on a real 
data set, there is no way to known that N = 98,900 yields a more accurate value 
than N = 100,000, and you won't know if N = 100,000 works better or not than N = 
99,999. By contrast, the technique described in the previous paragraph is replicable, 
and also provides an incredibly accurate value.  
 

Let us summarize our findings:  

 Without using our trick, expect to get an estimated value of 0.050039804 
 With our trick, the estimated value is 0.049992500 
 The true value is 0.050000000 

 
The error reduction factor with our trick is | 0.050039804 - 0.050000000 | / 
| 0.049992500 - 0.050000000 | = 5.3. If you were to get that kind of improvement simply 
by increasing the sample size, you would need a sample size about 5.3 x 5.3 = 28 times 
bigger. Our trick essentially gives you one extra digit of accuracy, without increasing N.  
For a related method that accomplishes similar results, download this PDF 
presentation (originally posted here) by Nathaniel E. Helwig, entitled Bootstrap 
Confidence Intervals, and look for second-order accurate intervals starting at slide 29. 
 
How does this work? 
 
We have simply smoothed out little variations in the estimated value around N = 
100,000, using an high-pass filter to sharpen the signal. This is similar to using an high-
pass filter in image processing to remove noise and increase sharpness. This type of 
filter (in image processing) also uses medians rather than averages. Averages are 
actually used to do the opposite effect: blur the image, and the filter is then called a low-

https://storage.ning.com/topology/rest/1.0/file/get/2308013821?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2308013821?profile=original
http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf
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pass filter. Also, because at N around 100,000, the estimated values are mostly above 
the exact value, using medians that include T.05 allows you to correct for the tiny bias. 
This would also work if the opposite was true, that is, if the values were mostly below 
the exact value, thanks to using T.95 as well. And this feature (the tiny bias) is present 
in any data set, when looking at short windows such as N between 98,000 and 
100,000.      
 
Does this contradict entropy principles?  
 

It does not contradict entropy principles, not more than accuracy boosts obtained by 
removing outliers (thus reducing the sample size) that do better than increasing the 
sample size.  

The basic principle is that the insights you get from a data set are based on the amount 
of information that it contains. If you use all the information in your data set (and the 
standard estimator based on the N observations does that) then there is no way you 
can get anything better unless you increase the sample size. This is true in theory, but 
not always in practice: removing errors is a counter-example, with an error-free data set 
seemingly containing more information than if errors were added to it. 
 
However, in compliance with the entropy principle, over sub-sampling (creating sub-
samples with duplicated observations, resulting in nM larger than N) in hopes of getting 
more accurate estimators, would not solve the problem. We have established this fact in 
section 1.1, proving that F is always above 1, or equal to 1 if and only if all the 
information in the data set is used. Whether it is used only once or duplicated, does not 
change the fact that F cannot be lower than 1. Thus the confidence level cannot be 
improved that way. 
 

4. Conclusions 
 

It is sometimes said that data science needs statistics to make things work. Here it is 
the other way around, with statistics benefiting from mathematical discoveries arising 
from applied data science research, to improve existing statistical methods.  

In this article, we discussed a new way to process, analyze and extrapolate data sets, 
leading to a new fundamental statistical theorem, and a way to find more information in 
a data set, than what traditional entropy and statistical theory suggest. It allows you to 
increase the accuracy of statistical estimators without increasing the sample size. The 
boost in accuracy is equivalent to increasing the sample size by a factor 25. The magic 
in this technique is not more spectacular than the magic used to enhance blurred 
images and make them look perfect. Indeed, these two extrapolation techniques are 
closely related.  

Under the umbrella of re-sampling, many statistical problems are solved in a simple 
way, ranging from optimizing cross-validation experiments to designing sound tests of 
hypotheses when traditional assumptions imposed on the data set are severely 
violated.    
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All of this is discussed without using even basic statistical concepts such as random 
variable, p-value, or statistical distribution, making the material not only accessible to 
the layman, but also easy to integrate in black-box machine learning systems. 
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16. Model-free Confidence Intervals  

We propose a simple model-free solution to compute any confidence interval and to 
extrapolate these intervals beyond the observations available in your data set. In 
addition we propose a mechanism  to sharpen the confidence intervals, to reduce their 
width by an order of magnitude. The methodology works with any estimator (mean, 
median, variance, quantile, correlation and so on) even when the data set violates the 
classical requirements necessary to make traditional statistical techniques work. In 
particular, our method also applies to observations that are auto-correlated, non-
identically distributed, non-normal, and even non stationary.  

No statistical knowledge is required to understand, implement, and test our algorithm, 
nor to interpret the results. Its robustness makes it suitable for black-box, automated 
machine learning technology. It will appeal to anyone dealing with data on a regular 
basis, such as data scientists, statisticians, software engineers, economists, quants, 
physicists, biologists, psychologists, system and business analysts, and industrial 
engineers.  

 
Power curve fitting: see here 

 
In particular, we provide a confidence interval (CI) for the width of confidence intervals 
without using Bayesian statistics. The width is modeled as L = A/nB and we compute, 
using Excel alone, a 95% CI for B in the classic case where B = 1/2. We also exhibit an 

artificial data set where L = (log n)-. Here n is the sample size. 
 

Despite the apparent simplicity of our approach, we are dealing here with martingales. 
But you don't need to know what a martingale is to understand the concepts and use 
our methodology.  

 
 

https://www.datasciencecentral.com/profiles/blogs/modern-re-sampling-and-statistical-recipes
https://storage.ning.com/topology/rest/1.0/file/get/2578549388?profile=original
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1. Principle 
 

We have tested our methodology in cases that are challenging when using traditional 
methods, such as a non-zero correlation coefficient for non-normal bi-variate data. Our 
technique is based on re-sampling and on the following, new fundamental theorem: 

Theorem: The width L of any confidence interval is asymptotically equal (as n tends to 
infinity) to a power function of n, namely L = A / nB where A and B are two positive 
constants depending on the data set, and n is the sample size. The requirements for the 
theorem to be valid are discussed in section 6.  
 
The standard (textbook) case is when B = 1/2. Typically, B is a function of the intrinsic, 
underlying variance attached to each observation, in your data set. Any value of B 
larger than 1/2 results in confidence intervals converging faster than what traditional 
techniques are able to offer. In particular, it is possible to obtain B = 1. Departure 
from B = 1/2 can be caused by unusual data (see sections 2.3, 2.4, and 6.3) or by a-
typical estimators (see section 2.1 and 2.2.) Indeed, testing whether B = 1/2 can be 
useful to check if your data has hidden patterns such as uneven variances.  
 
Our new technique is described in details (with source code, spreadsheet and 
illustrations) in chapter 15. When reading that chapter, you may skip section, 1, and 
focus on section 2, and especially section 3, where all the results are presented. 
 
2. Examples 
 
We provide here a few examples where the exponent B is different from 1/2. 
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2.1. Estimator used in nearest neighbors clustering 
 
An example of a non-standard case is the following. In the context of supervised 
classification, one sometimes uses a function of the distances between a point x outside 
of the training set, and its n nearest neighbors in the training set, to decide which 
cluster x should be assigned to. This function uses decaying weights, with the highest 
weights attached the closest neighbors within a same cluster. Depending on how fast 
these n weights decay, the resulting cluster density estimators measured at location x, 
may have an exponent B different from 1/2. Also, if the confidence intervals attached to 
two or more clusters overlap, it means that x could belong to any of these clusters.  
 
2.2. Weighted averages when dealing with outliers 
 
One way to eliminate or reduce the impact of outliers, when estimating the mean T, is to 
use weighted averages with positive weights, the weight attached to each observation 
being a decreasing function of the distance between the median and the observation in 
question. It is defined as follows: 

 
We assume here that the n independently and identically distributed observations are 
ordered according to their distance to the median, with the closest one corresponding to 
the first term in the sum. If b < 1/2, then B = 1/2 as in the standard case. An example is 
when all weights are identical (b = 0). If b is in ]0.5, 1[ then it is easy to prove (see 
chapter 10) that B = 1 - b. The same is true for other estimators, not just the mean. 
 
The general rule is as follows. If you use weights wk decaying more slowly than 1/k1/2, 
then B = 1/2. If the weights decay faster than 1/k1/2 but more slowly than 1/k, then you 
still end up with a power function, but B is strictly between 0 and 1/2. More specifically, 
with the notation 

 
the exponent B is equal to  

 
In particular, sn is minimum and equal to 1/n1/2 if all the weights wk are identical. In that 
case, B= 1/2.  
 
2.3. Auto-correlated time series, U-statistics 
 
We provide here an example where B = 1. In a time series X(1), X(2), and so on, the 
most extreme case (producing the highest value for B) is when X(k+1) depends solely 
on X(k). This is actually the case in the example discussed in section 6.3. 

https://storage.ning.com/topology/rest/1.0/file/get/2584612922?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2628158071?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2628286325?profile=original
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For instance, in the artificial case where X(k+1) = aX(k) + b with |a| < 1, the mean (or 
any other estimator) is a function of X(1) and the constants a and b alone. The variance 
of the mean is 

 
 
and thus B = 1. The same upper bound B = 1 can be achieved with actual (non-
degenerate) stationary auto-regressive time series, see the answer to a question I 
asked on CrossValidated.com, here.  
 
The problem with time series is that if you re-shuffle the observations, you lose the auto-
correlation structure, and thus B may revert back to B = 1/2. Can you find an estimator 
that keeps a value of B higher than 1/2 even if you reshuffle the observations? The 
answer is positive if you consider U-statistics: they provide estimators that can converge 
faster (B > 1/2) to the true value, than standard estimators. See this paper (originally 
posted here), especially the sentence above example 3.11 on page 3, and this article. 
The most well-known U-statistic is Gini's mean difference, defined as 
 

 
 
with p = 1. While more efficient than traditional dispersion estimators, its B exponent is 
also 1/2.  The interesting case is when p tends to infinity: then G(n) is the range 
(maximum minus minimum observation). If the observations are uniformly and 
independently distributed on [0, 1], then the range has a Beta(n - 1, 2) distribution, thus 
its variance is 2(n - 1) / [(n + 2) (n + 1)2] and B = 1. It would be interesting to see what 
happens if the observations have a fat tail distribution instead. If the distribution is 
exponential, B = 0 (see chapter 17 for the proof.) If the distribution is Gaussian, B = 1/2 
(see chapter 17.) 
 
2.4. Correlation coefficient estimated via re-sampling 
 
Below is an illustration for the correlation coefficient using a bi-variate artificial data set 
that simulates somewhat random observations. The illustration in this section is based 
on re-sampling, using the approach discussed in sections 2 and 3 in chapter 15.  
  
The resulting value of B is 0.46. The boosting technique (to improve B) has not been 
used here, but it is described and illustrated in section 3.3, in the chapter in question. 
The power function mentioned in our above theorem, fitted to this particular data set, is 
represented by the red, dotted curve, in the top chart below. 

https://en.wikipedia.org/wiki/Autoregressive_model
https://stats.stackexchange.com/questions/408755/minimum-variance-of-the-mean-for-n-correlated-random-variables/
https://storage.ning.com/topology/rest/1.0/file/get/2644931847?profile=original
http://pages.stat.wisc.edu/~doksum/STAT709/n709-33.pdf
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Fat-tailed_distribution
https://storage.ning.com/topology/rest/1.0/file/get/2643496884?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2645159461?profile=original
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The simulated data set was built as follows: 

 
More examples with more details, can be found in chapter 15. One way to get more 
accurate values for A and B is to re-do the same computations using 10 different re-
ordering of the data set, by randomly shuffling the observations, then 
averaging A and B across these 10 sets: see discussion in section 5. 
 

3. Counterexamples 
 
The theorem is very general, and applies to most data sets. Exceptions consist of odd, 
artificially manufactured data sets that are not found in business applications, or non-
stationary processes such as Brownian motions (see also chapter 2, here.) 
 
For instance, the data set created in my new spreadsheet (download it here) consists of 
10,000 observations: the first 5,000 are assigned to sample x[1], and the remaining 
ones to sample x'[2] (respectively column A and D in the spreadsheet). Observations in 

https://www.datasciencecentral.com/page/search?q=brownian+motion
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/2371091213?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2310699011?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2311953848?profile=original
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each sample are independently and uniformly distributed, and the correlation between 
the two samples is zero. Yet the confidence intervals for the mean have a width L(n) of 

the form A/(log n)B, here with A = 1 and B = : see column J. You can change the fitting 
curve (column K) as well as the values of the observations in x[1], and keep everything 
else unchanged, and get whatever curve you want for L(n), even a trigonometric 
function. This is possible only because the data has been created to make this happen: 
while the first-order cross-correlation between the two samples is nil, the second-order 
cross-correlations are extremely high, see cell P9. 
 
Usually, with these counterexamples, if you randomly sort the data set, re-compute the 
estimator and its width L on the reshuffled data for various n, the fitted curve for the 
width of the interval will be a totally different function. That's actually how you recognize 
that these data sets are artificial. However, even with real-life data, you are sometimes 
faced with data glitches that produce the same issues, and that are hard to detect as in 
my above example. 
 
Yet there are some estimators that truly do not have a power function for the width of 
their confidence interval. An example is provided in my article on Poisson processes. It 
is about a local estimator of the intensity of a Poisson process based on the distances 
to the n nearest neighbors. The width L is asymptotically equivalent to (log n)/n1/2. 
See here, or download the article: this estimator is described page 118, just above 
Remark 1.  
 

Our main theorem can be generalized as follows to cover even more cases, using a 
second order approximation: 

 
 
The constant C may be positive or negative. Even then, the logarithm of the 
width L is asymptotically equivalent to a curve with only two parameters: log A and B. 
 

4. Estimating A 
 
The constant A attached to the power function (see theorem), is related to the intrinsic 
variance present at the individual observation level, in your data. We provide its value 
for common estimators (up to a factor that depends only on the confidence level), in the 
ideal case when observations are independently and identically distributed with an 
underlying normal distribution. These values can still provide a good approximation in 
the general case.  

https://www.researchgate.net/publication/230268902_Estimation_of_the_intensity_of_a_Poisson_point_process_by_means_of_nearest_neighbor_distances
https://storage.ning.com/topology/rest/1.0/file/get/2363982564?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2364105727?profile=original
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The formula for the median is a particular case of the pth quantile with p = 0.5. All the 
values in the second column represent the unknown theoretical value of the quantities 
involved. In practice, these values are replaced by their estimates computed on the data 
set. These estimates converge to the true values, so using one or another does not 
matter, as far as the correctness of the table is concerned.  
 
The exact formula for the correlation when it is not zero and the normal assumption is 
not satisfied, is very complicated. See for instance this article. By contrast, dealing with 
any correlation (or even more complicated estimators such as regression parameters) is 
just as easy as dealing with the mean, if you use our methodology. Even if none of the 
standard assumptions is satisfied. 
 
Finally, A, B and n provide more useful information about your estimator, than p-values. 
 

5. Estimating B 
 
We denote as L(n) the value of the interval width computed on a sample 
with n observations. The standard way to fit L(n) with the power curve A/nB is not very 
efficient, resulting in high volatility. Here we offer strategies to get much more accurate 
and stable values for A and B. All the illustrations in this section are based on re-
sampling, using the approach discussed in sections 2 and 3 in chapter 15. 
 
5.1. Getting more accurate values 
 
The following strategies significantly improve the accuracy when estimating B: 
 

 Use 10 different re-ordering of the data set, by randomly reshuffling the 
observations, then average B across these 10 sets 

 Focus on small values of the sample size (less than n = 10,000.) 
 When fitting L(n) with A/nB, do not use all the values of n, but only a fraction of 

them, that are unequally spaced: for instance n = 4, 9, 16, 25, 36, 49, 64 and so 
on. Cubes work even better if your samples are large enough. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230981/
https://storage.ning.com/topology/rest/1.0/file/get/2313207865?profile=original
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 Large confidence intervals, with lower and upper bounds equal to the 2.5 and 
97.5 empirical percentiles, work better than smaller ones. Also, M = 20 or M = 10 
(see algorithm in section 3 in chapter 15) work better than M = 2 or M = 5. Large 
values of M (say M = 50) do not offer extra benefits.  

 
We applied these strategies to compute a confidence interval for B, on a data set 
consisting of 4 non-overlapping samples (M = 4), each with n = 2,500 observations, 
drawn from a population of N = 10,000 observations. We repeated this procedure 10 
times, by re-shuffling the 10,000 observations 10 times in the original data set. The 
value obtained for B is 0.484, while the theoretical value (with an infinite sample) would 
be 0.500. The data set, computations, and results are available in this spreadsheet (10 
MB.) 
 
5.2. Getting even more accurate values 
 
The estimated values for B are very volatile due to the fact that L(n) is computed 
recursively based on embedded samples of increasing sizes. Indeed, { L(n) } is 
a martingale. Instead of trying to fit L(n) with a power curve, you can fit the much 
smoother integrated L(n), denoted as J(n), with an appropriate curve, then estimate 
B using J(n) rather than L(n). It turns out that J(n) is also well approximated by a power 
curve with the same B, at least as a first order approximation. If for the theoretical 
(exact) value, L(n) = A/Bn, then we have: 
 

 
 
Note that B is in ]0, 1[, and in most cases B = 1/2. If you ignore the term B/N in the 
above formula, then you also have a power curve for J(n). If you include that term, your 
estimation will be more accurate, but the model fitting technique (to find B) is a tiny bit 
more tricky. 
 
Instead of using J(n), you could use the median value of L(n) computed on the 
first n observations in your sample. This median is denoted as Q(n). It provided the 
most accurate results for B, among the four methods tested. 

http://www.datashaping.com/B.xlsx
https://en.wikipedia.org/wiki/Martingale_(probability_theory)
https://storage.ning.com/topology/rest/1.0/file/get/2417335026?profile=original
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We tested the four methods -- L(n), approximated J(n), bias-corrected J(n) denoted 
as J*(n), and Q(n) -- using M = 2 samples each with up to n = 10,000 observations, 
reshuffling the samples 50 times to obtain the 50 x 4 values of B shown in the above 
figure. The estimated value of B, computed over the 50 tests using Q(n), is 0.49. The 
data set was designed so that the theoretical B should be the classic 1/2 value as n 
tends to infinity. The above figure gives you an idea of the confidence intervals for B. 
Note that the method based on L(n) is by far the worst, with bias and high volatility, 
including 5 outliers (very low values of B) not shown in the figure.  All the details, with 
additional comments, are found in this spreadsheet. 
 

6. Theoretical Background 
 
We first compare the asymptotic formula for the re-scaled range, based on the Hurst 
exponent H, with our asymptotic formula for L(n), based on the B exponent. We then 
explain how the formula L(n) = A/Bn can be derived under general assumptions, using 
some heuristics. All the illustrations in this section are based on resampling, using the 
approach discussed in sections 2 and 3 in chapter 15. 
 
6.1. Connection with the re-scaled range and the Hurst exponent 
 
We assume here that the number of samples is M = 2. Given a sample with n 
observations, the re-scaled range, in its simplest form, is defined as the range of the 
observations (the difference between the maximum and the minimum) divided by the 
standard deviation computed on the n observations, see here (or alternatively here) for 
details.   
 
Also, if M = 2, the width of the confidence interval L(n) is proportional to |T'(n) - T''(n)| 
where T'(n) and T''(n) are the values of the estimator of interest computed for each 
sample of size n. Let us denote as p the proportion in question, measuring the level of 
the confidence interval, so that 
 

https://storage.ning.com/topology/rest/1.0/file/get/2643811800?profile=original
https://mosaic.mpi-cbg.de/docs/Racine2011.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2458806456?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2453175711?profile=original
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Under some general conditions, T'(n) and T''(n) have a Gaussian distribution. Thus, L(n) 
has a folded normal distribution, and its expectation is 

 
Now, let's introduce the following notations: 

 
For instance, if the estimator T in question is the mean, then Z'(k) is the kth observation 
in the first sample. Now we can write the well-known asymptotic expansion for the re-
scaled range, as  

 
where H is the Hurst exponent. In the above formula, if you replace V'(n) by Var[T'(n)] 
and R(n) by a constant R, it becomes  

 
Since the two samples are independent, Var[T''(n)] ~ Var[T'(n)] and thus H = B.  
 
6.2. General case 
 
We assume here that we have M samples, say M = 20 (a small number.) Let us assume 
that T'(n), T''(n) and so on, computed on each sample, are also independent with 
asymptotically (as n tends to infinity) the same variance denoted as Var[T(n)]. Then the 
(say) 95% confidence interval for T has a width L(n) proportional to the range of its 
values computed on the M samples. Let p be the proportion in question, depending on 
the confidence level. In short, asymptotically, E[L(n)] is the expectation of the range 
of M independent Gaussian variables with same mean E[T(n)],  and same variance 
Var[T(n)], multiplied by p. Thus, E[L(n)] ~ A/nB is still proportional to (Var[T(n)])1/2. 
 
Intuitively, when the observations have strong, long-range auto-correlations, the 
variance of any estimator -- which is itself an increasing function of the variance in the 
observations -- is small, and thus B is high. See this spreadsheet for such an example, 
with B = 0.8.   
 
6.3. Another approach to building confidence intervals 
 
This framework suggests yet another potential approach to estimating B and obtaining 
confidence intervals for T: 

https://en.wikipedia.org/wiki/Folded_normal_distribution
https://storage.ning.com/topology/rest/1.0/file/get/2643837557?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2471474098?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2471559385?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2472296398?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2475323131?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2476236011?profile=original
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 Compute T(n) and its empirical percentiles on M independent samples of size n, 
with increasing values of n. Instead of independent samples, you could 
use M reshuffled versions of one sample if you don't have much data, but you 
need to be careful about biases. 

 Compute the mean, empirical percentiles, and variance of T(n) across 
the M samples, for several values of n. The mean and empirical percentiles will 
give you confidence intervals (CI) of any level for T, for different values of n. You 
can extrapolate these CI's to any value of n, using model fitting techniques. If you 
do the same with the empirical variance of T(n), fitting it with a power curve A/nB, 
you then get an estimate for A and B.    

 
If you use this approach, you can use sample sizes that are smaller, but the 
number M of samples must be large enough, at least M = 20. If your samples come 
from just one sample set that you reshuffle M times, you still need to use a large sample 
size but focus on nested sub-samples of growing sizes that are not too large, as all your 
estimated values across all samples, will be identical once you reach the full sample 
size. 
 
The computations and results, using this approach, are found in this spreadsheet. The 
data set used here also has an high B exponent, above 0.8. You would expect to find 
patterns in the data with such a high B, and this is the case here: look at column Y in 
the Details tab. Below are the model-free 90% confidence intervals for various values 
of n. The estimator T investigated here is the mean. Its true theoretical value is 0.5. 
Standard statistical techniques would not work here due to the long-range auto-
correlations in the data. In particular, convergence to the theoretical value is much 
faster than with standard techniques applied to standard data corresponding to B = 1/2. 
 

 
 
The iterative computation of the 10,000 medians Q(n) is very slow. If you clear column 
S in the Details tab in the spreadsheet, computations will run much faster, but you will 
miss the estimate of B based on these medians. Finally, if you use one sample from the 
previous spreadsheet, and reshuffle it M times to produce M samples (as opposed to 
using non-overlapping samples as in the previous spreadsheet) then you kill many of 
the patterns present in that data set, and as a result your estimated B is much closer to 

https://storage.ning.com/topology/rest/1.0/file/get/2643854649?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2506083435?profile=original
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1/2, and the speed at which confidence intervals converge to the true theoretical value, 
will be slower, that is, more "normal". This is illustrated in this spreadsheet. 
 

7. Conclusions 
 
Some frameworks can handle unclean data with lack of independence between 
observations, lack of stationarity, non-Gaussian behavior and so on. For instance, in 
time series, the Hurst exponent H plays a role very similar to our exponent B. Both lie in 
[0, 1], take on similar values depending on whether the data is very chaotic (H and B < 
1/2), unusually smooth (H and B > 1/2) or well behaved like a standard Brownian motion 
(H = B = 1/2).  
 
In the theory of martingales (we are actually dealing with martingales here), there is a 
generalization of the central limit theorem, known as the martingale CLT, stating under 
which assumptions B = 1/2, even in cases where auto-correlations are strong.  
However, I could not find any general framework that deals with accurately extrapolating 
confidence intervals beyond the size of your data set, allowing you to perform robust 
statistical inference with all sorts of estimators applied to messy data, without using any 
statistical model. Traditional re-sampling techniques based on empirical percentiles are 
of some use. The novelty of our approach is to bring these re-sampling techniques to a 
whole new level, solving problems thought to be unsolvable, for instance getting 
confidence intervals much sharper than those obtained with traditional methods, or 
getting sharp estimates for B, even in the non-standard case when B is smaller or larger 
than 1/2.   
  

https://storage.ning.com/topology/rest/1.0/file/get/2643868653?profile=original
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Martingale_central_limit_theorem
https://en.wikipedia.org/wiki/Resampling_(statistics)
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17. A Beautiful Probability Theorem  

This is another spectacular property of the exponential distribution, and also the first 
time an explicit formula is obtained for the variance of the range, besides the uniform 
distribution. It has important consequences, and the result is also useful in applications. 

Theorem 
The range R(n) associated with n independent random variables with an exponential 
distribution of parameter l satisfies 

 
Before proving the theorem, note that the first formula is well known, only the second 
one is new. The standard proof for the expectation is not considered simple: it is based 
on computing the expectation for the maximum (see here) and the fact that the 
minimum also has an exponential distribution with known expectation (see here). Our 
proof is simpler and also covers the variance. 
 
Proof 
 
The general distribution of the range is known for any distribution, see here. The range 
is defined as 

 
 
In the case of the exponential distribution, the range computed on n random variables 
has the following density (see here page 3):  
 

 
 
With a simple change of variable, the k-th moment of the range is equal to 

 
Using WolframAlpha (see here and here) one obtains 

 
Thus, 

 

https://www.stat.berkeley.edu/~mlugo/stat134-f11/exponential-maximum.pdf
https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables
https://en.wikipedia.org/wiki/Range_(statistics)
http://scaapt.org/wp2013/wp-content/uploads/2015/09/SCAAPT_range_notes.pdf
https://www.wolframalpha.com/input/?i=integrate+(log+x)+(1-x)%5En+dx+between+0+and+1
https://www.wolframalpha.com/input/?i=integrate+(log+x)%5E2+(1-x)%5En+dx+between+0+and+1
https://storage.ning.com/topology/rest/1.0/file/get/2646179331?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646267833?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646268851?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646278721?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646233753?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2646244636?profile=original
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The two symbols H(n-1) and ψ1(n) represent the harmonic numbers and the Trigamma 
function, respectively. To complete the proof, use the fact that 
 

 
∎  
 
There are a number of interesting consequences to this result. First, the expectation of 
the range grows indefinitely and is asymptotically equal to log n. Also, the variance of 

the range grows slowly and eventually converges to 2/6. This is in contrast to the 
uniform distribution: its range is bounded, and its variance tends to zero as fast as 1/n2, 
see section 2.3 in chapter 16.   
 
This result is pretty deep. It is almost like the range, for the exponential distribution, is 
made up of a weighted sum of independent exponential variables with same 
parameter λ, with the kth term added into the sum contributing with a weight equal to 
1/k.  
 
But perhaps most importantly, we found the two extreme cases to a new statistical 
theorem (see chapter 16, section 1) stating that the length of any confidence interval 
attached to an estimator is asymptotically equal to A/nB, with B between 0 and 1. This 
length is usually proportional to the standard deviation of the estimator in question. In 
practice, in almost all cases, B = 1/2. However, here we have: 
 

 For the range, if the variables are independently and uniformly distributed, 
then B = 1. 

 For the range, if the variables are independent with exponential distribution, 
then B = 0. 

 
For normal variables, Var[Range] = O(1/n) and E[Range] = O((log n)1/2), thus B = 1/2 
(see here and here.) These results are summarized in the table below: 
 

 
Order of magnitude for the expectation and Stdev of the range 

 
Finally, the same technique could be used to compute higher moments, or to compute 
the variance of the range for other probability distributions. It could also help with 
studying the convergence of the re-scaled range and its associated Hurst exponent, see 
section 6.1in chapter 16 for details. 

http://mathworld.wolfram.com/HarmonicNumber.html
https://en.wikipedia.org/wiki/Trigamma_function
https://en.wikipedia.org/wiki/Trigamma_function
https://stats.stackexchange.com/questions/229073/variance-of-maximum-of-gaussian-random-variables
https://math.stackexchange.com/questions/89030/expectation-of-the-maximum-of-gaussian-random-variables
https://storage.ning.com/topology/rest/1.0/file/get/2646296096?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2663504778?profile=original
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Connection with order statistics and the Renyi Representation 
 
Joe Blitzstein (teaching probability at Harvard University) pointed out (see here) that my 
theorem is a particular case of a general result that applies to exponential distributions, 
known as the Renyi representation. This general result is illustrated in the picture below 
and in this document. 
 

 
 
This also brings something very interesting: since my proof relies on the fact that the 
sum of the inverse of the squares is Pi^2/6 and since Renyi’s argument is entirely 
probabilistic, it is thus possible to prove, using probabilistic arguments alone, that the 
sum of the inverse of the squares is Pi^2/6. I will look at higher moments to see if there 
are some other facts about mathematical constants or integrals, that can be proved 
(thanks Renyi!) using probabilistic arguments alone. With some chance, I might even 
discover a new relationship. 
 
Finally, another way to prove the result is to use the fact (see here) that  
 

 
  

https://statistics.fas.harvard.edu/people/joseph-k-blitzstein
https://www.quora.com/What-is-the-variance-of-the-range-for-exponential-distributions
https://storage.ning.com/topology/rest/1.0/file/get/2647075955?profile=original
https://en.wikipedia.org/wiki/List_of_definite_integrals#Definite_integrals_involving_logarithmic_functions
https://storage.ning.com/topology/rest/1.0/file/get/2647079173?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2647962026?profile=original
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18. Deep Math Gaming Platform  

 
I describe here the ultimate number guessing game, played with real money. It is a new 
trading and gaming system, based on state-of-the-art mathematical engineering, robust 
architecture, and patent-pending technology. It offers an alternative to the stock market 
and traditional gaming. This system is also far more transparent than the stock market, 
and cannot be manipulated, as formulas to win the biggest returns (with real money) are 
made public. Also, it simulates a neutral, efficient stock market. In short, there is nothing 
random, everything is deterministic and fixed in advance, and known to all users. Yet it 
behaves in a way that looks perfectly random, and public algorithms offered to win the 
biggest gains require so much computing power, that for all purposes, they are useless 
-- except to comply with gaming laws and to establish trustworthiness. 
 
We use private algorithms to determine the winning numbers, and while they produce 
the exact same results as the public algorithms (we tested this extensively), they are 
incredibly more efficient, by many orders of magnitude. Also, it can be mathematically 
proved that the public and private algorithms are equivalent, and we actually proved it. 
We go through this verification process for any new algorithm introduced in our system.  
 
In section 4.1, we offer a competition: can you use the public algorithm to identify the 
winning numbers computed with the private (secret) algorithm? If yes, the system is 
breakable, and a more sophisticated approach is needed, to make it work. I don't think 
anyone can find the winning numbers (you are welcome to prove me wrong), so the 
award will be offered to the contestant providing the best insights on how to improve the 
robustness of this system. And if by chance you manage to identify those winning 
numbers, great, you'll get a bonus! But it is not a requirement to win the award. 
 
Content 
 

 Description, Main Features and Advantages 
 How it Works: the Secret Sauce 

o Public Algorithm 
o The Winning Numbers 
o Using Seeds to Find the Winning Numbers 
o ROI Tables 

 Business Model and Applications 
o Managing the Money Flow 
o Virtual Currency 

 Challenge and Statistical Results 
o Data Science / Math Competition 
o Controlling the Variance of the Portfolio 
o Probability of Cracking the System 

 Designing 16-bit and 32-bit Systems 
o Layered ROI Tables 
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o Smooth ROI Tables 
o Systems with Winning Numbers in [0, 1] 

 

1. Description, Main Features and Advantages 
 
Rather than trading stocks or other financial instruments, participants (the users) 
purchase numbers. Sequences of winning numbers are generated all the time, and if 
you can predict the next winning number in a given sequence, your return is maximum. 
If your prediction is not too far from a winning number, you still make money, but not as 
much. Our system has the following features: 
 

 The algorithms to find the winning numbers are public and regularly updated. 
Winning is not a question of chance: all future winning numbers are known in 
advance and can be computed using the public algorithm. 

 The public algorithm, though very simple in appearance, is not easy to implement 
efficiently. In fact, it is hard enough that mathematicians or computer scientists 
do not have advantages over the layman, to find winning numbers. 

 To each public algorithm, corresponds a private version that runs much, much 
faster. We use the private version to compute the winning numbers, but both 
versions produce the exact same numbers. 

 Reverse-engineering the system to discover any of the private algorithms, is 
more difficult than breaking strong encryption. 

 The exact return is known in advance and specified in public ROI tables. It is 
based on how close you are to a winning number, no matter what that winning 
number is. Thus, your gains or losses are not influenced by the transactions of 
other participants. 

 The system is not rigged and cannot be manipulated, since winning numbers are 
known in advance. 

 The system is fair: it simulates a perfectly neutral stock market. 
 Participants can cancel a transaction at any time, even 5 minutes before the 

winning number is announced. 
 Trading on margin is allowed, depending on model parameters. 
 The money played by the participants is not used to fund the company or pay 

employees or executives. It goes back, in its entirety, to the participants. 
Participants pay a fee to participate. 

 
Comprehensive tables of previous winning numbers are published, even well before a 
new sequence (based on these past numbers) is offered to players. It helps participants 
to design or improve their strategies to find winning numbers. Actually, past winning 
numbers are part of the public data that is needed to compute the next winning 
numbers, both for participants and the platform operators. 
 

Various ROI tables are available to participants, and you can even design your own 
ones. If you are conservative, you can choose one offering a maximum return of 10% 
(for finding the exact value of a winning number), a 54% chance of winning on any 
transaction, and a maximum potential loss of 4%. This table is safe enough that we will 
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allow you to "trade" on margin. Another interesting ROI table offers a maximum return of 
330%, and the same 54% chance of winning on any transaction, with a maximum 
potential loss of 4%. Keep in mind that this return is what you can make (or lose) in one 
day, on one sequence. New winning numbers are issued every day for each life 
sequence, so your return (negative or positive) gets compounded if you play frequently. 

If you are a risk taker, you may like a table offering a maximum return of 500%, a 68% 
chance of winning on any transaction, and a maximum potential loss of 60%. Or another 
table with a maximum return of 600%, a 80% chance of winning, but a maximum 
potential loss of 100%. To download all the sample ROI tables discussed in this 
presentation, click here. 
 

All the sequences currently offered on the market consist of 8-bit numbers: each 
winning number (a new one per day per sequence) is an integer between 0 and 255. 
We will soon offer 16-bit numbers. By design, all ROI tables (even if you use a 
customized one) offer an average return of 0%. This is true regardless of the sequence 
you are playing with: sequences and ROI tables are independent. 

The participant can test various strategies: for instance: 

 Try various ROI tables 
 Play every day until you experience your first win (this may not happen for a long 

time) 
 Play every day until you experience your first loss  (this may not happen for a 

long time) 
 Play until you have achieved a pre-specified goal, or exit (similar to a stop order 

on the stock market) if your losses reaches some threshold (some participants 
might want to continue hoping to recoup some losses)  

 Increase or decrease how much you spend depending on your results 
 Look if you can find patterns in the winning numbers, exploit them 

 

Below, we explain how this works, using a real-life example. 

 

2. How it Works: the Secret Sauce 
 
Here is an example of a sequence being tested in our lab. It shows how the winning 
numbers are computed, for the sequence in question. The purpose is to illustrate the 
mechanics, applied to one of our 8-bit systems. The 32-bit version offers more flexibility, 
as well as potential returns that can beat those of a state lottery jackpot. Our sample 8-
bit sequence is defined by the public algorithm below. 
 
2.1. Public Algorithm 
 
Start with initial values x0 and y0 that are positive integers, called seeds. Then for t = 0, 
1, 2, and so on, compute xt+1 and yt+1 iteratively as follows: 
 

http://datashaping.com/lottery-dss.xlsx
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If 4x(t) + 1 < 2y(t) Then  

    y(t+1) = 4y(t) - 8x(t) - 2 

    x(t+1) = 2x(t) + 1  

Else  

    x(t+1) = 2x(t)  

    y(t+1) = 4y(t).  

 
2.2. The Winning Numbers 
 
The future winning numbers for a particular sequence, start at a specific machine-
generated iteration T that no one knows, not even the platform operator nor its software 
engineers. Typically, T > 30,000,000 and can be chosen randomly. The iterations 
represent the time. The future winning numbers are always integers between 0 and 255, 
and they occur only at iterations t = T, T+8, T+16, T+24, and so on. Their value at 
iteration t is xt - 256 xt-8. The reason for skipping 7 out of 8 numbers is to make sure that 
winning numbers are not auto-correlated. 
 
Past winning numbers are those occurring at iterations t = T-8, T-16, T-24, and so on. 
The last 2,000 of them are published before the sequence is available (life) on the 
platform, allowing participants to predict future winning numbers, using the public 
algorithm or by other means, and make (or lose) money. For our above test sequence, 
the 2,000 past winning numbers in question, ordered chronologically, are available in 
this text file. 
 

For each sequence, one new winning number is published each day. So, the time unit 
used here is 3 hours since one day is 8 x 3 hours. To win the maximum amount, one 
must correctly predict the winning number attached to a future day. Good and fair 
approximations also result in a gain, albeit lower. These gains and losses are explicitly 
specified beforehand, in very precise ROI tables, see below. Finally, by design, the 
winning numbers are not auto-correlated; they appear independently and uniformly 
distributed (more so than many software-generated pseudo-random numbers), and do 
not exhibit any known or visible pattern. In short, they look totally arbitrary, yet 
generated using a rudimentary formula. 

 
2.3. Using Seeds to Find the Winning Numbers 
 

Most participants are likely to do random trials to find or approximate winning numbers. 
The few who want to use the public algorithm need extra information to compute 
winning numbers, and even then, their chance of finding such numbers is virtually zero, 
due to the tremendous amount of computations required. In short, you need to know the 
seeds, and when to stop your computations. The stopping rule is simple: you stop when 
you have found numbers that match the past winning numbers publicly available. Then 
you know for sure that your next number will be a winning one. 

We offer information about the seeds in two different ways: 

http://www.datashaping.com/winningNumbers2000.txt
http://www.datashaping.com/winningNumbers2000.txt
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 You can request seeds that work. The working seeds that we provide are integer 
numbers consisting of many digits. In our particular case, the following seeds 
work: x0 and y0. You can download them as text files, by clicking on these two 
links. Both x0 and y0 contain about 250,000 digits in base 10. 

 Or you can use the information provided with the public algorithm: the fact that 
there is a set of seeds (and only one) leading to the winning numbers, and 
consisting of positive integers lower than 1,000. 

 

We guarantee the following: 

 

 With the wrong seeds, you won't find the winning sub-sequence (matching public 
past winning numbers) in your lifetime, no matter how much computing power 
you use. 

 With the right seeds, you will find the winning sub-sequence (matching public 
past winning numbers) only once, and in less than 32 trillion iterations. 

 
So we offer you a way to find the next winning numbers, and you know in advance how 
much you will win when finding them, using the ROI table. The question is: how many 
years would the most powerful computers in the world need, to make all these 

computations? By contrast, as of January 2019, only 31.4 trillion digits of  are known, 
and computing them require several months using a lot of computing power, together 
with very clever mathematical engineering bearing some resemblance to our private 
algorithms. And checking that all these digits (not just the first few trillion) are correct, is 
another big problem. Here, if you make any tiny mistake in your computations, you will 
miss the past sequence of winning numbers. 
 

Of course, you could be a mathematical genius, and somehow figure out what the 
private algorithm is, to make your computations far more efficiently. This is highly 
unlikely to happen. There is a considerable amount of very advanced, unpublished 
mathematical research that has been done to make our systems robust. Also, we 
regularly change the type of sequences that we use in our system, every few months or 
so. And we work with white hat hackers (paid to hack our system) in order to identify 
potential vulnerabilities. 

Finally, seeds that lead to unpredictable winning numbers (simulating an efficient 
market) are known as good seeds. Of course, all the sequences that we offer are based 
on seeds highly believed to be good ones, and that have been run through a battery of 
statistical tests. Using sequences based on bad seeds would not hurt the players, quite 
the contrary, but it would make our system easier to crack and cause problems with the 
ROI tables, thus hurting us. 
 
Proving that specific seeds are good or bad, is one of the most challenging, unsolved 
mathematical problems of all times. If solved, we would know for sure whether the digits 

of a number such as , are evenly distributed or not. These mathematical concepts 
have been studied for some time; see recent material on this topic, here and here. 

http://www.datashaping.com/seed1.txt
http://www.datashaping.com/seed2.txt
https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud
https://www.datasciencecentral.com/profiles/blogs/fascinating-new-results-in-the-theory-of-randomness
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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2.4. ROI Tables 
 
The ROI tables tell you how much money you will make or lose when submitting a 
number. Your ROI is a function of the distance between your submitted number z and 
the actual winning number x. The distance, also called error, is computed as follows: 
d(x, z) = min(|x - z|, 256 - |x - z|). It is always an integer value between 0 and 128. A 
pre-determined ROI is attached to each of the 129 potential error values. These ROI's 
characterize the type of risk that you are willing to take, and can be customized by each 
user, as long as the theoretical expected return (automatically computed in the ROI 
spreadsheet) is zero. 
 
You will find these values in the ROI tables, available in spreadsheet format, here. Look 
at the second row in the spreadsheet, between column K and EI. The spreadsheet also 
contains 1,000 user-submitted numbers (simulations) with the ROI computed for each 
submitted number. Other summary statistics of interest are available in the spreadsheet: 
highest and lowest potential payout, chances of winning, and more. 
 

3. Business Model and Applications 
 

Accredited investors, hedge funds, stock trading brokers, stock exchange companies, 
cryptocurrency operators, government organizations (for instance, state lotteries and 
agencies interested in creating a lottery at the federal level) as well as game developers 
and companies in the gaming industry, are welcome to contact us. Investors potentially 
interested in participating in a first round of funding to create and scale this platform, 
and who can bring clients and/or a CEO of their choosing, are also invited. We 
traditionally work smart and fast, with very small efficient teams in a lean environment, 
with people located all over the world. 

This short presentation only features the tip of the iceberg. The possibilities are endless, 
including the implementation of: 

 

 ROI tables that favor participating brokers over players (or the other way around), 
 16 or 32 bit systems offering spectacular potential returns yet no potential big 

loss, see section 5 
 Short-selling, 
 Sequences that are cross-correlated or auto-correlated, offered to VIP clients to 

help them gain a competitive advantage, 
 Sequences with variable ROI tables, sometimes favoring the players, and 

sometimes favoring the operators, 
 Allowing participants to schedule purchases ahead of time, and to upload 

guessed numbers in bulk 
 Automated black-box trading (we create your daily guesses -- they consist of 

pseudo-random numbers; you choose your ROI tables).  

 

http://www.datashaping.com/lottery-dss.xlsx
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Some of these features allow players to sometimes slightly beat the official and neutral 
odds of winning, offering a true positive return on average for some short periods of 
time, at the expense of the operators. For the organization implementing these features, 
this can be seen as marketing costs to attract new customers. Other potential 
applications includes Blockchain and cryptocurrency technology, strong encryption, 
patent and security laws, and state-of-the-art, innovative research in statistical science, 
computer science, and number theory. Finally, the system can also be used for 
simulated trading, to test various strategies with various ROI tables. 
Let's now look at how the money flows. 

 
3.1. Managing the Money Flow 
 

Managing the money involves subtracting or adding dollars to user accounts after each 
completed transaction. On a given day, how do we know whether on average, gains 
and losses will balance out, since we don't control the numbers entered by the 
participants? 

Actually, we don't know. Sometimes the balance is slightly negative, sometimes slightly 
positive. However, by using fair ROI tables and good seeds, we are guaranteed to be 
flat on average. You can even compute the daily volatility resulting from the daily 
winning and losing transactions. Example: with 1,000 transactions in a single day, each 
one consisting of a $20 bet, the most conservative ROI table introduced in this 
presentation produces a theoretical standard deviation of $24, over a volume of 
$20,000. The most aggressive one produces a standard deviation of $314, still entirely 
manageable. These theoretical numbers have been confirmed by simulations, and are 
included in each ROI table, for internal use. When offering customized ROI tables, you 
might want to put a cap on the standard deviation being allowed. See section 4.2 for 
more details. 

 
3.2. Virtual Currency 
 

Rather than actual dollars, the operator could use a virtual currency. The currency is 
issued by the operator (it could even be tokens), while the real money is held by an 
escrow company. Since on average no real (nor virtual) money is made by the operator 
on the gains and losses of the participants (assuming the system is fair,) no tax should 
be paid by the operator on the deposits made by the participants, and no tax deduction 
allowed for the money distributed to participants. This is made easier using of a virtual 
currency. Of course, if users pay a fee to participate, the operator will have to pay taxes 
on this source of revenue.  

Participants are expected to pay taxes on their gains, and in an ideal word, deduct 
losses. The "tax event", for the participant, occurs when the escrow company disburses 
the money, if it comes with a gain or a loss. This could take place after any bet or at any 
time that is convenient for the participant. The operator also deposits extra money on 
the escrow company, to cover the maximum cash float and keep a positive balance at 
all times. The cash float is the difference between aggregated gains and losses across 
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all participants. The cash float typically represents less than 3% of the value of the 
portfolio of bets managed by the operator.  
 

4. Challenge and Statistical Results 
 

We discuss here two important statistical results that make this system works. But first, 
let's talk about the competition announced at the very beginning. 

 
4.1. Data Science / Math Competition 
 

We plan to organize a competition focusing on the public algorithm. The goal is to 
compute the next 200 winning numbers, in the right chronological order, using 

 the public algorithms described in section 2.1, 
 the two public seeds x(0) and y(0) provided in section 2.3. 
 and the 2,000 past winning numbers provided in section 2.2.  

 
You can use the methodology described in this article, or any other means. The award 
will be offered to participants providing the best insights on how to improve the 
robustness of our system. So it is not required to find the 200 next winning numbers to 
earn the award. But if you do find them, we offer a bonus. We will announce the 
competition on Data Science Central. To not miss the announcement, you can sign-
up to receive our newsletter.   
 
4.2. Controlling the Variance of the Portfolio Value 
 
Any guess regarding a winning number results in a gain or a loss depending on how 
close your guess z is to the winning number x. The metric used to measure the 
proximity between x and z is  

d(x, z) = min(|x - z|, 256 - |x - z|) 
 
All winning numbers are integers between 0 and 255. If the participants made random 
guesses, then the distance d(x, z) would be a random variable, say D, with the following 
distribution: 
 

 P(D = 0) = 1/256, 
 P(D = 128) = 1/256, 
 P(D = k) = 2/256 if k is strictly between 0 and 128. 

 
The money that you put on a number (your guess) is called principal, similarly to the 
money invested in a stock, in the stock market. Once the winning number is announced, 
your principal increases or decreases depending on how good your guess is. Your 
principal is actually multiplied by a factor G(d(x, z)) which is a function of the distance 
between the number you picked up, and the winning number. 
 

https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter
https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter
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The multipliers G(0), G(1), G(2) and so on, up to G(128), are known in advance and 
specified in the ROI table that you use. The ROI tables are fair, in the sense that the 
average gain for the player, is zero. In order to achieve this goal, ROI tables are 
designed so that 

 
If the top multipliers offered are very high -- the highest being G(0) for a correct guess -- 
then, even though the system is fair (unbiased), the variance for the gain for a single 
guess, is also high. This variance, assuming E(gain) = 0 and the participant puts $1 per 
guess, is equal to  

 
The total value of the portfolio that we manage, defined as the aggregated principal 
across all guesses, is flat over time but experiences daily fluctuations. To compute its 
variance, use the previous formula, and multiply it by both the number of guesses and 
the dollar amount attached to them. The standard deviation values mentioned in section 
3.1 (about money management) is the square root of this variance, assuming we have 
1,000 guesses, each with a $20 price tag. 

With 1,000 daily guesses each with the same price tag, the most extreme standard 
deviations for the portfolio, expressed as a percentage of the portfolio value, are: 

 

 Minimum: 0%. ROI table where nobody wins, nobody loses, that is, if G(k) = 1 
for all k. 

 Maximum (worst case): 51%. ROI table where participants win only when they 
correctly guess the winning number (the chance is 1/256), and in that case their 
principal is multiplied by a factor 256. Otherwise they lose everything. That 
is, G(0) = 256 and all other G(k) are set to 0. 

 

These percentages decrease as the number of guesses increases. In practice, we stick 
to ROI tables with a theoretical standard deviation that is less than 3% of the portfolio 
value. This guarantees our survival in case of extreme events, such as a very big client 
winning big time on a single guess and claiming her gain right away, or a "bank run". 

 
4.3. Probability of Cracking the System 
 
The sequences used in our system generate numbers that look random. The 
successive past winning numbers published to help you find the next one -- even 
though it is a small list of K = 2,000 integers between 0 and 255 -- look just as random. 
Without using working seeds x0 and y0 that are known to lead to the solution (albeit in a 
very large number of iterations, manipulating numbers with many millions of digits most 
of the time), the chance of finding in any given sequence, the K successive numbers 
matching the K past winning numbers, in less than M iterations (say M = 30 million), is 
about   

https://storage.ning.com/topology/rest/1.0/file/get/2002421234?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1981619735?profile=original
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See here for details. Even if you try a million set of seeds, knowing that one and only 
one of them leads to the solution in less than M iterations, it will take you a staggering 
amount of time to find it.  
 
If a participant uses the wrong sequence, starting with one of the allowed sets of seeds 
other than the one that is guaranteed to work, and by some incredible chance the 
sequence also contains the K past winning numbers in the first M iterations, even if the 
participant submit a number that is not a winning number, we would still have to pay her 
as if she had found the winning number. The chance of this happening is virtually zero. 
 

5. Designing 16-bit and 32-bit Systems 
 
So far we discussed 8-bit systems only. As the name indicates, a b-bit system is where 
the winning numbers are b-bit integers. In a b-bit system, the public iterative algorithm in 
section 2.1 is still the same with the following adaptations (here b is the number of bits): 
 

 New winning numbers occur at iterations t = T, T + b, T + 2b, T + 3b, and so on.  
 Past, public winning numbers occur at iterations t  = T - b, T - 2b, T - 3b, and so 

on.  
 The formula for the winning numbers changes from xt - 256 xt-8, to xt - 2

b xt-b. 
 
A b-bit ROI table has 1 + 2b-1 multipliers G(0), G(1), G(2), and so on, up to G(2b-1). 
Also, G(k+1) is chosen to be either equal to or less than G(k), so that participants know 
that the more accurate their guess, the higher the return.  
 
5.1. Layered ROI Tables 
 

Below is an example of a fair, layered 32-bit ROI table. If your guess is within 19 points 
of the winning number (it will happen to about 39 people out of 4.3 billion) then your 
principal is multiplied by a factor one million. About 48.7% of the guesses are not 
winners, and they erode your principal by 30%. The lowest ROI you get if you are a 
winner is 15%, and 50.7% of all guesses fall in that category. About one in two hundred 
(0.54%) results in a 900% ROI. One in 100,000 would boost your principal by a factor 
1,000.  

 

https://math.stackexchange.com/questions/3184670/what-is-the-probability-that-a-sequence-of-m-random-letters-contains-a-sub-seq
https://storage.ning.com/topology/rest/1.0/file/get/1983037467?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2080685525?profile=original
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An even more skewed table could be designed, guaranteeing an average return strictly 
above zero to the player. If the positive return is driven entirely by the multiplier offered 
for correctly guessing the winning number (and otherwise, excluding a perfect guess, 
the average return is just a very tiny bit below zero) you might be able to entice more 
players to participate, especially sophisticated, big ones. If the odds of winning the 
maximum is less than one in 4 billion in a single bet, it will take so much time and 
money to win the big prize, that the operator has time to accumulate gains and grow 
them slightly faster than inflation, so that when the big winning event takes place, 
enough funds are available to pay the big winner.  

 
5.2. Smooth ROI Tables 
 
It is possible to create smooth ROI tables, with a continuous, slow decline in the 
multiplier rather than sharp drops as in the above table. One of the most natural 
functions that comes to mind is the geometric function G(k) = A/Bk, with the 
parameters A and B chosen so that the table is fair both to the player and to the 
operator. It is illustrated below, using the 8-bit system. We are working on producing 
similar tables for the 32-bit system. 
 

 
 
The smooth tables offer one advantage: no participant will be disappointed for missing a 
massive payout by only a few points. In the above table (8-bit), G(k) = 1.7685/1.0100k. 
The table is fair. Note that only 44% of the guesses are winners. The highest multiplier 
is only 1.77. Also, you can lose as much as 50%. Yet you could argue that this table is 
far more equitable than those previously discussed.  
 
 
 
 

https://storage.ning.com/topology/rest/1.0/file/get/2023450934?profile=original
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5.3. Systems with Winning Numbers in [0, 1] 
 
The theory can be extended to winning numbers that are real numbers in [0, 1]. For 
instance, one can use the seed x0 = log 3 - log 2 with the sequence xt+1 = { 2xt } where 
the brackets represent the fractional part function. 
 
Then, xt = At log 3 + Bt log 2 + Ct where At, Bt, and Ct are integers. The geometric ROI 
function (above picture) becomes G(k) = p/qk, with p, q >  1, and k a real number in [0, 
1]. It has the following features: 
 

 The maximum multiplier is p 
 The minimum multiplier  is p/q 
 The system is fair if p(q - 1) = q log q  
 If the system is fair, the probability of winning is (q - 1)/(q log2 q) 
 d(x, z) = min(|x - z|, 1 - |x - z|). 

 
All the numbers xt are winning numbers, either past or future. The public information 
could consist of 
 

 The formula xt+1 = { 2xt } 
 The last 2,000 winning numbers xT-1, ..., xT-2000, computed with 20 correct digits  
 The exact values of At, Bt and Ct for some secret t between 0 and T 
 The two constants log 3 and log 2.   

 
We can replace the third item in the above list, by the value xt computed with one million 
correct digits, for some secret t between 0 and T. In that case, there is no need to 
mention log 3 and log 2.   
 

You can replace log 3 and log 2 with two (or more) irrational numbers that are 

conjectured to be linearly independent over the set of rational numbers. For instance,  
and 51/2, or the values of 

 

 The probability than an integer is not divisible by a cube 
 The only solution between 0.5 and 1, of sin x + sin(2x sin x) = sin 3x. 

 
Very few people know how to efficiently obtain millions of digits for these values -- which 
is the first step required to find the winning numbers. Finally, as long as x0 is a good 
seed, the numbers generated by the sequence xt will look random, after proper 
decorrelating [see how to decorrelate in section 3.2.(a) in appendix B]. The concept of 
good and bad seed is illustrated in appendix B and in my book on stochastic processes, 
available here.  
 
Details on how to use multivariate sequences and de-correlating can be found in 
chapter 13. This system was presented at the INFORMS annual meeting (2019). You 
can access the PDF document here.  

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/2201550388?profile=original
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19. Decay-adjusted Rankings   

 
This is a classic business problem. In most online rankings, the most popular books, 
authors, articles, restaurants and so on are always among those that have been around 
for a long time. New stars have no chance to beat old-timers, and must wait for a long 
time before showing up at the top. Here we address this issue and correct for the bias, 
allowing you to make fair value comparisons between old and new items. The example 
used here is about popular articles posted on Data Science Central. While time is a 
major source of bias, there are many other factors artificially inflating or deflating 
rankings. We review these factors, and propose a solution to create meaningful 
rankings. 

In the process, we created a new, more robust scoring method. This scoring, based on 
a decay function, could be incorporated in recommendation engines. 

1. Introduction 
 
The data covers almost three years’ worth of DSC (Data Science Central) traffic, 
extracted from Google Analytics: more than 50,000 posts, and more than 6 million page 
views (almost half of it in 2014 alone), across four channels:  DSC, Hadoop360, 
BigDataNews, and AnalyticBridge. 
 
Some articles have been filtered out as they belong to a cluster of similar articles 
(education, books, etc.) Finally some very popular pages are not included because the 
creation date is not available or because they should not be listed (my own profile page, 
the sign-up page, the front page, etc.) The new scoring model is described in section 4.  
 

2. Top DSC blogs posted between 2008 and 2014 
 

The number in parentheses represents the rank if instead of using our popularity score, 
we had used standard methodology. The date represents when the blog was created. 
By just looking at these fields, you might be able to guess what our new scoring engine 
is about. The data used for these computations was collected in October 2014. 

 

1. 17 short tutorials all data scientists should read and practice (2) - 2/15/2014 
2. How to Become a Data Scientist (39) - 8/27/2014 
3. DSC weekly digest (1) - 6/20/2013 
4. 38 Seminal Articles Every Data Scientist Should Read (34) - 8/15/2014 
5. 10 types of regressions. Which one to use? (22) - 7/21/2014 
6. Data Science Cheat Sheet (36) - 8/1/2014 
7. 16 analytic disciplines compared to data science (31) - 7/14/2014 
8. Data science book (6) - 11/23/2013 
9. 66 job interview questions for data scientists (4) - 2/13/2013 
10. One Page R: A Survival Guide to Data Science with R (14) - 2/14/2014 
11. Six categories of Data Scientists (11) - 1/16/2014 

https://www.datasciencecentral.com/profiles/blogs/17-short-tutorials-all-data-scientists-should-read-and-practice
https://www.datasciencecentral.com/profiles/blogs/how-to-become-a-data-scientist
https://www.datasciencecentral.com/profiles/blogs/check-out-our-dsc-newsletter
https://www.datasciencecentral.com/profiles/blogs/30-seminal-articles-every-data-scientist-should-read
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/profiles/blogs/data-science-cheat-sheet
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/66-job-interview-questions-for-data-scientists
https://www.datasciencecentral.com/profiles/blogs/one-page-r-a-survival-guide-to-data-science-with-r
https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists
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12. Data scientist core skills (7) - 8/27/2013 
13. Update about our Data Science Apprenticeship (5) - 3/10/2013 
14. Our Data Science Apprenticeship is Now Live (38) - 5/22/2014 
15. What your state is the worst at? (3) - 1/31/2011 
16. How to detect spurious correlations, and how to find the real ones (41) - 5/22/2014 
17. The best kept secret about linear and logistic regression (32) - 3/13/2014 
18. 6000 Companies Hiring Data Scientists (24) - 12/29/2013 
19. More than 100 data science, analytics, big data, visualization books (19) - 11/6/2013 
20. Fast clustering algorithms for massive datasets (9) - 2/23/2013 
21. Batch vs. Real Time Data Processing (17) - 8/13/2013 
22. From the trenches: 360-degree data science (40) - 3/27/2014 
23. Salary history and career path of a data scientist (37) - 2/19/2014 
24. Data scientists making $300,000 a year (8) - 11/29/2012 
25. Data Science eBook - 2nd Edition (15) - 5/19/2013 
26. Practical illustration of Map-Reduce (Hadoop-style), on real data (35) - 1/25/2014 
27. Salary surveys for data scientists and related job titles (23) - 10/10/2013 
28. 16 resources to learn and understand Hadoop (44) - 4/18/2014 
29. Big data sets available for free (33) - 12/30/2013 
30. BI vs. Big Data vs. Data Analytics By Example (21) - 8/25/2013 
31. Hadoop vs. NoSql vs. Sql vs. NewSql By Example (27) - 9/8/2013 
32. Data Scientists vs. Data Engineers (20) - 7/2/2013 
33. The Curse of Big Data (16) - 1/5/2013 
34. Jackknife logistic and linear regression for clustering and predict... (46) - 3/19/2014 
35. What MapReduce can't do (18) - 1/31/2013 
36. The 8 worst predictive modeling techniques (13) - 9/13/2012 
37. Berkeley course on Data Science (10) - 3/4/2012 
38. Why Companies can't find analytic talent (43) - 1/17/2014 
39. New, fast Excel to process billions of rows via the cloud (28) - 4/16/2013 
40. How much does a data scientist make at Facebook? (25) - 3/12/2013 
41. Fake data science (29) - 2/11/2013 
42. Logit vs Probit Regression (12) - 2/19/2009 
43. R Tutorial for Beginners: A Quick Start-Up Kit (42) - 10/24/2013 
44. How to detect a pattern? Problem and solution (26) - 9/28/2011 
45. Job titles for data scientists (45) - 6/3/2013 
46. New, state-of-the-art random number generator: simple, strong and fast (30) - 9/11/2011 

 

3. Interesting Insights 
 

These top pages represent 21% of the traffic (back then). The front page amounts to 
another 9%. Here are some of the highlights: 

 

 For top popular articles, page views peak in the first three days, but popularity 
remains high for many years.  In short, page view decay (over time) is very low, 
see figure 1 below. 

 
 Page view decay is very low for highly popular, generic articles that are time-

insensitive, the type of articles that we try to write. Non popular articles or time-
sensitive announcements have a very fast decay, typically exponential decay and 
short half-life.  

https://www.datasciencecentral.com/profiles/blogs/data-scientist-core-skills
https://www.datasciencecentral.com/group/data-science-apprenticeship/forum/topics/update-about-our-data-science-apprenticeship
https://www.datasciencecentral.com/group/data-science-apprenticeship/forum/topics/our-data-science-apprenticeship-is-now-live
http://www.analyticbridge.com/profiles/blogs/what-your-state-is-the-worst
https://www.datasciencecentral.com/profiles/blogs/tutorial-how-to-detect-spurious-correlations-and-how-to-find-the-
https://www.datasciencecentral.com/profiles/blogs/the-best-kept-secret-about-linear-and-logistic-regression
https://www.datasciencecentral.com/profiles/blogs/6000-companies-hiring-data-scientists
https://www.datasciencecentral.com/profiles/blogs/more-than-100-data-science-analytics-big-data-visualization-books
http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
https://www.datasciencecentral.com/profiles/blogs/batch-vs-real-time-data-processing
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
https://www.datasciencecentral.com/profiles/blogs/a-data-scientist-salary-history
https://www.datasciencecentral.com/profiles/blogs/data-scientists-making-300-000-a-year-wall-street-journal
https://www.datasciencecentral.com/profiles/blogs/data-science-ebook-2nd-edition-table-of-content
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/salary-surveys-for-data-scientists-and-related-job-titles
http://www.hadoop360.com/blog/16-resources-to-learn-and-understand-hadoop
https://www.datasciencecentral.com/profiles/blogs/big-data-sets-available-for-free
https://www.datasciencecentral.com/profiles/blogs/bi-vs-big-data-vs-data-analytics-by-example
https://www.datasciencecentral.com/profiles/blogs/hadoop-vs-nosql-vs-sql-vs-newsql-by-example
https://www.datasciencecentral.com/profiles/blogs/data-scientists-vs-data-engineers
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
https://www.datasciencecentral.com/profiles/blogs/jackknife-logistic-and-linear-regression
http://www.analyticbridge.com/profiles/blogs/what-mapreduce-can-t-do
http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques
https://www.datasciencecentral.com/profiles/blogs/berkeley-course-on-data-science
http://www.analyticbridge.com/profiles/blogs/why-companies-can-t-find-analytic-talent
https://www.datasciencecentral.com/profiles/blogs/new-fast-excel-to-process-billions-of-rows-via-the-cloud
http://www.analyticbridge.com/group/salary-trends-and-reports/forum/topics/how-much-does-a-data-scientist-make-at-facebook
http://www.analyticbridge.com/profiles/blogs/fake-data-science
http://www.analyticbridge.com.com/group/analyticaltechniques/forum/topics/logit-vs-probit-regression
https://www.datasciencecentral.com/profiles/blogs/r-tutorial-for-beginners-a-quick-start-up-kit
http://www.analyticbridge.com/profiles/blogs/how-to-detect-a-pattern-problem-and-solution
https://www.datasciencecentral.com/profiles/blogs/job-titles-for-data-scientists
http://www.analyticbridge.com/profiles/blogs/new-state-of-the-art-random-number-generator-simple-strong-and-fa
https://en.wikipedia.org/wiki/Half-life
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 You don't notice any decay at all in figure 1. The reason is because decay is 
hidden by general traffic growth on DSC. The general growth more than 
compensate for the natural decay. 

 

 Notice a change in subjects that are popular between new material (post 2012) 
and old material (earlier). You can notice the drastic change only if you use a 
sound popularity algorithm, as described in section 4. 
 

 Many of the most popular articles are new (once you adjust for the time bias, 
using the methodology described in section 4). Part of it is because we have a 
better understanding of the type of articles that our readers are interested in, as 
well as how to successfully reach out to new users. Part of it is because of 
growth. An article posted today will immediately receive more than twice the 
volume of traffic it would have received on day one, if posted 2.5 years ago. 

 

 We have used two data sources, always a good idea in any data science project: 
Google Analytics, which filters out robots, and Ning page counts, which does not. 
On average Ning numbers are 30% above Google Analytics - which we translate 
in the fact that about 30% of the traffic is by robots (Google crawlers etc.) Robot 
traffic has a time lag of a few months (on average) compared with human traffic. 

 

 Google Analytics has one drawback: it counts two versions of a same page - with 
only the query string in the two URLs being different - as two different pages. A 
bit of post-processing can quickly fix this issue. This issue explains why 
sometimes the discrepancy between Ning and Google Analytics is as high as 
60%, as opposed to the average 10-30% range. 

 

 Many popular articles have been posted in last 2 weeks, but I decided not to 
include them (unless page view count is so high that they naturally appear in our 
list, after correcting for time bias, as explained in section 4). The reason not to 
include them is because of high page view volatility for new articles. 

 

 We had to do some time adjustments as our Google Analytic data goes back to 
2012 only, while Ning goes back to 2007. Non-experts working on the same 
project are likely to not even notice the issue, let alone fixing it. 
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Figure 2: Page view decay (or absence of decay!) for 4 top blogs listed above 

 

4. New Scoring Engine 
 
Let's say that you measure the page view count for a specific article, and your data 
frame is between t = t0 and t = t1. Models like this typically involve exponential decay of 
rate r, meaning that at time t, the page view count velocity is f(r, t) = exp(-rt). With this 
model, the theoretical number of page views between t0 and t1 is simply 
 

P = g(r, t1) - g(r, t0), 
 
where g(r, t) = (1 - exp(-rt)) / r. 
 
If t0 is set to zero, then g(r, t0) = 0, regardless of r. On a different note, the issue we try 
to address here (adjusting for time bias) is known as left- and right-censored data in 
statistical science: right-censored because we don't have data about the future and left-
censored because we don't have data prior to 2012. 
 
To adjust for time bias, define the new popularity score as S = Q / P, where Q is the 
observed page view count during the time period in question. When r = 0 (no noticeable 
decay, which is the case here) and t0 = 0, then P = t. Note that the only two metrics 
required to compute the popularity score S, for a specific article, are: time elapsed since 
creation date, and page view count during the time frame in question, according to 
Google Analytics, after aggregating identical pages with different URL query strings. 
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Note: To make sure that we were not missing popular articles posted recently, we 
collected the data using two overlapping time frames: one data set for 2012-2014, and 
one just for 2014, using CSV exports from Google Analytics. Several articles that did not 
show up in the 2012-2014 data set (because their raw page view count was below our 
threshold of about 10,000 page views), actually had top scores S when adjusted for 
time, and could only be found by using the 2014 data. Another way to eliminate this 
issue is to get statistics for all articles (not just the ones with lots of traffic) for the whole 
time period. That's the automated approach, and in our case it would have required 
writing extra pieces of code, and possibly Google API calls, to download time stamps on 
Ning (via web crawling) and the entire Google Analytic data for the 50,000 articles - not 
worth the effort, especially since I allowed myself only a couple of hours to complete this 
project.  
 

5. Good versus perfect model 
 
Using the basic model with r = 0 (in section 4) makes a big difference with traditional 
rankings (the base model), as you can see when comparing our rankings to traditional 
rankings, in our list of top articles in section 2 (sorted according to our popularity score 
with r = 0). It allows you to detect trends about what is getting popular over time. 
 
Note that refining the model, estimating a different r for each article, testing the 
exponential decay assumption, and adjusting for growth, may be time-prohibitive, and it 
makes your model subject to over-fitting, and may jeopardize the value (ROI) of the 
project. 
 
Data science is not about perfectionism, but about delivering on time and within budget. 
In this case, if I spend one month on this project (or outsource to people who work with 
me), it's time wasted on something that could yield far more value than the little 
incremental gain obtained by seeking perfection. Yet ignoring the decay is equally bad, 
it makes this whole project worthless. The data scientist must instinctively find what 
level of perfection is needed, in his models. Data is always imperfect anyway. 

 

6. Next steps 
 
One interesting project is to group pages by categories and aggregate popularity 
scores, and create popularity scores for categories. Other potential improvements 
include: 
 

 Estimating r rather than using r = 0 
 Estimating r for each article (risk of over-fitting) 
 Scoring bloggers rather than blogs 
 Testing the exponential decay assumption 
 Adjusting scores to take traffic growth into account (favoring new blogs over 

old ones) 

Another area of research is to understand why page view counts closely follow a Zipf 
distribution.  

https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons
https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons
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20. Building a Website Taxonomy   

 
We built a taxonomy of data science websites in 2014, by analyzing our member 
database (100,000 members back then), extracting websites that our members 
mentioned or liked, and for each web site, identifying 

 When it is first mentioned by one of our members 
 The number of times it was mentioned 
 Keywords found when visiting the front page with a web crawler, using a pre-

selected list of seed keywords. 

 

1. Seed Keywords 
 

Seed keywords were used to identify, for each website, whether one or more of the 
keywords in our list was found on the front page, using a web crawler. This helps 
categorize websites - the final goal being the creation of a data science website 
taxonomy. The seed keywords that we used (hand-picked) were popular data science 
related keywords: 

 analytics 
 data science 
 database 
 hadoop 
 predictive modeling 
 big data 
 business intelligence 
 machine learning 
 data mining 
 text mining 
 operations research 
 statistics. 

 

2. General Methodology 
 
We used a web crawler to browse all the URLs, after identifying and cleaning the 
websites fields (URLs listed by members), in our member database. Click here to get 
the script used to summarize the data, as well as a sample of raw data. The ultimate 
goal was to create a niche search engine for data science, better than Google, and a 
categorization of these websites. Because this is based on data submitted by users, the 
raw data is quite messy and requires both cleaning and filtering. Details are found in my 
script - it's a good example of code used to clean relatively unstructured data. 
 

Here we categorize the websites in four major clusters: 

http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
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 Websites mentioned at least 3 times, containing at least one of the seed 
keywords in our list 

 Websites mentioned less than three times, containing at least one of the seed 
keywords in our list 

 Websites that we were unable to crawl, mentioned at least twice 

 Websites containing no seed keywords from our list, and mentioned at least 4 
times 

 

We provide direct clickable links for domains in category 1 (above and below) only. The 
choices of these various parameters is to guarantee robustness in our results, filter out 
noise, and for internal security reasons: listing hundreds of little know websites (with 
clickable links) can get you penalized by Google, can result in many requests for link 
removal, and many links can die over time, require regular crawling for maintenance.  

 

3. Top 2,500 Data Science Websites 
 

Below are the links to the top data science websites. Keep in mind that this dates back 
to 2014. 

 

 Top 2,500 Websites - top of the top 
 Top 2,500 Websites - mentioned only a few times -- Page 1 | Page 2 
 Top 2,500 Websites - not crawlable 
 Top 2,500 Websites - not containing seed keywords 

 

The field between parentheses represents the year when the website in question was 
first mentioned - it does not represent when the website was created, though it's a good 
proxy to tell how old the website is. The member database goes as far back as 2007. 
The list of keywords attached to each website represents which seed keywords were 
found on the front page, when crawling the website. The number of stars (1, 2 or 3) 
represents how popular the website is: it's an indicator of how many members 
mentioned it. Of course, brand new websites might not have 3 stars yet.  

Below is an extract from the list: 

 

https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-top-of-the-top
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times-page-1
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-mentioned-a-few-times-page-2
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-not-crawlable
https://www.datasciencecentral.com/profiles/blogs/top-2-500-websites-not-containing-seed-keywords
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4. Data and Source Code  
 
Source code (two scripts including a web crawler / parser / summarizer, and code to 
produce final HTML pages), as well as raw, intermediate and final data (samples, 
screen shots), and details about the 3-step procedure used to publish these listings, can 
be found here. 
 

5. Detailed Methodology 
 

Our methodology, to build our semi-categorized website listing, has the following 
additional features: 

 

 All webpages were stored as strings (after download), all in lower case. The seed 
keywords were also in lower case. 

 Within each sub-group in each of the four major categories, websites are 
displayed in random order: using a stars system (rather than detailed score) 
makes for more robust, accurate results. Sorting websites by score (score = 
number of members mentioning the website in question) would result in various 
drawbacks: website owners complaining about their score, and sometimes for 
good reasons! 

 My script takes about 20 minutes to run on one machine to crawl 2,800 websites. 
I only read the first 64K of each page, and the http requests times out after 1 
second. It would be much faster if multi-threaded. 

 The fourth major category of websites (those containing no seed keywords, and 
mentioned at least 4 times) is interesting nevertheless: it shows which non-
analytic (general, mainstream) websites our members also visit. 

http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
http://www.analyticbridge.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
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 Some of the websites where no seed keywords were found are actually analytic 
websites, and the lack of analytic keywords might be caused either by a glitch in 
our script, or in the way the webpage is encoded (iFrames, heavy Javascript, 
Flash and other page creation techniques giving a headache to our webcrawler, 
and indeed to all webcrawlers including Google). These represent only a small 
percentage (< 5%) of all websites. Maybe crawling a few webpages, not just the 
frontpage (for each website returning no seed keywords) could fix the issue. This 
implies deep crawling, following internal links found on the frontpage. 

 

Uncrawlable websites, bad domains 

 

 As many as 800 out of 2,800 original all websites could not be crawled. I re-run 
the crawler on these websites a few hours later, increasing the value of the time-
out parameter, and using a different user agent string in the code (that is, 

the $ua->agent argument for those familiar with the web crawling LWP::UserAgent 
library). I then re-run it a few more times the same day, and eventually managed 
to reduce the number of un-crawlable websites to about 300. Maybe trying 
another day, with a different IP address, following the robot.txt protocol (crawling 

robots.txt on each failed website) might further reduce the number of failed 
crawls. However, about 250 of the uncrawlable websites were just simply non-
existent, mostly because of typos in member fields (user-entered information) in 
our database. 

 Some of the uncrawlable websites result from various redirect mechanisms that 
cause my script not to work, or sometimes because it redirects to an https 
address (rather than http).  

 I extracted the error information for all uncrawlable websites. Typically, the "500 
Bad Domain" error means that the domain does not exist (rarely, it is a redirect 
issue). Sometimes adding www will help (changing mydomain.com to 
www.mydomain.com). 

 Some of the "bad domains" listed by only 1 or 2 members were actually irrelevant 
and dead websites posted by spammers. So this analysis allowed us to find a 
few spammers, and eliminate them! 

 

6. Possible Improvements 
 

There are various ways to improve my methodology and the quality of the results. Here 
I mention a few: 

 Order results by year (showing most recent websites first) 
 Perform some real clustering on these websites, using the stars, year and 

keyword metrics available in my listings. 
 Create your own seed keywords list, by extracting all one- and two-tokens 

keywords found on these 2,500 webpages (nice seed keywords to add are deep 
learning, Python,  data and visualization) 
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 Break down websites into two groups: those containing data or analytic in the 
domain name, versus those who don't 

 Browse multiple webpages per website (identify internal pages with web crawler) 
 Browse multiple external pages per website, to grow your list of 2,500 websites 

to a much bigger list (make sure the new websites added are analytic-related, 
use the seed keywords list for this purpose). You can go two levels deep in your 
external crawling. 

 Create and use a segmented seed keywords list (keywords related to 
visualization, big data, infrastructure, storage, databases, analytics and so on; 
this will help with website clustering) 

 Run the crawler on Hadoop or at least use some distributed architecture 
 Run the crawler in batch mode. Allow your script to easily resume if it stops for 

whatever reasons (Internet goes off etc.) One way to do this is to save the results 
for each website, one at a time, immediately after crawling it, and produce a log 
history of all websites that have been crawled, as your script progresses over the 
website list. This way, you can resume your crawling with a single command, at 
any time. 

 Use recent data only. Some old websites have three stars because they were 
popular back then, but have now little traffic. 

 Handle https as well as http requests 
 Look at keyword density. Rather than checking if data science is found on a 

webpage, look at how many times it is found. 
 
Another similar project -- creating a taxonomy of the most popular data scientists -- can 
be found here. It is based on keywords found in their LinkedIn profiles. 
  

https://www.datasciencecentral.com/profiles/blogs/types-of-data-scientists


158 
 

21. Predicting Home Values  

 
This topic was the subject of a $1.2 million Kaggle competition sponsored by Zillow, see 
here. Here we show how Zillow could improve his model.   
 
We have published in the past about home value forecasting, see here, and also 
here and here.  In this chapter, I provide specific advice for the competition in question. 
More specifically, I provide here high-level advice, rather than about selecting specific 
statistical models or algorithms, though I also discuss algorithm selection in the last 
section. I believe that designing sound (usually compound) metrics, assessing data 
quality and taking it into account, as well as finding external data sources to get a 
competitive edge and for cross-validation, is even more important than the purely 
statistical modeling aspects. 
 

1. The data  
 

In my neighboring, all homes are valued close to $1.0 million. There are however, 
significant differences: some lots are much bigger, home sizes vary from 2,600 to 3,100 
square feet, and some houses have a great view. These differences are not well 
reflected in the home values, even though Zillow has access to some of this data. 

 
Regarding my vacation home 90 miles North, there are huge variations (due mostly to 
home size and view) and the true (real) value ranges from $500k to $1.5 million. The 
market is much less fluid. But some spots are erroneously listed at $124k: if you look at 
the aerial picture below (available from Zillow by entering the address), some lots do not 
have a home, while in reality the house was built and sold two years ago. This outdated 
data might affect the estimated value of neighboring houses, if Zillow does not 
discriminate between lots (not built) and homes: you would think that the main factor in 
Zillow's model is the value of neighboring homes with known value (e.g. following a 
recent sale.) 

 
So the first questions are: 

 How do I get more accurate data? 
 How can I rely on Zillow data to further improve Zillow estimates? 

 

We answer these questions in the next section. 

 
2. Leveraging available data, getting additional data  
 

It is possible that Zillow is currently conservative in its home value estimates, putting too 
much emphasis on the average value in the close neighborhood of the target home, and 

https://www.kaggle.com/c/zillow-prize-1
https://www.datasciencecentral.com/profiles/blogs/predicting-house-sales
https://www.datasciencecentral.com/profiles/blogs/exercise-how-do-school-ratings-correlate-with-home-prices
http://www.analyticbridge.com/profiles/blogs/here-s-what-your-home-will-be-worth-in-12-months
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not enough in the home features. If this is the case, an easy improvement consists of 
increasing value differences between adjacent homes, by boosting the importance of lot 
area and square footage in locations that have very homogeneous Zillow value 
estimates.   

Getting competitor data about home values, for instance from Trulia, and blending it 
with Zillow data, could help improve predictions. Such data can be obtained with a web 
crawler. Indeed, with distributed crawling, one could easily extract data for more than 
100 million homes, covering most of the US market. Other data sources to consider 
includes 
 

 Demographics, education level, unemployment and household income data per 
zip code 

 Foreclosure reports 
 Interest rates if historical data is of any importance (unlikely to be the case here) 
 Crime data and school ratings 
 Weather data, correlated with home values 
 MLS data including number of properties listed (for sale) in any area  
 Price per square foot in any area 

 

3. Potential metrics to consider 
 

Many statisticians are just happy to work with the metrics found in the data. However, 
deriving more complex metrics from the initial features (not to mention obtaining 
external data sources and thus additional features or 'control' features), can prove very 
beneficial. The process of deriving complex metrics from base metrics is like building 
complex molecules using basic atoms. 

In this case, I suggest computing home values at some aggregated level called bin or 
bucket. Here, a bin is possibly a zip code, as a lot of data is available at the zip code 
level. Then for each individual home, compute an estimate based on the bin average, 
and other metrics such as recent sales price for neighboring homes, trend indicator for 
the bin in question (using time series analysis), and home features such as school 
rating, square footage, number of bedrooms, 2 or 3 cars garage, lot area, view or not, 
fireplace(s), and when the home was built. Crime stats, household income and 
demographics are already factored in at the bin level.  

Some decay function should be used to lower the impact of sales price older than a few 
months old, especially in hot markets. If possible, having an idea of the home mix in the 
neighborhood in question (number of investment properties, family homes, vacation 
homes, turnover, and rentals) can help further refine the predictions. Seasonality is also 
an important part of the mix. If possible, include property tax data in your model.  

Differences between listed price and actual price when sold (if available,) can help you 
compute trends at the zip code level. Same with increases or decreases in 'time in 
market' (time elapsed between being listed, and being sold or pulled from the market.) 

 

http://info.trulia.com/press-releases?item=121593
http://www.mls.com/
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4. Model selection and performance 
 
With just a few (properly binned) features, a simple predictive algorithm such as HDT 
(Hidden Decision Trees - a combination of multiple decision trees and special 
regression, see chapter 2) can work well, for homes in zip codes (or buckets of zip 
codes) with 200+ homes with recent historical sales price. This should cover most urban 
areas. For smaller zip codes, you might consider bundling them by county. The strength 
of HDT is its robustness and (if well executed) its ability to work for a long time period 
with little maintenance. This technique also allows you to easily compute CI (confidence 
intervals) for your estimate, based on bin (zip code) values. 
 

However, chances are that performance, to assess the winner among all competitors, 
will be based on immediate, present data, just like with any POC (proof of concept.) If 
that is the case, a more unstable model might work well to win the $1.2 million prize. It 
is critical to know how performance will be assessed, and to do proper cross-validation 
no matter what model you use. Cross-validation consists of estimating the value of 
homes with known (recent) sales price that are not in your training set, or even better, 
located in a zip code outside your training set. It would be a good idea to use at least 
50% of all zip codes in your training set, for cross-validation purposes, assuming you 
have access to this relatively 'big data'. And having a substantial proportion of zip codes 
with full 5-year worth of historical data (not just sampled homes) would be great: it 
would help you assess how well you can make local predictions based on a sample 
rather than on comprehensive data. If you only have access to a sample, make sure 
that it is not biased, and discuss the sampling procedure with the data provider.  

 
It is important to know how the performance metrics (used to determine the winner) 
handle outlier data or volatile zip codes. If it is just a straight average of square of 
errors, you might need a bit of chance to win the competition, in addition to having a 
strong methodology -- though being good at predicting the value of expensive homes 
will also help in this case. Regardless, I would definitely stay away from classic linear 
models, unless you make them more robust by putting constraints on model parameters 
(as in the Lasso or pseudo regression, see chapter 1.)  
 
Finally it helps to have domain expertise to win such competitions -- at least to build 
scalable solutions that will work for a long time.  
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22. Growth Hacking  

In this chapter, we discuss various strategies used to generate exponential traffic 
growth, while preserving traffic quality, and user loyalty. Our growth hacking engine is a 
combination of 

 Raw data science: getting the right data sets, leveraging them, 
 Playing with various tools and API's: designing an automated machine-to-

machine communication service between Hootsuite and Twitter / LinkedIn based 
on insights automatically distilled from the following data sources: (1) data 
obtained via the Google Analytics API (traffic statistics about 50,000 live DSC 
articles), and (2) data collected via a web crawler written in Python 

 A blend of high-level (strategic) data science and low-level (tactical or 
operational) data science. In the end, relatively little coding is involved in the 
process. Domain expertise and smart innovation play a critical role. 

 Optimizing parameters of the statistical process used to select articles, create 
tweets, and schedule them, using experimental design and A/B testing 

 Artificial intelligence: detection and removal of articles that are time-sensitive, 
automated creation of relevant hash-tags for selected tweets, and creation of a 
taxonomy of all our articles using simple indexing classification scheme 

 Smart analytic-driven advertising on Twitter, using a good list of data science 
thought leaders worth following, as our core data set for advertising purposes. 
The creation of this list is an interesting data science project in itself. 

 Smart analytical and ROI-driven advertising on Google, as well as LinkedIn 
hacks, to get new members   

 
The results are best illustrated in the graph below representing @AnalyticBridge, the 
largest data science profile on Twitter, as well as in this article.  
 

 

https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/forum/topics/interactive-visualization-of-growing-data-science-big-data-profil
https://www.twitter.com/analyticbridge
https://www.datasciencecentral.com/profiles/blogs/the-growth-of-data-science-in-the-last-two-years
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1. Growth Hacking: Part I 
 
Here we describe a strategy consisting of tweeting your top articles over a long period 
of time, to generate incremental traffic. After testing it for one week, we have 
experienced a 10% growth in traffic. This strategy works well for getting new users, and 
we believe that it can triple your traffic when fully optimized, though it might reduce user 
engagement. To get new and loyal subscribers, another strategy is needed: read 
section 2. This works in fast-growth environments, though you can fine-tune the 
parameters if applying it to no-growth web sites. 
 
1.1. Strategy 
 

Our DSC network has more than 50,000 live articles at any time, and growing by more 
than 2,000 new articles per year. Our intern Livan analyzed our Google Analytics 
statistics, and found more than 2,000 articles each with more than 150 page views - and 
some with more than 100,000 page views. Back in 2015 when this analysis was 
performed, our Twitter account had 60,000 followers (growing by 5,000 new followers 
per month), and we also managed a LinkedIn group with 160,000 members (growing by 
6,000 new members per month). We asked ourselves the following question: What if we 
tweet 25 articles each day, from our list of top 2,000 articles, updated monthly? 

 
The answer, from our first tests, is an immediate 10% traffic boost. We could tweet 100 
articles per day from that same list, not just 25. We could tweet from multiple accounts, 
not just @AnalyticBridge, and we could also post on LinkedIn or Google+ (now dead). 
With Hootsuite, this process can be fully automated. What would be the impact? Of 
course there is an optimum: too much tweeting will create dilution. But given the large 
number of new followers each day, and the fact that the top 2,000 articles could be 
replaced by entirely new articles after one year (because we produce new articles every 
day, and we are in the process of automating some postings, such as new books or 
new salary surveys), is it a clear indicator that 25 tweets a day is well below the 
optimum. And indeed, we have 50,000+ live articles, so we could tap in the whole list, 
not just the top 2,000. 
 

Optimizing this tweeting process is discussed later in this chapter. Note that the way 
tweets work, it is OK if a user sees a same tweet 2 or 3 times over a one-year time 
period, as long as on average, he sees many tweets from us only one or two times. And 
given the fact that tweets are short-lived, even with 100 tweets per day (out of a list of 
2,000 tweets updated monthly), randomly selected (according to some selection 
mechanism slightly favoring, new, or very old, or popular, time-insensitive tweets), we 
should be fine, if we proceed carefully, incrementally, with constant adaptation to new 
web traffic conditions whenever they occur. 

The idea that very old, time-insensitive articles with few (say 150) page views are worth 
tweeting again today, is because our traffic grew up by 500 percent over the last several 
years, thanks to the techniques described here. So our older articles were not seen by 
most of our new visitors. This concept is explained chapter 19 where we discuss traffic 

https://www.twitter.com/analyticbridge
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decay and how to increase the lifetime and yield of old blog posts. For instance, by 
having top articles listed in a footer at the bottom of each article. The footer that can be 
updated at once across thousands of articles, when needed, using an shtml include 
directive in the webpage code, or an iframe to load the adaptive footer stored in one 
web location.    
 
1.2. Methodology 
 

The process consists of five steps: 

 

 Step 1: Producing/updating each month a list of top DSC articles based on our 
Google Analytics data, including for each article, the total number of page views. 
Currently, we focus on articles with 150+ page views. If we want to extract much 
bigger lists, we would need to use the Google Analytics API for data extraction. 

 Step 2: Scraping DSC (using an home-made web scraper written in Python) to 
identify in the list created in Step 1, the articles that are still live (not deleted), and 
for each live article, identify creation date, channel (AnalyticBridge.com, 
DataScienceCentral.com, BigDataNews.com, DataViZualization.com, 
Hadoop360.com) and title 

 Step 3: Data cleaning: removing time-sensitive articles, adding hash tags to titles 
 Step 4: Statistical modeling: creating a score for each article, based on page 

views, creation date, and a random number (see details below) 
 Step 5: The scores attached to each article are based on new simulated random 

numbers produced every day. Each day, select the top 25 articles based on 
score, and add them to Hootsuite. Schedule the 25 tweets during the day, over 
a 4 hour time window corresponding to our peak in US traffic. Hootsuite will 
automatically generate the shortened URL's to be added in the tweets. 

 

The score can be used to slightly favor (over-tweet) articles that are more recent, or 
popular. But it is random enough that any article has some chance to eventually be 
tweeted one day. The score reflects the fact that not all articles are created equal. 

The final implementation will consist of a fully automated machine-to-machine 
communication service (between Google Analytics, Hootsuite, and Twitter), powered by 
robust black-box analytics, automated machine learning (hash tag creation, detection of 
time-sensitive articles) and automated, adaptive statistical scoring.  

The number of tweets can be slightly adjusted each day (increased, decreased, or 
change in scoring parameters) as a response to performance. Performance is 
measured in terms of daily clicks arising from this activity (the stats are readily available 
from Hootsuite analytics), and the resulting average session duration for traffic coming 
from Twitter (available from Google Analytics). 
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1.3. Details about the scoring algorithm 
 

This algorithm is used to score articles based on page views count (denoted as P), 
creation date (denoted as T for time), and a random number denoted as R (uniform 
deviate on [0, 1]). Note that older articles tend to have more page views, so P and T are 
not independent. The score S is computed as follows: 

S = (b + R) Pa / (T - Offset)c 

The parameter a, b, c are chosen so that the top 25 articles selected each day (for 
tweeting) have, on average, a median P (historical page views count) about twice as 
high as the median P computed across all 2,000 articles. This way, we slightly favor 
popular articles, but not too much. Details are in the spreadsheet described below. 
Offset is chosen so that T = Offset, for our oldest article. You should use the median for 
P, not the average, because it has a Zipf distribution. Note that page view decay occurs, 
especially for not popular article, though decay is masked by growth for popular articles, 
see chapter 19. 
 
1.4. Data Sets, Excel spreadsheet  
 
You can download our Excel spreadsheet with 2,000 articles, featuring the following 
fields, for each article: 
 

 Title 
 URL 
 Creation Date 
 Page View Count 
 Channel 
 Randomized Score (column I) 

 

The parameters a, b, and c are in cells J2, J3, and K2 respectively. A low value for J3 
will produce more random scores. Cross correlations are displayed in cells L1:O4, and 
the median score for top 25 articles, and for all 2,000 articles, are displayed in cells M8 
and M7 respectively. 

Note that the cross-correlations are not very useful: even when the correlation between 
P and S is as low as 0.04, the median P for  the top 25 articles (those with highest S) is 
twice as much as the overall median score S computed on all articles. This is because 
traditional correlation is a poor indicator in this context, sensitive to the numerous 
outliers in the P values, since P has a Zipf rather than Gaussian distribution. 

You can also download a full data set that contains the full text (not just the title) for 
each article. It is used for clustering articles (see section 3). 
 
1.5. Python Source Code 
 
Our intern Livan wrote some Python code to process Google Analytics reports, 
and scrape DSC articles to extract relevant fields (creation date, channel, and 

https://www.datasciencecentral.com/profiles/blogs/why-zipf-s-law-explains-so-many-big-data-and-physics-phenomenons
http://storage.ning.com/topology/rest/1.0/file/get/2808296888?profile=original
https://www.datasciencecentral.com/page/member
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title.) Download Python code (rename this text file with a .py extension after 
downloading). 
 
1.6. Next Steps 
 

We can make this system more powerful by 

 Automatically removing time-sensitive articles, by detecting tokens in the URL 
such as event, conference, or weekly-digest 

 We could deploy the system not just on Twitter, but on our large LinkedIn group 
or on multiple Twitter accounts 

 Deduping duplicate URL's (sharing same path but different query strings) 
 Use top 50,000 articles rather than 2,000 
 Automate some of the content production (new books announcements and salary 

surveys are easy to automatically produce), to boost our number of tweet-able 
articles 

 

2. Growth Hacking: Part II 
 

This section quickly describes the other fundamental component required to make our 
system (described in section 1) work. It is the creation and growth of at least one 
massive Twitter account, with highly relevant, high value followers, and use of 
automated tweeting systems. There is a feedback loop in the sense that having a lot of 
valuable content to tweet, helps generate large volume of good traffic to your website, 
and helps boost your Twitter growth, which in turn further fuels the traffic growth for your 
website. 

Here, a significant part of our growth (150 new Twitter followers per day) is generated 
via Twitter advertising: we spend a little more on Twitter than on Google AdWords. With 
Twitter, it is possible to target US-based profiles (and their followers) that are similar to 
pre-selected profiles, and you can upload a list of pre-selected profiles when starting 
your advertising campaigns. Our list has hundreds if not thousands of pre-selected data 
science profiles. Such lists are easy to find, and regularly published on various 
websites. But ours also includes top profiles - indeed the very largest, most relevant 
ones - that are missing in the traditional published lists, as well as people who re-tweet 
or like our tweets. 

The growth and volume of our two main Twitter profiles @analyticbridge and 
@datasciencectrl, is displayed in the figure below. 

http://storage.ning.com/topology/rest/1.0/file/get/2808297081?profile=original
https://www.twitter.com/analyticbridge
https://www.twitter.com/datasciencectrl
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Below is a zoom in on the bottom right corner. 

 

 

Since 2015, the landscape has changed, but not that much, and we still dominate. The 
strategy described in section 1 delivers more than 1,000 extra clicks per day to our 
network, at the current low levels (25 tweets per day). 

We also use LinkedIn and Google AdWords, but for a different goal: generating new 
members, US-based in the case of AdWords. But we have encountered a number of 
issues with AdWords (low conversion), thus we have reduced our budget, optimized our 
Adwords strategies (adding negative keywords and conversion tracking, more on this 
coming soon), and shifted money to Twitter and to acquire high quality content. Read 
my article on 360-degree data science to understand how we blend domain expertise, 
business hacks, machine learning, engineering, and modern statistical science, to 

https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
http://storage.ning.com/topology/rest/1.0/file/get/2808297200?profile=original
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efficiently solve business problems in general. And in particular, to discover how we 
optimize our bidding strategies for Google keywords (how much to pay for a keyword). 
 

3. Growth Hacking: Part III 
 
Another part of our growth hacking strategy consists of creating new channels, for 
instance: 
 

 DataViZualization 
 DataPlumbing 
 BigDataNews 
 Hadoop360 

 

One of the challenges is to populate these channels with new content. While we use 
syndicated feeds for this purpose, we also want to add our own content. One way to do 
so is to perform a clustering of all our articles, and assign them a category: visualization, 
data plumbing, big data, Hadoop and so on. Once the articles are categorized, we can 
publish (re-post) some popular articles from DSC on the appropriate sub-channels.  

Here we describe a very simple and highly scalable NLP (natural language processing) 
technique, called indexation, to perform this clustering task. It works as follows. 

 
Algorithm: categorizing / clustering articles 
 

 Step 1: Create a data dictionary (see section 8 in chapter 25) of all one-token 
and two-token keywords found in all articles (both in the title and in the body of 
the article). This assumes that you crawled all your articles to extract all the text. 

 Step 2: Filter / clean results. Ignore keywords with less than 5 occurrences. 
Check all n-grams of a keyword (data science and science data) and eliminate n-
grams with low frequency, for each keywords 

 Step 3: Look at top 300 entries, called seed keywords. Manually assign seed 
keywords to top categories. For instance, the top category data plumbing will 
have the following seed keywords: data engineer, data architect, data 
warehouse, Hadoop, Spark, data lakes, IoT and many more. Don't forget to have 
a top category called Unknown. 

 Step 4. Based on keywords found in the title and body of an article, assign the 
article in question to the top category that has the biggest overlap with the article, 
in terms of seed keywords. Note that keywords found in the title might be 
assigned a higher weight than those found in the body. Likewise, a different 
weight can be attached to each seed keyword, in each top category. 

 
I call this technique indexation because it is very similar to the creation of a search 
engine; another word that could be used is tagging algorithm. See also chapters 6 and 
20.  
 

http://www.datavizualization.com/
http://www.dataplumbing.com/
http://www.bigdatanews.com/
http://www.hadoop360.com/
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Instead of using this algorithm, you can just use customized Google Search for your 
website, and once installed, search for data plumbing to find articles in your website, 
that are a good fit for the data plumbing category or channel. We've actually 
implemented it on DSC. We switched to an internal home-made search engine once 
Google starting displaying (mostly irrelevant or competing) ads in the search results. 
 
Potential improvement 
 
Also add 3-token keywords in your dictionary. For 3 tokens keywords, you have 3! 
(factorial 3) = 6 n-grams. Usually, only one or two of these 6 n-grams will show up in the 
articles, for any keyword (data science central will show up, but central science 
data won't).  
 

4. Conclusions 
 

This DSC growth engine illustrates that data science is not just about programming. 
Indeed, here, programming is a small part of the project, compared with designing 
algorithms that efficiently make API's communicate with each other, based on data 
automatically gathered, with insights automatically extracted, and automatically 
leveraged. It also shows the limitation of traditional statistical science, with correlations 
(see the sub-section about the scoring engine) that are useless, and replaced by 
something else. 

It certainly shows that there are different types of data scientists, and that indeed, data 
science is greater than the sum of its parts. It also shows how business and domain 
expertise are critical. For instance, if you don't know about the Twitter advertising 
capabilities or the Hootsuite or BufferApp platform, you will never even think of doing 
this kind of stuff, no matter how much you know about coding and algorithms, thus 
missing on a big opportunity. If you work in a bigger organization, of course finding and 
convincing the right person to start a project like this one, is a challenge, no matter how 
much business savvy you are. But my experience is that big organizations tend to hire 
specialists rather than people like me. 
 

  

https://www.google.com/cse
https://www.datasciencecentral.com/forum/topics/most-popular-data-science-keywords-on-dsc
https://www.datasciencecentral.com/forum/topics/most-popular-data-science-keywords-on-dsc
https://www.datasciencecentral.com/profiles/blogs/the-2-types-of-data-scientists-everyone-should-know-about
https://www.datasciencecentral.com/profiles/blogs/data-science-putting-it-together-it-s-greater-than-the-sum-of-the
https://www.datasciencecentral.com/profiles/blogs/data-science-putting-it-together-it-s-greater-than-the-sum-of-the
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23. Time Series and Growth Modeling  

Time series models are studied throughout this book: chapters 12 and 13, section 2 in 
chapter 28, section 12 in chapter 25, appendix A and B. Here our perspective is purely 
business related and focused on growth modeling, especially to make sound predictions 
in the presence of growth. It is more important to understand what drives growth and its 
internal mechanics, than using sophisticated models, in order to make sound forecasts.  

Many times, complex models are not enough (or too heavy), or not necessary, to get 
great, robust, sustainable insights out of data. Deep analytical thinking may prove more 
useful, and can be done by people not necessarily trained in data science, even by 
people with limited coding experience. Here we explore what we mean by deep 
analytical thinking, using a case study, and how it works: combining craftsmanship, 
business acumen, the use and creation of tricks and rules of thumb, to provide sound 
answers to business problems. These skills are usually acquired by experience more 
than by training, and data science generalists (see here how to become one) usually 
possess them. 
 

This chapter is targeted to data science managers and decision makers, as well as to 
junior professionals who want to become one at some point in their career. Deep 
thinking, unlike deep learning, is also more difficult to automate, so it provides better job 
security. Those automating deep learning are actually the new data science wizards, 
who can think out-of-the box. Much of what is described in this chapter is also data 
science wizardry, and not taught in standard textbooks nor in the classroom. By reading 
this tutorial, you will learn and be able to use these data science secrets, and possibly 
change your perspective on data science. Data science is like an iceberg: everyone 
knows and can see the tip of the iceberg (regression models, neural nets, cross-
validation, clustering, Python, and so on, as presented in textbooks.) Here I focus on the 
unseen bottom, using a statistical level almost accessible to the layman, avoiding jargon 
and complicated math formulas, yet discussing a few advanced concepts.    

 

1. Case Study: The Problem 
 

The real-life data set investigated here is a time series with 209 weeks’ worth of 
observations. The data points are the number of daily users, averaged per week, for a 
specific website, over some time period. The data was extracted from Google Analytics, 
and summarized in the picture below. Some stock market data also shows similar 
patterns. 

https://www.datasciencecentral.com/profiles/blogs/why-you-should-be-a-data-science-generalist
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The data and all the detailed computations are available in the interactive spreadsheet 
provided in the last section. Below is an extract. 

 

 
 
1.1. Business questions 
 

We need to answer 

 Whether there is growth over time, in the number of visiting users, 
 Whether it can be extrapolated to the future (and how), 
 What kind of growth do we see (linear, or faster than linear) 
 Whether can we explain the dips, and avoid them in the future. 

 

As in any business, growth is driven by a large number of factors, as every department 
tries its best to contribute to the growth. There are also forces going against the growth, 
such as reaching market saturation, market decline or competition. All the positive and 
negative forces combine together and can create a stable, predictable growth pattern, 
whether linear, exponential, seasonal, or a combination. This can be approximated by a 

https://storage.ning.com/topology/rest/1.0/file/get/1289462185?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1289744842?profile=original
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Gaussian model, by virtue of the central limit theorem. However, in practice, it would be 
much better to identify these factors to get a much better picture, if one wants to make 
realistic projections and measure the cost of growth.  

Before diving into original data modeling considerations (data science wizardry) in 
section 3, including spreadsheets and computations, we first discuss general questions 
(deep analytical thinking) that should be addressed whenever such a project arises. 
This is the purpose of the next section.  

 

2. Deep Analytical Thinking 
 

Any data scientist can quickly run a model and conclude that there is a linear growth in 
the case discussed in section 1, and make projections based on that. However, this 
may not help the business if the projections, as we see so frequently in many projects, 
work for only 3 months or less. A deeper understanding of the opposite forces at play, 
balancing out and contributing to the overall growth, is needed to sustain the growth. 
And maybe this growth is not good after all. That's where deep analytical thinking 
comes in play. 

Of course, the first thing to ponder is whether this is a critical business question, coming 
from an executive wondering about the health of its business (even and especially in 
good times,) or whether it is a post-mortem analysis related to a specific, narrow, 
tactical project. We will assume here that it is a critical, strategic question. In practice, 
data scientists know about the importance of each question, and treat them accordingly 
with the appropriate amount of deep thinking and prioritization. What I discuss next 
applies to a wide range of business situations. 

 
2.1. Answering hidden questions 
 

It is always good for a data scientist, to be involved in business aspects that are data 
related, but go beyond coding or implementing models. This is particularly true with 
small businesses, and it is one aspect of data science that is often overlooked. In bigger 
companies, this involves working with various teams, as a listener, challenger, and in an 
advisory role. The questions that we should ask are broken down below in three 
categories: business, data, and metrics related.  

Business questions: 

 Is your company pursuing the correct type of growth? Is it growing in the right 
segments? Is the growth shifting in the wrong direction? Do we now attract an 
audience that is not converting well (low ROI) or with high churn rate (low 
customer lifecycle value, high cost of user acquisition.) The data scientist is well 
positioned to access the relevant data and analyze it to answer this question.  
 

 Is top management too much focused on bad growth? That is, growing for the 
sake of it to show to shareholders? There is good growth and bad growth. In 
many businesses, some bad growth (growth for the sake of it) is needed to 
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impress clients, shareholders, employees, and because growth numbers from 
competitors are also fueled partly by bad growth. That is why you want to show 
that your company is growing as fast as your competition. Good growth, to the 
contrary, is focused on long terms outcomes. However, now that granular data 
from most companies is widely available or can be purchased and analyzed by 
experts, it is becoming more difficult to fake the growth. Anyway, when analyzing 
statistics, you must be able to discriminate between good and bad growth. 
 

 What external factors impact the bottom line metrics? Competition and market 
trends are two of them. Knowing that a competitor just received a new round of 
funding and is spending it on advertising, can be very valuable to gain insights. 
Or in our example, the big dip corresponds to holiday traffic in December. 
 

 What internal factors are at play and "influencing" your data? It could be 
increased marketing efforts by your company, a website that was made much 
more efficient, some business acquisition or new products, the definition of a 
metric that was changed internally (with impact on measured numbers). The data 
scientist should be informed about these events, and indeed, proactively ask 
questions when data trends are seen but cannot be explained. Even when data 
sounds stable, it could be the effect of two sources, one negative, and one 
positive, canceling out. Always be curious about what is happening in your 
company, with your competitors and the market in general. 

 

Data questions: 

 Are we gathering data from external sources, to validate internal data? In our 
case, data from Google Analytics can be wrong. Having an external source will 
help you pinpoint discrepancies and understand what is exactly measured by the 
various sources. A tool such as Alexa not only provides an alternate source of 
measurements, but it also provides data points about competition. 
 

 Is some data duplicated, missing, corrupt, or not available? Are you working with 
the IT and BI team to collect the right data, get it properly summarized, 
accessible via dashboards or straight from databases, and archived 
appropriately, locally or externally? Do you maintain a data log that lists all 
changes to data over time? 
 

 Do you know the biggest mechanisms introducing biases and errors in your 
data? In our case, Google Analytics is sensitive to smart bots generating artificial 
traffic, to websites not being tracked or tagged properly, and to new advertising 
campaigns being launched, introducing shifts in geolocation and traffic quality. 
Address all these issues with the right people in your company. Sometimes it 
requires having access to additional data.  
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Question about the metrics: 

 Are you collecting the most useful metrics? What important metrics are missing 
or would be useful to have? Do we you enough granularity? Do you focus on the 
right metrics? New users might be more important than total users. Page view 
numbers are easily manipulated by third parties and thus less reliable. Session 
duration may be meaningless if users spend a lot of time watching videos on 
your website. A lot of traffic from US is not good if it is from demographic 
segments not bringing any value. High traffic numbers might not be good if users 
complain about the poor quality of your content. 
 

 Finding proxy metrics when the exact ones are not available. For instance, zip 
code data could be used instead of income. When creating web forms, adding 
mandatory fields could result in more useful databases and better targeting, 
though changes also impact the data and create back-compatibility issues, 
making comparisons difficult when analyzing time series. 
 

 A simple question such as the one discussed in section 1, is too generic. You 
must analyze growth in various segments, and sometimes, you may discover 
segments that need to shrink rather than grow. For instance, a website that 
accepts credit card transactions, written in English, might not be appropriate for 
countries where credit card use is non-existent, or in locales that can sue you 
because your content is in English rather than in the local, mandatory language.  
  

 Should you use a longer time window (if available) to get a better picture, 
assuming the data is consistent over time? Or monthly rather than weekly data? 
How frequently should this analysis be done? Can it be automated if done 
frequently enough? Should it be included in dashboard reporting? Which charts 
to use to communicate the insights visually, with maximum impact and value to 
the stakeholder? 

 

In the next section, we focus on the modeling aspects, offering different perspectives on 
how to better analyze the type of data discussed in our case study. 

 

3. Data Science Wizardry 
 

We focus on the problem and data presented in section 1, providing better ad-hoc 
alternatives (rarely used in a business setting) to regression modeling. This section is 
somewhat more technical.  

Even without doing any analysis, the trained eye will recognize a linear trend for the 
growth, in the time series. Even with the naked eye, you can further refine the model 
and see three distinct patterns: a steady growth initially, followed by a flat plateau, and 
then the growth becoming fairly steep at the end. The big dip is caused by the holiday 
season. At this point, one would think that a mixed, piece-wise model, involving both 
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linear and super-linear growth, represents the situation quite well. It takes less than 5 
seconds to come to that conclusion. 

The idea to represent the time series as a mixed stochastic process -- a blend of linear 
and exponential models, depending on the time period -- is rather original and 
reminiscent of mixture models (see chapter 11). Model blending is also discussed in 
chapter 2. However, in this section, we consider a simple parametric model. But rather 
than traditional model fitting, the technique discussed here is based on simulations, and 
should appeal to engineering and operations research professionals. It has the 
advantage of being easy to understand yet robust.  
 

The idea is as follows, and it will become clearer in the illustration that follows: 

 
3.1. Generic algorithm 
 

 Step 1. Simulate 100 realizations, also called instances, of a stochastic process 
governed by a small number of easy-to-interpret parameters, each realization 
with 209 data points as in the original data set, with same starting and end values 
as in the observed data (or same mean and variance.) The parameters are set to 
fixed values. 

 Step 2. Compute the estimated values (averaged over the 100 simulations) of 
some business quantities of interest, for instance the number of weeks followed 
by an increase in users, the average week gap between two increases, the 
average dip depth and width or number of dips (same with spikes), auto-
correlations and so on. These quantities are called indicators.  

 Step 3. Compute the error between the indicator values computed on the 
observed time series, and those estimated on the simulations.  

 Step 4. Repeat with a different set of parameters until you get a fit that is good 
enough.  

 

A potential improvement, not investigated here, is to consider parameters that change 
over time, acting as if they were priors in a Bayesian framework. It is also easy to build 
confidence intervals for the indicators, based on the 100 simulations used for each 
parameter set. This makes sense with bigger data sets, and it can be done even without 
being a statistical expert (a software engineer can do it.)  

 
3.2. Illustration with three different models 
 

I tested the following models (stochastic processes) to find a decent fit with the data, 
while avoiding over-fitting. Thus the models used here have few, intuitive parameters. In 
all cases, the models were standardized to provide the desired mean and variance 
associated with the observed time series. The models described below are the base 
models, before standardization.  
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Model #1: 

This is a random walk with unequal probabilities, also known as a Markov chain. If we 
denote the average daily users at week t as Xt, then the model is defined as follows: Xt+1 
= Xt - 1 with probability p, and Xt = Xt + 1 with probability 1 - p. Since we observe 
growth, the parameter p must be between 0 and 0.5. Also, it must be strictly above 0 to 
explain the dips, and strictly below 0.5 otherwise there would be no growth and no 
decline (on average), over time. Note that unlike a pure random walk (corresponding 
to p = 0.5), this Markov chain model produces deviates Xt that are highly auto-
correlated. This is fine because, due to growth, the observed weekly numbers are also 
highly auto-correlated. A parameter value around p= 0.4 yields the lag-1 auto-
correlation found in the data.  
 

Model #2: 

This model is a basic auto-regressive (AR) process, defined as Xt+1 = qXt + (1-q)Xt-1 
+ Dt, with the parameter q between 0 and 1, and the Dt's being independent random 
variables equal to -1 with probability p, and to +1 with probability 1 - p. It also provides a 
similar lag-1 auto-correlation in the { Xt } sequence, but in addition, now the sequence Yt 
= Xt+1 - Xt also exhibits a lag-1 auto-correlation. Indeed, there is also in the data, a lag-1 
auto-correlation in the { Yt } sequence. A parameter value around q = 0.8 together 
with p = 0.4, yields that auto-correlation. Note that with the Markov chain (our first 
model), that auto-correlation (in the { Yt } sequence) would be zero. So the AR process 
is a better model. An even better model would be an AR process with three 
parameters.  
 

Model #3: 

The two previous models can only produce linear growth trends. In order to introduce 
non-linear trends, we introduce a new model which is a simple transformation of the AR 
process. It is defined as Zt = exp(rXt), where { X(t) } is the AR process. In addition to the 
parameters p and q, it has an extra parameter r. Note that when r is close to zero, it 
behaves almost as an AR process (after standardization), at least in the short term.  
 
3.3. Results 
 
The picture below shows the original data (top left), one realization of a Markov chain 
with p = 0.4 (top right), one realization of an AR process with p =0.4 and q = 0.6 (bottom 
left), and one realization of the exponential process with p = 0.4, q = 0.6 and r = 0.062. 
By one realization, we mean any one simulation among the 100 required in the 
algorithm. 
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The picture below features the same charts, but with another realization (that is, another 
simulation) of the same processes, with the same parameter values. Note that the dips 
and other patterns do not appear in the same order or at the same time, but the 
intensity, length of dips, overall growth, and auto-correlation structures are similar to 
those in the first picture, especially if you extend the time window from 209 weeks to a 
few hundred weeks, for the simulations: they are in the same confidence intervals. If 
you try many simulations and compute these statistics each time, you will have a clear 
idea of what these confidence intervals are. 

 

 
 
Overall -- when you look at 100 simulations, not just two -- the exponential model with a 
small value of r provides the best fit for the first 209 weeks, with a nearly linear growth 

https://storage.ning.com/topology/rest/1.0/file/get/1304468760?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1304538024?profile=original
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at least in the short term. However, as mentioned earlier, a piece-wise model would be 
best. The AR process, while good at representing a number of auto-correlations, seems 
too bumpy, and dips are not deep enough; a 3-parameter AR process can fix this issue. 
Finally, model calibration should be performed on test data, with model performance 
measured on control data. We did not perform this cross-validation step here, due to the 
small data set. One way to do it with a small data set is to use odd weeks for the test, 
and even weeks for the control. This is not a good approach here, since we would miss 
special week-to-week auto-correlations in the modeling process.   
 
Download the spreadsheet, with raw data, computations, and charts. Play with the 
parameters! 
 

4. A few data science hacks 
 

Here I share a few more of my secrets. 

The Markov chain process can only produce a linear growth. This fact might not be very 
well known, but if you look at Brownian motions (the time-continuous version of these 
processes) the expectation and variance over time is well studied and very peculiar, so 
it can only model a narrow range of time series. More information on this can be found 
in the first chapters of my previous book, here. In this chapter, we overcome this 
obstacle by using an exponential transformation. 
 
Also growth is usually non-sustainable long-term, and can create bubbles that 
eventually burst -- one thing that your model may be unable to simulate. One way to 
mitigate this effect is to use models with constrained growth, in which growth can only 
go so far and is limited by some thresholds. One such model is presented in my 
previous book, see chapter 3 here.  
 

Finally, model fitting is usually easier when you do it on the integrated process (see 
chapter 2 in my previous book.) The integrated process is just the cumulative version of 
the original process, easy to compute, and also illustrated in my spreadsheet. The data / 
model fit, measured on the cumulative process, can be almost perfect, see picture 
below representing the cumulative process associated with some simulations performed 
in the previous sub-section.  

 
 

https://storage.ning.com/topology/rest/1.0/file/get/1306143210?profile=original
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1305578712?profile=original
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In the above chart, the curve is extremely well approximated by a second-degree 
polynomial. Its derivative provides the linear growth trend associated with our data. This 
concept is simple, though I have never seen it mentioned anywhere: 

 Use cumulative instead of raw data 
 Perform model fitting on the cumulative data 
 The derivative of the function (best fit) attached to the cumulative process, 

provides a great fit with the raw data. 

The cumulative function acts as a low-pass filter on the data, removing some noise and 
outliers.  

Below is another picture similar to those presented earlier, but with a different set of 
parameter values. It shows that despite using basic models, we are able to 
accommodate a large class of growth patterns. 

 
 

And below is the cumulative function associated with the chart in the bottom right corner 
in the above picture: it shows how smooth it is, despite the chaotic nature of the 
simulated process.  

 
 

In some other simulations (not illustrated here, but you can fine tune the model 
parameters in the spreadsheet to generate them) the charts present spikes like Dirac 
distributions and are very familiar to physicists and signal processing professionals. 

https://storage.ning.com/topology/rest/1.0/file/get/1305754462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1305798660?profile=original
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24. Designing Better Algorithms  

In this chapter, using a few examples and solutions, I show that the "best" algorithm is 
many times not what data scientists or management think it is. As a result, too many 
times, misfit algorithms are implemented. Not that they are bad or simplistic. To the 
contrary, they are usually too complicated, but the biggest drawback is that they do not 
address the key problems. Sometimes they lack robustness, sometimes they are not 
properly maintained (for instance they rely on outdated lookup tables), sometimes they 
are unstable (they rely on a multi-million rule system), sometimes the data is not 
properly filtered or inaccurate, and sometimes they are based on poor metrics that are 
easy to manipulate by a third party seeking some advantage (for instance, click counts 
are easy to fake.) The solution usually consists in choosing a different approach and a 
very different, simple algorithm - or no algorithm at all in some cases. 

 
1. Five Case Studies 
 

Here I provide a few examples, as well as an easy, low-cost, robust fix in each case. 

Many times, the problem is caused by data scientists lacking business understanding 
(they use generic techniques, and lack domain expertise) combined with management 
lacking basic understanding of analytical, automated, optimized (semi-intelligent, self-
learning) decision systems based on data processing. The solution consists of 
educating both groups, or using hybrid data scientists (I sometimes call them business 
scientists) who might not design the most sophisticated algorithms, but instead the most 
efficient ones given the problems at stake - even if sometimes it means creating ad-hoc 
solutions. This may result in simpler, less costly, more robust, more adaptive, easier to 
maintain, and generally speaking, better suited solutions. 
 

 Click fraud detection: This is an old problem, yet publishers using affiliates to 
generate traffic (including Google and its network of partners) still deliver vast 
amounts of fraudulent clicks. While these companies have become much smarter 
about pricing (very lowly) these worthless clicks, better and easier solutions exist. 
For instance, pricing per keyword per day rather than per click, or targeting 
specific people/audiences to make it difficult to create fake traffic (and at the same 
time increasing relevancy and thus ROI both for the advertiser and the ad 
network.) For instance, both Facebook and Twitter allow you to target friends of 
friends, or profiles similar to pre-specified people. The issue with the pay-per-click 
algorithms (specifically, fraud detection) is not so much the fact that the algorithms 
miss a lot of fraud, but rather caused by the business model which is flawed by 
design. My solution consists of changing the business model. 
 

 Ad matching or relevancy algorithms: We've all seen too many times ads that 
are irrelevant to us - it is a waste of money for the advertiser and the ad network. 
Ad matching algorithms (or generally speaking, relevancy algorithms) aim at 

https://www.datasciencecentral.com/profiles/blogs/vertical-vs-horizontal-data-scientists
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization
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optimally serving the right ads (or content) to the right user on the right page at the 
right time. When several ads compete for a spot and can all be displayed, they 
need to be displayed in the right order (on a specific page, to a specific user.) 
Such algorithms can greatly be improved by assigning categories both to pages, 
users and ads, in order to optimize the match, even in the absence of a search 
query. This is described in this article, and modern techniques rely on tagging or 
indexation algorithms. (see chapter 4.) Such indexation algorithms are 
conceptually very simple and robust, and can quickly create taxonomies on big 
data, to help solve the problem. Another search engine algorithm that can benefit 
from substantial improvements is content attribution: assign the content to the 
original source (by displaying it at the top in search results), rather than to an 
authorized copy or worse, to a plagiarist. Click here for details; the solution might 
be as easy as pre-sorting index entries (for a same keyword and identical content) 
by time stamps. More on search engine technology here.   
 

 Optimum pricing: Just like using the same drug for all patients (to cure a specific 
ailment) is a poor strategy, using the same price (for a specific product) for all 
customers may not be the best solution. Optimum pricing varies based on time, 
sales channel, and customer. I described this concept in an article on hotel rooms 
pricing. 
 

 Fake reviews detection: Product and book reviews are notoriously biased as 
authors get reviews from friends, and blackmailers try to get your money to post 
good reviews about your product, or otherwise will write bad reviews. Read this 
article for details. The bulk production of fake reviews is indeed a striving 
business in its own (if executed properly with the right algorithms as described 
here.) It negatively impacts all websites (such as Amazon) that rely on product 
reviews to increase sales and attract users: it is a trust issue. The concept itself is 
subject to conflicts of interests - good reviews supposedly increasing sales, are 
thus encouraged or given more weight. So here we are facing a business flaw 
rather than poor detection algorithms. The solution is having professionals write 
the reviews and then the problem of fake reviews almost disappears - no need for 
an algorithm to handle it. If however you really want to implement user-based 
product reviews on your e-store, here is the way to do it right: as in the relevancy 
algorithm described above, assign categories to each user, each product and 
each reviewer. When there is a strong match (the user, the reviewer and the 
product categories all match) assign a high score to the product review in 
question. Eliminate reviews that are too short. First-time reviewers might be 
assigned a lower score. Then compute a weight for each star rating assigned to a 
product, by summing up all the individual scores for the star rating in question, 
possibly putting more emphasis on recent ratings. The global rating is the 
weighted sum of star ratings, for the product in question. This is far better than a 
flat average of the star ratings regardless of the quality of the review or reviewer, 
which is what Amazon is still doing.    
 

http://www.analyticbridge.com/profiles/blogs/online-advertising-a-solution-to-optimize-ad-relevancy
https://www.datasciencecentral.com/forum/topics/how-and-why-to-talk-to-google-s-attribution-algorithm
https://www.datasciencecentral.com/profiles/blogs/building-better-search-tools-problems-and-solutions
http://www.analyticbridge.com/forum/topics/how-are-hotel-room-rates-determined
http://www.analyticbridge.com/forum/topics/how-are-hotel-room-rates-determined
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://techcrunch.com/2016/04/26/amazon-cracks-down-on-fake-reviews-with-another-lawsuit/
https://techcrunch.com/2016/04/26/amazon-cracks-down-on-fake-reviews-with-another-lawsuit/
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
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 Image recognition (Facebook ads): This is indeed a funny algorithm. As a 
Facebook advertiser promoting data science articles, most images in my ads are 
charts and do not contain text. For whatever business reason (probably an archaic 
rule invented long ago and never revisited) Facebook does not like postings (ads 
in particular) in which the image contains text. Such ads get penalized: they are 
displayed less frequently, and cost more per click; sometimes they are just 
rejected. Most of my ads are erroneously flagged as containing text, see Figure 1 
for a typical example. Note that the Facebook algorithm (to detect text in images) 
processes a large number of ads in near real time, thus it must be rudimentary 
enough to make decisions very fast -- although it is very easy to use a distributed, 
Map-Reduce architecture to process these ads. The solution to this issue: get rid 
of your algorithm entirely, instead use a much better relevancy metric (rather than 
whether or not the image contains text): click-through rate. The computation is 
straightforward, though you might need an algorithm to detect and filter out 
fraudulent or robotic clicks. More on the text detection algorithm in the section 
below, where a simple, efficient solution is offered to advertisers facing this 
problem. Of course you could tell me to put arbitrary, irrelevant pictures of people, 
mountains, vegetables, or lakes in all my ads, to pass muster, but that is not the 
point -- it might backfire and data scientists are genuinely interested in ... charts. 
Read the next section for more details. Another faulty algorithm that I will analyze 
in a future article is the one used to detect posts (on Twitter or Facebook) that 
violate editorial policies against hate speech, bullying or raunchy language. This 
algorithm is so bad that it caused Walt Disney to pass on buying Twitter. I wouldn't 
be surprised if it relies on the Naive Bayes technique - still currently in use in many 
(poor) spam detection algorithms. 
 

1.1. More about the Facebook ad processing system 
 

The first four cases have been discussed in various articles highlighted above, so here I 
focus on the last example: the image recognition algorithm used by Facebook to detect 
whether an image contains text or not, to assess ad relevancy -- and best illustrated in 
Figure 1. This algorithm eventually controls to a large extent, the cost and relevancy 
associated with a specific ad. I will also briefly discuss a related algorithm used by 
Facebook, one that also needs significant improvement. I offer solutions both for 
Facebook (to nicely boost its revenue yet boost ROI for advertisers at the same time), 
as well as solutions for advertisers facing this problem, assuming Facebook sticks with 
its faulty algorithms.  

http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques
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Figure 1: Facebook image recognition algorithm thinks the above image contains text! 
 
Solution for advertisers 
 

For each article that you want to promote on Facebook, starts with a small budget, 
maybe as small as $10 spread over 7 days, and target a specific audience. Do it for 
dozens of articles each day, adding new articles all the time. Regularly check articles 
that exhausted their ad spend; boost (that is, add more dollars of ad spend) to those 
that perform well. Performance is measured as the number of clicks per dollar of ad 
spend. All this can probably be automated using an API. 

 
Solution for Facebook 
 

Eliminate the algorithm that is supposed to detect text in images associated with ads. 
Instead focus on click-through rate (CTR) like other advertising platforms (Google, 
Twitter.) Correctly measure impressions and clicks to eliminate non-human traffic, in 
order to compute an accurate CTR.  

 
Predicting reach based on ad spend 
 
Facebook provides statistics to help you predict the reach for a specific budget (ad 
spend) and audience, but again, the algorithm doing this forecast is faulty, especially 
when you try to "add budget" prior to submitting your ad. Google also provides forecasts 
that in my experience are significantly off. I believe the problem is that for small buckets 
of traffic, the strength of this forecast is very weak. While confidence intervals are 
provided, they are essentially meaningless. The solution to this problem is to either 

http://storage.ning.com/topology/rest/1.0/file/get/2808319634?profile=original
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provide the strength of the forecast (I call it predictive power, see chapter 4), 
or not provide a forecast at all: the advertiser can use the solution offered in the 
previous paragraph to optimize her ad spend. And if Facebook or Google really want to 
provide confidence intervals for their forecasts, they should consider this model-free 
technique (see also chapters 15 and 16) that does not rely on the normal distribution: it 
is especially fit for small buckets of data that have arbitrary, chaotic behavior.  
 

2. Why so many Machine Learning Implementations Fail? 
 
You would think that machine learning simply does not work, at least not as advertised. 
Here, I actually claim that this is not the case, further explaining what the issues might 
be, and in short, that machine learning might not be the culprit. 

 
It seems that the issues appear in situations that are not critical - such as an ad badly 
targeted, a racist tweet that goes undetected, or a piece of fake news that goes viral. 
You don't hear stories about planes falling down because of poor auto-pilot systems, 
themselves powered by faulty machine learning algorithms. 

So I classified machine learning (ML) implementations in four categories: 

 Implementations that work well: for instance, automated cars, automated piloting 
(planes) 

 Implementations that work for a while: high-frequency trading, with too much 
reliance on automation. 

 Implementations that work more or less: Google search, ad targeting (by top 
companies), home price or weather forecasts, fraud detection.  

 Implementations that do not work: spell check (absolutely atrocious for multi-
lingual people), fake news detection, fake reviews detection, detection of illegal 
tweets. 

I believe most implementations fall in the third category. Of course, we only see the 
fourth category (just like when you read the news: you only hear about people who die, 
not about people who get born.) 

 
2.1. The fake news issue 
 

I am not even sure that fake news detection is not working. Sure, fake news runs wild 
on Facebook, Google and everywhere. But they do generate traffic, and thus dollars, at 
least in the short term. There are two factors at play here: 

 

 Politicians and other people placing fake news in automated news feed systems -
- I call it news feed hijacking; if they use machine learning algorithms to avoid 
detection, and they beat Facebook, then it is not a failure of machine learning; it 
shows that the fraudsters have better machine learning tools. 

 Facebook must decide between too many false positives (a real piece of news 
identified by error as fake), or false negatives (an undetected piece of fake 

https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
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news.) Because false negatives are associated with increased revenue, they 
might be favored by the algorithm. 

 

But maybe the biggest challenge here is how to define fake news in the first place. If not 
properly defined, it cannot be identified. It is indeed a very fuzzy concept.  

 
2.2. When machine learning is used as a scapegoat 
 
Here are a few reasons why we run into these problems.  
 

 Internal business politics at Facebook, resulting in great algorithms not being 
used or used improperly. 

 Algorithms/business rules (embedded into algorithmic systems) that are not 
revisited as needed, or at the mercy of unqualified people for maintenance 
(software engineers not working with data scientists.) 

 Teams not collaborating effectively (e.g. data scientists vs software engineers vs 
business people.) 

 Algorithms tested and prototyped on small data (say on 1% of all ads) thus 
missing a lot. 

 Those criticizing only see the bad stuff, not the good stuff, yet overall these 
"flawed" algorithms produce good enough value for shareholders. 

 Even in my article where I criticize some Facebook algorithms, I still consider and 
use Facebook as the best advertising platform for us. 

 Some of this might be dictated by top executives. Most of what I see on 
Facebook is unidirectional (politically speaking) as if there is a political agenda. It 
is as if Facebook tries to influence people. It could be caused by Bay Area 
software engineers having their algorithms favoring posts or ads that they tend to 
agree with, with or without executives knowing about it. 

 Even in the example where Facebook's machine learning technology for being 
unable to recognize pictures containing text, despite receiving threatening 
messages about my ads not running because being (erroneously) flagged as 
containing pictures with embedded text, indeed my ads are sometimes delivered 
without any problems, as if the message is ignored by the system itself.  

 

3. Twenty four tips for better data science 
 
Here I share a few general ideas to make data science more efficient and bring 
increased value and return. 
 

 Leverage external data sources: tweets about your company or your competitors, 
or data from your vendors (for instance, customizable newsletter eBlast statistics 
available via vendor dashboards, or via submitting a ticket) 

 Nuclear physicists, mechanical engineers, and bioinformatics experts can make 
great data scientists. 
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 State your problem correctly, and use sound metrics to measure yield (over 
baseline) provided by data science initiatives. 

 Use the right KPIs (key metrics) and the right data from the beginning, in any 
project. Changes due to bad foundations are very costly. This requires careful 
analysis of your data to create useful databases. 

 Fast delivery is better than extreme accuracy. All data sets are dirty anyway. Find 
the perfect compromise between perfection and fast return.  

 With big data, strong signals (extremes) will usually be noise. See workaround in 
chapter 27.  

 Big data has less value than useful data. 

 Use big data from third party vendors, for competitive intelligence. 

 You can build cheap, great, scalable, robust tools pretty fast, without using old-
fashioned statistical science. Think about model-free techniques, explored in 
chapters 15 and 16.   

 Big data is easier and less costly than you think. Get the right tools! Here's how 
to get started. 

 Correlation is not causation. Chapter 27 discusses this issue. Read also this 
blog and this book. 

 You don't have to store all your data permanently. Use smart compression 
techniques, and keep statistical summaries only, for old data. Don't forget to 
adjust your metrics when your data changes, see section 7 in chapter 25.  

  A lot can be done without databases, especially for big data. 
 Always include EDA and DOE (exploratory analysis / design of experiment) early 

on in any data science projects. Always create a data dictionary (section 8 in 
chapter 25.). See also the life cycle of any data science project (see section 13 in 
chapter 28.) 

 Data can be used for many purposes: 

o quality assurance 

o to find actionable patterns (stock trading, fraud detection) 

o for resale to your business clients 

o to optimize decisions and processes (operations research) 

o for investigation and discovery (IRS, litigation, fraud detection, root cause 
analysis) 

o machine-to-machine communication (automated bidding systems, 
automated driving) 

o predictions (sales forecasts, growth and financial predictions, weather) 

 Don't dump Excel. Embrace light analytics. 
 Data + models + gut feelings + intuition is the perfect mix. Don't remove any of 

these ingredients in your decision process. 

 Leverage the power of compound metrics: KPI’s (key performance indicators) 
derived from database fields. These KPI’s have a far better predictive power (see 
chapter 4) than the original database metrics. For instance your database might 
include a single keyword field but does not discriminate between user query and 
search category (sometimes because data comes from various sources and is 

https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
http://www.analyticbridge.com/group/books/forum/topics/causality-models-reasoning-and-inference
https://www.datasciencecentral.com/group/research/forum/topics/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
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blended together). Detect the issue, and create a new metric called keyword type 
- or data source. Another example is IP address category, a fundamental metric 
that should be created and added to all digital analytics projects.  

 When do you need true real time processing? When fraud detection is critical, or 
when processing sensitive transactional data (credit card fraud detection, 911 
calls). Other than that, delayed analytics (with a latency of a few seconds to 24 
hours) is good enough. 

 Make sure your sensitive data is well protected. Make sure your algorithms can 
not be tampered by criminal hackers or business hackers (spying on your 
business and stealing everything they can, legally or illegally, and jeopardizing 
your algorithms, translating in revenue loss). An example of business hacking 
can be found in section 3 in this article. 

 Blend multiple models together to detect many types of patterns. Average these 
models. See chapter 2.  

 Ask the right questions before purchasing software. 
 Run Monte-Carlo simulations before choosing between two scenarios. 

 Use multiple sources for the same data: your internal source, and data from one 
or two vendors. Understand the discrepancies between these various sources, to 
have a better idea about what the real numbers should be. Sometimes big 
discrepancies occur when a metric definition is changed by one of the vendors, 
or changed internally, or data has changed (some fields no longer tracked). A 
classic example is web traffic data: use internal log files, Google Analytics and 
another vendor (say Accenture) to track this data. 

  

https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
https://www.datasciencecentral.com/profiles/blogs/could-fake-reviews-kill-amazon
https://www.datasciencecentral.com/forum/topics/how-to-choose-an-analytic-tool
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25. Useful Machine Learning Tricks  

We propose simple solutions to important challenges that all data scientists face almost 
every day. In short, this chapter provides a toolbox for the handyman, useful for busy 
professionals in any field.  

This chapter contains the following sections: 

 Eliminating sample size effects 
 Sample size determination 
 Automatically detecting the number of clusters  
 Fixing issues in regression models  
 Performing joins on mismatched data  
 Scale invariant techniques 
 Blending data sets with non-compatible fields 
 Automated exploratory data analysis 
 Simple solution to feature selection problems 
 Coefficient of Correlation for Non-Linear Relationships 
 Choosing a regression model 
 Growth modeling with Excel 
 Interesting charts 
 Simplified logistic regression 

 

1. Eliminating sample size effects 
 
Many statistics, such as correlations or R-squared, depend on the sample size, making 
it difficult to compare values computed on two data sets of different sizes. Based on re-
sampling techniques, you can use this easy trick, to compare apples with other apples, 
not with oranges.  
 

Many statistics, such as correlations or R-squared, depend on the sample size, making 
it difficult to compare values computed on two data sets of different sizes. Here, we 
address this issue. 

Below is an example with 20 observations. The last 10 observations (the second half of 
the data set) is a mirror of the first 10, and the two correlations, computed on each 
subset, are identical and equal to 0.30. The full correlation computed on the 20 
observations is 0.85. 
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One would expect that since they represent the same association, these correlations 
should be identical. Of course, by doubling the number of observations (from 10 to 20) 
you get more statistical significance, and it strengthens the correlation. So from a 
statistical point of view, it makes sense that the correlation changes (increases) when 
adding new observations, if the new observations have the same behavior as the 
previous ones. 

But it makes it impossible to make meaningful comparisons between data sets of 
different sizes. One way around this is to compute correlations on subsets of 10 points. 
There are 92,378 different ways to select 10 distinct observations out of 20, and thus 
92,378 potential correlation values. If you average these values, you will get a number 
that you can truly be compared with that from a data set of size 10, yet it involves all the 
20 observations.  

In this case we simply averaged the 10 correlation values computed on all 10 subsets 
consisting of 10 consecutive observations. The final correlation, you can call it the re-
sampled correlation, is equal to 0.67. Now you are no longer comparing apples and 
oranges. 
 

Using the same data generation mechanism (that is, the same statistical model), I 
performed ten tests, each time with 20 observations, with the second half of the data set 
having the same correlation as the first half. This correlation is listed in the third column 
in the table below.  The second column represents the correlation computed on the 
whole data set (20 observations) while the last (fourth) column represents the re-
sampled correlation. 

https://storage.ning.com/topology/rest/1.0/file/get/2744937327?profile=original
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The data, computations, and chart, is available in this spreadsheet. The data set 
consists of two variables stored in columns C and D. The same methodology could be 
applied to any coefficient, for instance the R-squared or the regression coefficients in a 
linear model. More about re-sampling techniques can be found in chapter 15.  
 

2. Sample size determination 
 
We propose a generic methodology, also based on re-sampling techniques, to compute 
any confidence interval and for testing hypotheses, without using any statistical theory. 
Also, it is easy to implement, even in Excel. The trick is based on the following new 
theorem:   
 
Theorem: The width L of any confidence interval is asymptotically equal (as n tends to 
infinity) to a power function of n, namely L = A / nB where A and B are two positive 
constants depending on the data set, and n is the sample size, with B in [0, 1].  
 
The model-free methodology is explained in details I chapter 15. In short, B can be 
estimated via re-sampling, and even improved. Usually, B = 1/2, and for common 
estimators, we have  
 

https://storage.ning.com/topology/rest/1.0/file/get/2744968405?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2743455037?profile=original
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This allows you determine n in order to achieve a desired width L for your confidence 
interval. For some estimators, B may not be 1/2. For instance, if your estimator is the 
range (maximum minus minimum computed on your observations), its expectation and 
standard deviation are provided in the table below (source: see chapter 17).  
 

 
Order of magnitude for the expectation and Stdev of the range 

 

3. Automatically detecting the number of clusters  
 
We are dealing here with non-supervised clustering. This modern version of the elbow 
rule also tells you how strong the global optimum is, and can help you identify local 
optima too. It can also be automated.  
 
Determining the number of clusters when performing unsupervised clustering is a tricky 
problem. Many data sets don't exhibit well separated clusters, and two human beings 
asked to visually tell the number of clusters by looking at a chart, are likely to provide 
two different answers. Sometimes clusters overlap with each other, and large clusters 
contain sub-clusters, making a decision not easy. 

For instance, how many clusters do you see in the picture below? What is the optimum 
number of clusters? No one can tell with certainty, not AI, not a human being, not an 
algorithm.  
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How many clusters here? (source: see here) 

 

In the above picture, the underlying data suggests that there are three main clusters. 
But an answer such as 6 or 7, seems equally valid.  

A number of empirical approaches have been used to determine the number of clusters 
in a data set. They usually fit into two categories: 

 

 Model fitting techniques: an example is using a mixture model (see chapter 11) to 
fit with your data, and determine the optimum number of components; or use 
density estimation techniques, and test for the number of modes (see chapter 14.) 

Sometimes, the fit is compared with that of a model where observations are 
uniformly distributed on the entire support domain, thus with no cluster; you may 
have to estimate the support domain in question, and assume that it is not  made 
of disjoint sub-domains; in many cases, the convex hull of your data set, as an 
estimate of the support domain, is good enough.  

 Visual techniques: for instance, the silhouette or elbow rule (very popular.) 

 

In both cases, you need a criterion to determine the optimum number of clusters. In the 
case of the elbow rule, one typically uses the percentage of unexplained variance. This 
number is 100% with zero cluster, and it decreases (initially sharply, then more 
modestly) as you increase the number of clusters in your model. When each point 
constitutes a cluster, this number drops to 0.  Somewhere in between, the curve that 
displays your criterion, exhibits an elbow (see picture below), and that elbow determines 
the number of clusters. For instance, in the chart below, the optimum number of clusters 
is 4. 

https://www.datasciencecentral.com/profiles/blogs/data-science-wizardry
https://storage.ning.com/topology/rest/1.0/file/get/1405294997?profile=original
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The elbow rule tells you that here, your data set has 4 clusters (elbow strength in red) 

 
A good reference on the topic is this article. Some R functions are available too, for 
instance fviz_nbclust. However, I could not find in the literature, how the elbow point is 
explicitly computed. Most references mention that it is mostly hand-picked by visual 
inspection, or based on some predetermined but arbitrary threshold. In the next section, 
we solve this problem. 
 
3.1. Automating the elbow rule 
 

This is another example showing how data science can automate some tasks 
performed by statisticians, in this case in the context of exploratory data analysis. The 
solution is actually pretty simple, and applies to many problems not even related to 
clustering, that we will discuss later. Also, it is not limited to using the percentage of 
unexplained variance (Y- axis) to plot the elbow curve, but other criteria such as 
entropy, or error resulting from model fitting, work equally well. Indeed the solution 
provided here was designed to be integrated in black-box decision systems. The only 
requirement is that the elbow curve most be positive (above the X-axis) and 
decreasing.  

In the next sections, we provide the context and formula to compute the elbow point, 
and to automate the procedure. 

 

3.2. Elbow strength (with spreadsheet illustration) 
 
The formula to compute the elbow strength (the core concept in this article) is illustrated 
using the table below (corresponding to the figure in the beginning of this article) and 
available in our interactive spreadsheet (download the spreadsheet here). 

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.rdocumentation.org/packages/factoextra/versions/1.0.5/topics/fviz_nbclust
https://storage.ning.com/topology/rest/1.0/file/get/1410450551?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1405610723?profile=original
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The Delta 1 column in the table represents the differences between k and k + 1 clusters, 
measured on the criterion metric (the second column.) Delta 2 represents the difference 
computed on Delta 1, that is, the second-order differences. The strength (rightmost 
column) at line k (k is the number of clusters) is computed as the difference between 
Delta 2 and Delta 1, at line k +1. It is shown only if it is positive.  
 
3.3. Number of clusters 
 
The optimum number of clusters is the value of k that maximizes the strength. That's it! 
The strength tells, for a specific k, if there is a potential elbow at level k (corresponding 
to k clusters), and how strong the elbow signal is at that level. Sometimes the strongest 
signal is not the first one, though this is usually the case in many instances. Below is an 
example where this is not the case. 
 

 
 
The above picture exhibits a situation where the data could conceivably have 2 or 3 
clusters. However, the assumption of 3 clusters (instead of 2) is much more plausible, 

https://storage.ning.com/topology/rest/1.0/file/get/1406430886?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1406639430?profile=original
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based on the height of the red bars. Rather than using the strength of the elbow, I 
actually used the relative strength: it is the strength, divided by k(the number of 
clusters). The relative strength dampens the strength of the elbow for large values of k, 
as these are usually less meaningful.  
 
3.4. Testing  
 

Three types of tests are worth doing to further assess the value of this method. 

 

 Test with various elbow curves: we created curves, with multiple elbows or barely 
any elbow, to check the results produced by our procedure. We did not find 
counter-examples. Some of the test curves are included in our spreadsheet. 
Interestingly, if the shape of the elbow curve is like 1 / k, then two clusters are 
detected, which conforms to intuition. If is is decreasing at a much smaller pace, 
then the curve is too smooth to produce red bars, and no elbow is detected. This 
also conforms to intuition. 

 Test on real data: these tests can be more difficult to interpret, since in many 
cases, nobody can tell the number of clusters, unless clusters are well separated 
or known a-priori. 

 Test with simulated data: it is easy to generate data with a known number of 
clusters, see here. Then one can use a criterion, such as percentage of 
unexplained variance, and look at the elbow curve, to check when it correctly 
predicts the number of clusters. Below is an example of simulated clusters. 

 

 
Simulated cluster structure to test the elbow rule (see here for source code) 

 
3.5. Stopping rule for clustering algorithms 
 

One open question is how the methodology performs when the data has more than two 
dimensions. The issue is not with the elbow curve itself, but with the criterion being 
used. Finally, when large clusters are found in a data set (especially with hierarchical 
clustering algorithms) it is a good idea to apply the elbow rule to any big cluster (split the 

https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
https://storage.ning.com/topology/rest/1.0/file/get/1409453151?profile=original
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big cluster into smaller clusters), in addition to the whole data set. In practice, once you 
hit the first red bar (or if there is another red bar just after the first one, and bigger than 
the first one), you can stop refining and splitting your clusters: you have reached an 
empirical optimum.  

 

3.6. Other applications 
 
The elbow rule can be used in various applications, not just to detect the number of 
clusters. We used it to detect how many decimals are correctly computed when 
using high precision computing libraries in Perl and Python, for a specific problem. You 
can check it out in my book on applied stochastic processes (available here) page 48. I 
also discuss the elbow rule in my optimum data binning procedure, see chapter 11. In 
time series, the elbow is sometimes referred to as a change point, signaling a change in 
the slope, and the elbow method can be used to identify these change points.  
 
In fact, the elbow method can be used in any algorithm that has a stopping rule, where 
the criterion used to measure performance improvement at each new iteration, is a 
positive decreasing function. In particular, it can be used to detect how deep a decision 
tree should be (when to stop splitting nodes), or in numerical algorithms to detect when 
the accuracy level reached is good enough, and no longer steadily improving when 
adding more iterations. 

An application of the elbow rule described here can be found here.  

 

4. Fixing issues in regression models  
 
What should you do if the model assumptions are violated? If your data has serial 
correlation, unequal variances and other similar problems, this simple trick will remove 
the issue and allows you to perform more meaningful regressions, or to detect flaws in 
your data set.  
 
You cannot trust a linear or logistic regression performed on data if the error term 
(residuals) are auto-correlated. There are different approaches to de-correlate the 
observations, but they usually involve introducing a new matrix to take care of the 
resulting bias. See for instance here.   
 

 
Requirements for linear regression 

 

A radically different and much simpler approach is to re-shuffle the observations, 
randomly. If it does not take care of the issue (auto-correlations are weakened but still 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
http://www.mdpi.com/2504-4990/1/2/42/
https://en.wikipedia.org/wiki/Generalized_least_squares
https://storage.ning.com/topology/rest/1.0/file/get/2707751284?profile=original
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remain significant, after re-shuffling) it means that there is something fundamentally 
wrong about the data set, perhaps with the way the data was collected. In that case, 
cleaning the data or getting new data is the solution. But usually, re-shuffling - if done 
randomly - will eliminate these pesky correlations. 

 
The trick 
 

Reshuffling is done as follows: 

 Add one column to your data set, consisting of pseudo random numbers, for 
instance generated with the function RAND in Excel. 

 Sort the entire data set (all the columns, plus the new column containing the 
pseudo random numbers) according to the values in the newly added column. 

 

Then do the regression again, and look at improvements in model performance. R-
squared may not be a good indicator, but techniques based on cross-validation 
should  be used instead.  

Actually, any regression technique where the order of the observations does not matter, 
will not be sensitive to these auto-correlations. If you want to stick to standard, matrix-
based regression techniques, then re-shuffling all your observations 10 times (to 
generate 10 new data sets, each one with the same observations but ordered in a 
different way) is the solution. Then you will end up with 10 different sets of estimates 
and predictors: one for each data set. You can compare them; if they differ significantly, 
there is something wrong in your data, unless auto-correlations are expected, as in time 
series models (in that case, you might want to use different techniques anyway, for 
instance techniques adapted to time series, see here.).  
 
Testing for auto-correlations in the observations 
 
If you have n observations and p variables, there is no global auto-correlation coefficient 
that measures the association between one observation and the next one. One way to 
do it is to compute it for each variable (column) separately. This will give you p lag-1 
auto-correlation coefficients. Then you can look at the minimum (is it high in absolute 
value?) or the maximum (in absolute value) among these p coefficients. You can also 
check lag-2, lag-3 auto-correlations and so on. While auto-correlation between 
observations is not the same as auto-correlation between residuals, they are linked, and 
it is still a useful indicator of the quality of your data. For instance, if the data comes 
from sampling and consists of successive blocks of observations, each block 
corresponding to a segment, then you are likely to find auto-correlations, both in the 
observations and the residuals. Or if there is a data glitch and some observations are 
duplicated,  you can experience the same issue.   
 

 
 
 

https://www.datasciencecentral.com/profiles/blogs/new-approach-to-linear-algebra-in-machine-learning
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5. Performing joins on mismatched data  
 
This 40 year old trick allows you to perform a join when your data is infested with typos, 
multiple names representing the same entity, and other similar issues. In short, it 
performs a fuzzy join.  
 
While much of data cleaning is performed before loading data in a database (especially 
for one-time, ad hoc analyses), there is a way to do it, continuously (like once a week or 
once a day), once the data is in its final database. It consists of adding look-up tables to 
help with the messy fields. 

 
 

When I was working at eBay, there was a database of clients from around the world. 
Some clients had names in a foreign language, containing accents and special 
characters. Somehow, it made some SQL joins very tricky. We created a lookup table of 
names, matching different spelling of a company name, to a standardized name and 
client ID. Think about names such as M.I.T and MIT that represent the same entity but 
can be spelled differently. It also helps dealing with duplicate records. This old trick 
allows you to do fuzzy matching, and the size of the lookup tables (updated daily) was 
manageable. 

What do you think of this idea? Of course the best solution is to use this system, 
together with traditional cleaning techniques, if possible. But in systems where data is 
automatically uploaded and updated on a daily basis, lookup tables are very helpful.   
 
 

 

http://storage.ning.com/topology/rest/1.0/file/get/2656755733?profile=original
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6. Scale invariant techniques  
 
Sometimes, transforming your data, even changing the scale of one feature, say from 
meters to feet, have a dramatic impact on the results. Sometimes, you want your 
conclusions to be scale-independent. This trick solves this problem.  
 
The impact of a change of scale, for instance using years instead of days as the unit of 
measurement for one variable in a clustering problem, can be dramatic. It can result in a 
totally different cluster structure. Frequently, this is not a desirable property, yet it is 
rarely mentioned in textbooks. I think all clustering software should state in their user 
guide, that the algorithm is sensitive to scale. 

We illustrate the problem here, and propose a scale-invariant methodology for 
clustering. It applies to all clustering algorithms, as it consists of normalizing the 
observations before classifying the data points. It is not a magic solution, and it has its 
own drawbacks as we will see. In the case of linear regression, there is indeed no 
problem, and this is one of the few strengths of this technique. 

 
6.1. Scale-invariant clustering 
 

The problem may not be noticeable at first glance, especially in Excel, as charts are by 
default always re-scaled in spreadsheets (or when using charts in R or Python, for that 
matter). For simplicity, we consider here two clusters, see figure below. 

 

 
Original data (left), X-axis re-scaled (middle), scale-invariant clustering (right) 

 

The middle chart is obtained after re-scaling the X-axis, and as a result, the two-clusters 
structure is lost. Or maybe it is the one on the left-hand side that is wrong. Or both. 
Astute journalists and even researchers actually exploit this issue to present misleading, 
usually politically motivated, analyses. Students working on a clustering problem might 
not even be aware of the issue. 

On the right-hand chart, we replaced each value for each axis, by their rank in the data 
set: it solves the problem, as re-scaling (or even applying any monotonic, non-linear 
transformation) preserves the order statistics (the ranks).  Another way to do it is by 
normalizing each variable, so that the variance for each variable, after normalization, is 
equal to 1. Using the ranks is a better, more robust, noise-insensitive approach though, 

https://api.ning.com/files/KQrLHdI57cnTyNYq8KtAwxNist6FMJBkGkPJNjkYzUIZ1vp1P7faC9mRapaI-zjrpcViuUOLcBWJqhJfA7iahmdy6pgU4ccJ/Capture.PNG
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especially if the variables have a relatively unimodal distribution (with no big gaps), as in 
the above figure.  

The main issue with scale-invariant clustering appears in the context of supervised 
classification. When adding new points to the training set, the augmented training set 
needs to be re-scaled again. There is no distance or similarity metric (the core metric 
used in clustering algorithms, be it K-NN, centroid or hierarchical clustering) that will 
consistently preserve the initial clustering structure after adding new points and re-
scaling. See exercise in the last paragraph for a (failed) attempt to build such a 
distance. However, see my article on scale-invariant variance, which leads to a very 
weird kind of "variance" concept.    
 
6.2. Scale-invariant regression 
 

By design, linear regression is, in some way, scale-invariant. The fact is intuitive and 
certainly very easy to prove, and it is illustrated in our spreadsheet (see next section.) In 
short, if you multiply one or more dependent variable by a factor (which amounts to re-
scaling them) then the corresponding regression coefficients will be inversely re-scaled 
by the same factor. To put it differently, if one dependent variable is measured in 
kilometers, and its attached regression coefficient is (say) 3.7, then if you change the 
measurement from kilometers to meters, its regression coefficient will change from 3.7 
to 3.7 / 1000. This makes perfect sense, yet I don't remember having learned this fact in 
college classes nor textbooks. 

Note that this works only if the re-scaling is linear. If you use a logarithm transformation 
instead, then this property is lost. Some authors have developed rank-
regression techniques to handle non-linear re-scaling, using the same approach as in 
the previous section on clustering.  
 
6.3. Excel spreadsheet with computations 
 
To download the spreadsheet with the computations, click here. Probably the most 
interesting feature of the spreadsheet is to help you learn how to do linear regression in 
Excel, and how to produce scatter-plots with multiple clusters as in the above figure.  
 
It is interesting to note that the 5 points in the above figure were all generated using 
random deviates on [0, 1] with the Excel function RAND(). Despite being "random", 
these points seem to exhibit a structure made of two clusters. This is a typical result: 
random points always exhibit some patterns (in particular, weak clustering, holes, weak 
linear structures and twin points.) See for instance section 7 in chapter 28. It is possible 
to test if these structures found in any data set are weak enough, yet not too weak, 
given the size of the data set, to assess whether it is a result of natural patterns found in 
randomness, or not. The easiest way to test this is by using Monte-Carlo simulations. If 
the points were too evenly distributed, they would not be the result of a random 
distribution. 
 

https://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248265/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248265/
https://api.ning.com/files/3CXp1I4JAHMANoCX9O2MRLNAwcMreGwFRvZetvZXFaE*5gu4ZcoP*xJh6mnVJm4KZNbVOtYTRT5kAat13vApMKgmrA7J1TeI/ScaleInvariantClusteringLinearregression4.xlsx
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-
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So in the above figure, the two apparent clusters are an artifact or an optical illusion, 
and cannot be explained by any causal model. Repeat this experiment a thousand 
times, and you will find similar clusters in a majority of your simulations. 

 
Exercise 
 
Let's try to create a scale-invariant distance d between two points x = (x1, x2) and y = 
(y1, y2) using this formula: 

 
Prove the following:  

 
and is thus not scale-invariant. It is proportional to the infinity norm distance. How does 
it generalize to more than two variables? Note that the the supremum in the first formula 
is attained either with (a, b) = (1, 0) or (a, b) = (0, 1). The case (a, b) = (1, 1) 
corresponds to the classic Euclidean distance.   
 
 

7. Blending data sets with non-compatible fields 
 
Add consistency to your metrics! We are all too familiar with metrics that change over 
time and result in inconsistencies when comparing the past to the present, or when 
comparing different segments with incompatible measurements. This trick will allow you 
to design systems where again, apples are compared to other apples, not to oranges.  
 
Here we describe a simple methodology to produce predictive scores that are 
consistent over time and compatible across various clients, to allow for meaningful 
comparisons and consistency in actions resulting from these scores, such as offering a 
loan. Scores are used in various contexts, such as web page rankings in search 
engines, credit score, risk score attached to loans or credit card transactions, the risk 
that someone might become a terrorist, and more. Typically a score is a function of a 
probability attached to some particular future event. They are built using training sets. 

The reasons why scores can become meaningless over time is because data evolves. 
New features (variables) are added that were not available before, the definition of a 
metric is suddenly changed (for instance, the way income is measured) resulting in new 
data not compatible with prior data, and faulty scores. Also, when external data is 
gathered across multiple sources, each source may compute it differently, resulting in 
incompatibilities: for instance, when comparing individual credit scores from two people 
that are costumers at two different banks, each bank computes base metrics (income, 
recency, net worth, and so on) used to build the score, in a different way. Sometimes 
the issue is caused by missing data, especially when users with missing data are very 
different from those with full data attached to them. 

 

https://api.ning.com/files/ljeCieAKH-4lIiV67w2FUZUv6IKpUiXJ3qsrPby2svHN-chuNxPQBXggvvnifFkgDHsF3ZVLlXbJfBjDDtMghQioUcz61ilV/Capture.PNG
https://api.ning.com/files/ljeCieAKH-6G3sIzEs2WIZNlCSGNZPzsK0Tq5JmHE8fqw7HzPXq25LfAwM4JQupraEsATWHf9NesXVZkYBVIvzmCy*hKceqs/Capture.PNG
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Methodology 
 

The idea to solve this problem is pretty simple. Let's say that you have two sets of data 
A and B, for instance corresponding to two different time periods: before, and after a 
change in the way the data is gathered or the scores are computed. Accordingly, you 
have two types of scores: S(A), computed on A, and T(B), computed on B. You proceed 
as follows. 

 Compute the scores T(A) on A, using the scoring system T. 
 Calibrate T on A; let Z be the calibrated score. Z might be a simple 

transformation (mapping) of T, so that Z(A) and S(A) have same mean (or 
median) and same variance. You can calibrate using more than two parameters, 
for instance, you might also want the kurtosis and/or skewness to be preserved.  

 The new score to use moving forward, also called re-scaled score, is Z. It is 
compatible with the previous score S. 

 Keep a log of all the changes happening to your score over time (for instance, 
the change from S to T, followed by transforming T into Z. This is similar to 
versioning in software development. 

 

You can make it more robust if there is a transition period between A and B, when both 
scores S and T can be computed on overlapping data. This is the case if the score S 
can still be computed (in parallel with T) exactly up to 3 months after the score T was 
introduced.  

An example of how this works in practice is given in chapter 2, in a very similar context. 
In that article, I discuss a scoring algorithm that blends two sub-scoring procedures, for 
increased performance: one based on robust decision trees (applying to a subset of the 
data set, say A), and one based on robust regression (see chapter 1.) Some data (say 
B) cannot be properly scored using the decision trees, and must be scored with the 
regression. You then apply the regression-based scoring to the whole data set, and 
then re-scale the score derived from the regression, so that it produces scores 
compatible with those generated with decision trees, on A. Moving forward, whether you 
have to use decision trees or regression, you get a consistent score everywhere. A 
detailed implementation with Excel spreadsheet and source code is available in chapter 
3.  
 
For more on this scoring technology, with application to scoring internet traffic 
(measuring its quality depending on the traffic source) read my technical article 
(PDF), here. Score preservation is discussed pages 22-26. Or you might want to check 
my patent on this topic, here.  
 

8. Automated exploratory data analysis 
 
Creating a data dictionary is the first exploratory step when dealing with a new data set. 
Here we explain how to do it. A data dictionary offers the following advantages: 
 

https://storage.ning.com/topology/rest/1.0/file/get/1143470722?profile=original
https://patents.justia.com/patent/20150161661
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 Identify areas of sparsity and areas of concentration in high-dimensional data 
sets 

 Identify outliers and data glitches 
 Get a good sense of what the data contains, and where to spend time (or not) in 

further data mining 
 

What is a data dictionary? 
 
A data dictionary is a table with 3 or 4 columns. The first column represents a label: that 
is, the name of a variable, or a combination of multiple (up to 3) variables. The second 
column is the value attached to the label: the first and second columns actually 
constitute a name-value pair. The third column is a frequency count: it measures how 
many times the value (attached to the label in question) is found in the data set. You 
can add a 4-th column that tells the dimension of the label (1 if it represents one 
variable, 2 if it represents a pair of two variables etc.) 
 
Typically, you include all labels of dimension 1 and 2 with count > threshold (e.g. 
threshold = 5), but no or only very few values (the ones with high count) for labels of 
dimension 3. Labels of dimension 3 should be explored after having built the dictionary 
for dim 1 and 2, by drilling down on label/value of dim 2 that have a high count. 
 
Example of dictionary entry 
 
Look at the following entry: 
 

category~keyword | travel~Tokyo | 756 | 2 

 
In this example, the entry corresponds to a label of dimension 2 (as indicated in column 
4), and the simultaneous combination of the two values (travel, Tokyo) is found 756 
times in the data set. 
 
The first thing you want to do with a dictionary is to sort it using the following 3-dim 
index: column 4, then column 1, then column 3. Then look at the data and find patterns. 
 
How do you build a dictionary? 
 
Browse your data set sequentially. For each observation, store all label/value of dim 1 
and dim 2 as hash table keys, and increment count by 1 for each of these label/value. In 

Perl, it can be performed with code such as $hash{"$label\t$value"}++.  

 
If the hash table grows very large, stop, save the hash table on file then delete it in 
memory and resume where you paused, with a new hash table. At the end, merge hash 
tables after ignoring hash entries where count is too small. 
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9. Simple solution to feature selection problems 
 
We discuss a new approach for selecting features from a large set of features, in an 
unsupervised machine learning framework. In supervised learning such as linear 
regression or supervised clustering, it is possible to test the predicting power of a set of 
features (also called independent variables by statisticians, or predictors) using metrics 
such as goodness of fit with the response (the dependent variable), for instance using 
the R-squared coefficient. This makes the process of feature selection rather easy. 

Here this is not feasible. The context could be pure clustering, with no training sets 
available, for instance in a fraud detection problem. We are also dealing with discrete 
and continuous variables, possibly including dummy variables that represent categories, 
such as gender. We assume that no simple statistical model explains the data, so the 
framework here is model-free, data-driven. In this context, traditional methods are 
based on information theory metrics to determine which subset of features brings the 
largest amount of information. 

A classic approach consists of identifying the most information-rich feature, and then 
grow the set of selected features by adding new ones that maximize some criterion. 
There are many variants to this approach, for instance adding more than one feature at 
a time, or removing some features during the iterative feature selection algorithm. The 
search for an optimal solution to this combinatorial problem is not computationally 
feasible if the number of features is large, so an approximate solution (local optimum) is 
usually acceptable, and accurate enough for business purposes. 

 
Review of popular methods 
 

We focus here on the metric used to assess how information-rich a feature (or a set of 
features) is, as this is the key to find the best features in your data set. Features may be 
be correlated, or redundant. The same is true with observations. 

A fairly comprehensive review on this topic can be found here. The simplest, probably 
oldest metric to measure the quantity of information associated with a feature, is the 
Shannon entropy, see here. It can be extended to measure the quantity of information 
associated with a set of features, see this article on joint entropy. However, this applies 
to discrete features only. It has also been generalized to continuous features: it is then 
called differential entropy. However this metric is scale-dependent, and model-
dependent. Though in practice, in a model-free context, any statistical distribution can 
be replaced by the empirical distribution computed on the observations, or using the 
observed empirical percentiles.  
 
Another popular metric is the Akaide information criterion. It was introduced in 1973, in 
what became one of the most popular scientific articles of all times -- in the top 100 
citation index as of 2014. However, it is related to the likelihood function, and thus 
model-dependent. Related and somewhat equivalent to this criterion is the Kullback-
Leibler divergence, but again having the same issue of being model-dependent.  

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Joint_entropy
https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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In my more recent article on fast combinatorial feature selection (see chapter 5 and 
my Wiley book, page 224) I propose a data-driven, synthetic metric, called the 
predictive power of a feature. 
 
 
New idea for feature selection 
 

The idea is to add an artificial dependent variable (the response) to your data set, and 
perform feature selection as if you were dealing with a linear regression problem. That 
is, the criterion to select the features, would be based on a metric such as the residual 
error or R-squared, rather than using some kind of entropy metric. In short, you turn 
your problem into a problem of model fitting in a predictive analytics setting, which is 
easier. Another benefit is that the residual error or R-squared is not sensitive to changes 
in scale (re-scaling some variables) in your data set. Categorical variables such as 
gender can be replaced by dummy variables taking two values: 0 and 1. It also easily 
allows for cross-validation, selecting the features based on a subset of observations 
(the training set) and testing performance on the remaining data (the control set.) 

All the regression coefficients could be set to 1 in the full model (involving all the 
features) to build the artificial response. Goodness-of-fit (e.g. R-square) is measured 
when an actual regression is performed on a subset of features. Features can be added 
one at a time as long as the goodness-of-fit metric continue to improve significantly 
when adding new features (by selecting features most efficiently accomplishing this 
goal), until you reach a pre-set, usually small number of "optimal" features.  

Or you could test a large number of randomly generated regression coefficients for the 
response (via Monte Carlo simulations), and focus on those sets of regression 
coefficients that provides the best (or good enough) fit on a small set of features, still 
using the same goodness-of-fit criterion at each iteration, when selecting a new feature. 

 
Testing on a dataset with known theoretical entropy  
 
We illustrate here the concept explained in the previous section, on an artificial data set 
with known theoretical entropy attached to each feature. For simplicity, the data set has 
only two features. The data set consists of the first n = 47 digits of two numbers X1 
and X2, expressed in two different bases: the digits of X1 in base b1, and the digits of X2 
in base b2. The theoretical entropy attached to each feature is proportional to the 
logarithm of the base used for the feature in question. Using a number of digits (the 
number of observations) n larger than 50 causes accuracy issues (wrong digits) unless 
one uses high precision computing. This is discussed in details in my book Applied 
Stochastic Processes, Chaos Modeling, and Probabilistic Properties of Numeration 
Systems: see chapter 11. 
 

We selected two numbers and bases causing some noticeable correlation between the 
two features, in order to better simulate a realistic data set. Auto-correlations within 
each feature were also strong. Our parameters are: 

https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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X1 = log(3/2) , X2 = 2-1/2, b1 = 1.7, b2 = 2.0. 
 

Note that by using very large bases, you could produce observations (digits) that are 
very long, simulating actual continuous data, as opposed to binary data in this example. 
But then, you face again the accuracy issue (correctly computing the digits) described 
above. 

Even with this small dataset, the classical Shannon entropy computed on the dataset, is 
equivalent to the theoretical entropy, in terms of deciding which feature is best. We also 
created an artificial response Y as discussed in the previous section, namely 
 

Y = a1 Feature1 + a2 Feature2 
 
with the regression coefficients a1 and a2 set to 1. 
 
We then computed the correlations c1 between Y and Feature1, and c2 between Y and 
Feature2. In most cases (we tested with various numbers and various bases) the 
highest correlation corresponds to the feature with the highest entropy, thus proving 
compatibility with an entropy-based approach on a data set with no dependent variable. 
In the few cases where this was not true, it was because the bases b1 and b2 were very 
close to each other, and the entropy values almost identical for the two features. Even 
in that case, the two correlations were also very close to each other. In that case, 
picking one feature over the other does not make a difference. Moreover, the approach 
discussed here is model-free, data-driven. Also unlike data reduction techniques such 
as PCA (principal component analysis) or data compression, this approach preserves 
the original features: it does not transform and recombine them, making it easier for 
interpretation purposes. 
 
You can download the spreadsheet with the simulated data set and all computations, 
here.  
 

10. Coefficient of Correlation for Non-Linear Relationships 
 
What is the best correlation coefficient R(X, Y) to measure non-linear dependencies 
between two variables X and Y? Let's say that you want to assess whether there is a 
linear or quadratic relationship between X and Y. One way to do it is to perform a 
polynomial regression such as Y = a + bX + cX2, and then measure the standard 
coefficient of correlation between the predicted and observed values. How good is this 
approach?  

 
Note that the proposed correlation coefficient R(X, Y) is not symmetric. One way to get 
a symmetric version, is to use the maximum between | R(X, Y) | and | R(Y, X) |. It will be 
equal to 1 if and only if there is an exact polynomial or inverse polynomial relationship 
between X and Y.  
 

https://api.ning.com/files/6gAXkIKqqEpxI7GqnEvtvtDlXmCT*KA7APl1YMM8Cxg74qBc43sNS0fh*nNrrkotulgCSlf*Ui3vXPGhSDbqZhmQ3MqaTjU1/pi3.xlsx
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Note: For the model Y = a + bX + cX2, the "inverse polynomial" model would be 
X = a' + b'Y + c'Y2. So, R(X, Y) is computed on the first regression, while R(Y, X) is 
computed on the second (reversed, also called dual) regression.  
 
Discussion 
 
An issue with my approach is the risk of over-fitting. If you have n observations 
and n coefficients in the regression, my correlation will always be 1. 
 

There are various ways to avoid this problem, for instance: 

 Use a polynomial of degree 2 maximum, regardless of the number of 
observations. 

 Use much smoother functions than polynomials, for instance functions that have 
one extremum (maximum or minimum) at most, and growing not faster than a 
linear function. Even in that case, use a small number of coefficients in the 
regression, maybe log(log n) where n is the number of observations. 

 
The correlation coefficient in question can also be used for model selection: The best 
model would provide the correlation closest to 1. 
 

11. Choosing a regression model 
 
Should you use linear or logistic regression? In what contexts? There are hundreds of 
types of regressions. Here is an overview for data scientists and other analytic 
practitioners, to help you decide on what regression to use depending on your context. 
Many of the referenced articles are much better written (fully edited) in my data science 
Wiley book. 
 

 Linear regression: Oldest type of regression, designed 250 years ago; 
computations (on small data) could easily be carried out by a human being, by 
design. Can be used for interpolation, but not suitable for predictive 
analytics; has many drawbacks when applied to modern data, e.g. sensitivity to 
both outliers and cross-correlations (both in the variable and observation 
domains), and subject to over-fitting. A better solution is piecewise-linear 
regression, in particular for time series. 

 Logistic regression: Used extensively in clinical trials, scoring and fraud 
detection, when the response is binary (chance of succeeding or failing, e.g. for a 
new tested drug or a credit card transaction). Suffers same drawbacks as linear 
regression (not robust, model-dependent), and computing regression coefficients 
involves using complex iterative, numerically unstable algorithm. Can be well 
approximated by linear regression after transforming the response (logit 
transform). Some versions (Poisson or Cox regression) have been designed for a 
non-binary response, for categorical data (classification), ordered integer 
response (age groups), and even continuous response (regression trees). 

https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
http://www.analyticbridge.com/profiles/blogs/the-8-worst-predictive-modeling-techniques
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 Ridge regression: A more robust version of linear regression, putting constraints 
on regression coefficients to make them much more natural, less subject to over-
fitting, and easier to interpret. Click here for source code. 

 Lasso regression: Similar to ridge regression, but automatically performs variable 
reduction (allowing regression coefficients to be zero).  

 Ecologic regression: Consists in performing one regression per strata, if your 
data is segmented into several rather large core strata, groups, or bins. Beware 
about the curse of big data in this context: if you perform millions of regressions, 
some will be totally wrong, and the best ones will be overshadowed by noisy 
ones with great but artificial goodness-of-fit: a big concern if you try to identify 
extreme events and causal relationships (global warming, rare diseases or 
extreme flood modeling). See also chapter 27. 

 Regression in unusual spaces: click here for details. Example: to detect if 
meteorite fragments come from a same celestial body, or to reverse-engineer 
Coca-Cola formula. 

 Logic regression: Used when all variables are binary, typically in scoring 
algorithms. It is a specialized, more robust form of logistic regression (useful for 
fraud detection where each variable is a 0/1 rule), where all variables have been 
binned into binary variables. 

 Bayesian regression: see entry in Wikipedia. It's a kind of penalized likehood 
estimator, and thus somewhat similar to ridge regression: more flexible and 
stable than traditional linear regression. It assumes that you have some prior 
knowledge about the regression coefficients and the error term - relaxing the 
assumption that the error must have a normal distribution (the error must still be 
independent across observations). However, in practice, the prior knowledge is 
translated into artificial (conjugate) priors - a weakness of this technique. 

 Quantile regression: Used in connection with extreme events, read Common 
Errors in Statistics page 238 for details. 

 LAD regression: Similar to linear regression, but using absolute values (L1 space) 
rather than squares (L2 space). More robust, see also our L1 metric to assess 
goodness-of-fit (better than R2) and our L1 variance (one version of which is 
scale-invariant). 

 Pseudo linear regression: This regression technique described in chapter 1 is 
also used as general clustering and data reduction technique. It solves all the 
drawbacks of traditional regression. It provides an approximate, yet very 
accurate, robust solution to regression problems, and work well with 
“independent” variables that are correlated and/or non-normal (for instance, data 
distributed according to a mixture model with several modes). Ideal for black-box 
predictive algorithms. It approximates linear regression quite well, but it is much 
more robust, and work when the assumptions of traditional regression (non-
correlated variables, normal data, homoscedasticity) are violated. 

 
 
 
 
 

http://www.analyticbridge.com/profiles/blogs/2004291:BlogPost:3920
https://stats.stackexchange.com/questions/866/when-should-i-use-lasso-vs-ridge
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
http://www.analyticbridge.com/forum/topics/linear-regression-on-an-usual-domain-hyperplane-sphere-or-simplex
https://en.wikipedia.org/wiki/Bayesian_linear_regression
http://www.analyticbridge.com/group/books/forum/topics/book-common-errors-in-statistics-4th-edition
http://www.analyticbridge.com/group/books/forum/topics/book-common-errors-in-statistics-4th-edition
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
https://www.datasciencecentral.com/group/research/forum/topics/a-synthetic-variance-designed-for-hadoop-and-big-data
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Other Solutions 
 

 Data reduction can also be performed with our feature selection algorithm 
(chapter 5.) 

 It's always a good idea to blend multiple techniques together to improve your 
regression, clustering or segmentation algorithms. An example of such blending 
is described in chapter 2.  

 Categorical independent variables such as race are sometimes coded using 
multiple (binary) dummy variables. 

 
Before working on any project, read the lifecycle of a data science project (section 13, 
chapter 28.) 
 

12. Growth modeling with Excel 
 
You don't need a sophisticated model nor advanced machine learning techniques to 
quickly get a high level picture and trends for bottom-line business metrics. Not only the 
concepts explained here are easy to grasp, but while being high level, it nevertheless 
includes granular effects. The methodology presented here was used in business 
contexts in the past, when I was working with enterprise executives, particularly finance 
people, to assess the overall health of their business, and the short and long term 
impacts of new initiatives to boost growth. . 

The model is available as an Excel spreadsheet, driven by four main parameters, as 
illustrated below. The growth can be in revenue, users, or any other fundamental metric. 
Time periods are measured in days when assessing the impact of an advertising 
campaign, or in months when assessing revenue growth caused by a new initiative. It 
typically involves the following dynamic: 

 New growth occurs at each time period, for instance new users. 
 It accumulates over time: new users become regular users, some of them 

eventually disappear -- this can be factored in in the growth curve. 
 There is usually a time lag between an action and a reaction:  the effect of TV 

advertising campaigns may peak after a while (not immediately) and eventually 
decay.  

You can play with these factors separately in the spreadsheet, and even having your 
data science team track them separately: these are the model components. If the 
growth is due to more than one action (for instance multi-channel advertising), you 
might want to use attribution modeling techniques to separate the different sources and 
avoid double counting: see here for details. Some parameters may change over time, 
as you approach market saturation, of return on advertising may slow down over time if 
the campaigns and targeting are left unchanged: see the saturation parameter in the 
spreadsheet. Finally, some parameters can be adjusted for seasonality or holidays.  

https://www.analyticbridge.datasciencecentral.com/profiles/blogs/attribution-modeling/
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Explanation 
 

The two main columns are A and B, representing time and total revenue per time 
period. At each time period (columns E, F, and so on) new users are added, resulting 
from advertising efforts. They appear over the course of several time periods (for 
instance, cells E5 to E23 for the first batch of new users, corresponding to day 1 of your 
advertising campaign) and the number decays exponentially over time. 

There is some erosion (saturation) in the advertising effectiveness: this is why E5 > F6 
> G7 and so on. In addition, the revenue is delayed: this explains why columns C and D 
are different. But the sums over columns C and D are identical. Finally, there is attrition, 
which is incorporated in column B.  

https://storage.ning.com/topology/rest/1.0/file/get/2854390268?profile=original
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Growth curve corresponding to the above table (X-axis is the time period) 

 
Parameters 
 

The parameters are chosen to match the growth curve with actual data (past data, or 
training data.) Then the growth numbers are automatically computed for the future, as in 
the spreadsheet. You should work with BI analysts or data scientists to make sure that 
all the numbers and projections are sound. The parameters are found in the Parameter 
tab in the spreadsheet, and you can fine-tune them to automatically adjust the chart. 
The parameters are: 

 Saturation: To model decline in advertising effectiveness, over time. 
 Decay: Advertising done during one time period has impact over several time 

periods, with a decaying effect. 
 Attrition: Proportion of users dying during any time period. 
 Time lags: Revenue resulting from one column (advertising done during a 

specific time period) is spread over several rows (it is time-delayed).   

 
The campaign to boost your metric starts at period 1 (row 5 in the spreadsheet.) You 
can download the spreadsheet here. See also chapter 23. For a more technical 
presentation (fitting a growth curve with the logistic distribution), see a SAS article here. 
Our spreadsheet can model a large spectrum of growth scenarios, more than usually 
available in statistical packages.   
 

13. Interesting charts 
 
Hexagonal binning communicates the same insights as a contour plot. What is 
interesting is the choice of hexagonal buckets (rather than squares) to aggregate data. 
In fact, any tessellation would work, in particular Voronoi tessellations. 

https://storage.ning.com/topology/rest/1.0/file/get/2854422375?profile=original
https://blogs.sas.com/content/iml/2018/10/10/fit-growth-curve-sas.html
https://www.google.com/search?q=tessellation&biw=1255&bih=668&source=lnms&tbm=isch&sa=X
http://mathworld.wolfram.com/VoronoiDiagram.html
https://storage.ning.com/topology/rest/1.0/file/get/2854435190?profile=original
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3-D Voronoi tessellation  

 
The reason for using hexagons is that it is still pretty simple, and when you rotate the 
chart by 60 degrees (or a multiple of 60 degrees) you still get the same 
visualization.  For squares, rotations of 60 degrees don't work, only multiples of 90 
degrees work. Is it possible to find a tessellation such that smaller rotations, say 45 or 
30 degrees, leave the chart unchanged? The answer is no. Octogonal tessellations 
don't really exist, so the hexagon is an optimum.  
 

 
Hexagonal binning plots (source: here) 

 
 
 

https://www.google.com/search?q=octagonal+tessellation
https://datavizproject.com/data-type/hexagonal-binning/
https://storage.ning.com/topology/rest/1.0/file/get/2855422186?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2855432732?profile=original
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Implementation in R 
 

The three plots described here (Voronoi diagram, hexagonal binning and contour plots) 
are available in the ggplot2 package. 

 Hexagonal binning: ggplot function with the parameter stat_binhex, see here 

 Contour plot: ggplot function with the parameter geom_density2 or stat_contour, 
see here  (also works with contour) 

 Voronoi diagram: ggplot with the parameter geom_segment, see here 
 
Applications 
 

Voronoi diagrams can be used for nearest neighbor clustering or density estimation, the 
density estimate attached to a point being proportional to the inverse of the area of the 
Voronoi polygon containing it. 

 

 
Example of contour map (see chapter 26) 

 

14. Simplified logistic regression 
 
Logistic regression is typically used when the response Y is a probability or a binary 
value (0 or 1). For instance, the chance for an email message to be spam, based on a 
number of features such as suspicious keywords or IP address.  In matrix notation, the 
model can be written as 

 

https://ggplot2.tidyverse.org/reference/geom_hex.html
https://www.r-statistics.com/2016/07/using-2d-contour-plots-within-ggplot2-to-visualize-relationships-between-three-variables/
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
https://letstalkdata.com/2014/05/creating-voronoi-diagrams-with-ggplot/
https://storage.ning.com/topology/rest/1.0/file/get/2855467134?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2871490159?profile=original
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where X is the observations matrix, b is the parameter vector that needs to be 
estimated, and e is a white noise. The first order approximation around zero, in the 
above Taylor series expansion, yields 
 

4Y - 2 = bX + e. 
 
If instead of the logistic function, you use a different one, you would still get the same 
first-order approximation in general. Replacing 4Y - 2 by Z, we are left with a standard 
linear regression. When the response is binary (1 = spam, 0 = not spam), the technique 
can be further refined by introducing an extra parameter q called the threshold. The final 
estimate for a particular observation (an email with its set of attributes) is set to 1 
(spam) if its Z value is larger than q, and to 0 (normal email) otherwise. By default, q= 0, 
but you could choose q to achieve the best classification of your training set (on the test 
set used in a cross-validation setting.) The correctness of the method can be measured 
for instance as a weighted proportion of false positives and false negatives. 
 
The methodology can easily be extended to more than 2 classes, using multiple 
thresholds parameters and proper labeling (for instance: 3 for scam, 2 for spam, 1 for 
low priority email, 0 for normal email.) Even though the technique is not model-driven, 
confidence intervals can still be built using re-sampling techniques 
described here and here. In particular, it is possible to tell whether an email is very 
highly likely to be spam, or whether there is some non-conclusive evidence that it might 
be spam, based on the distance (its empirical distribution computed via re-sampling) 
between the observed Z and the threshold q.   
 

It would be interesting to compare this method with a standard logistic regression, to 
see, using a confusion matrix, the differences (if any) in the way the messages are 
classified. More importantly, it would be useful to test when the approximated solution is 
not as good as the exact solution.  

Other techniques to perform this type of clustering include neural networks, naive 
Bayes, and hybrid models (combining multiple techniques, see chapter 2.) 
 
 
  

https://www.datasciencecentral.com/profiles/blogs/modern-re-sampling-and-statistical-recipes
https://www.datasciencecentral.com/profiles/blogs/confidence-intervals-without-pain
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26. Dealing with Outliers 

In addition to managing outliers in various machine learning problems, you will learn in 
this chapter how to simulate realistic cluster structures, make contour plots and other 
visualizations in R, and assess the convergence of an algorithm. 

Here, we discuss a general framework to drastically reduce the influence of outliers in 
most contexts. It applies to problems such as clustering (finding centroids,) regression, 
measuring correlation or R-Squared, and many more. We will focus on the centroid 
problem here, as it is very similar and generalizes easily to solving a linear regression. 
The correlation / R-Squared issue was discussed in an earlier article and involves only a 
change of formula. Clustering and regression are more complex problems involving 
iterative algorithms.   
 
This chapter also features interesting material for future data scientists, such as  
 

 Several outlier detection techniques  

 How to display contour maps and images corresponding to an intensity function or 
heatmap, in R (in just a few lines of code, and very easy to understand) -- see 
section 5 below 

 How to produce data sets that simulate clustering structures or other patterns  

 Distribution of arrival times for successive records in a time series 

 

1. General Framework 
 
We discuss replacing techniques used by statisticians, based on optimizing traditional 
L2 metrics such as variance, by techniques based on Lp metrics, which are more robust 
when 1 < p < 2. The case p = 2 corresponds to the traditional framework. Throughout 
this chapter, p is referred to as the power. The regression and centroid problems being 
equivalent, we focus here on finding a centroid using the Lp criterion (denoted as H), 
and we show how to modify it for regression problems. Illustrations are in a 2-
dimensional space (d = 2) but easily generalize to any dimension, especially as we are 
not using any matrix inversions to solve the problem.  
 
Finding a robust centroid 
 
The focus here is on finding the point that minimizes the sum of the "distances" 
to n points in a d-dimensional space, called centroid or center, especially in the 
presence of outliers.  
 
The sum of "distances" between an arbitrary point (u, v) and a set S = { (x1, y1) ... (xn, 
yn) } of n points is defined as follows: 

http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
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where e is a very small positive quantity, equal to zero unless p is negative. 
 
The function H has one parameter p called power, and when p = 2, we are facing the 
traditional problem of finding the centroid of a cloud of points: in this case, the solution is 
the classic average of the n points. This solution is notoriously sensitive to outliers. 
When 1 < p < 2, we get a more stable solution, less sensitive to outliers, yet when n is 
large (> 20) and the proportion of outliers is small (by definition it is always small!), the 
solution is pretty much the same regardless of p (assuming 1 < p < 3). 
 
In short, what we want to build a robust measure of centrality in any dimension, just like 
the median which is a robust measure of centrality in dimension d = 1. 
 
Generalization to linear regression problems 
 
The same methodology can be used for regression. With 2 parameters u and v as in Y 
= uX + v, the function H becomes 
 

 
 
again with e = 0 if p > 0. It generalizes easily to more than 2 parameters u, v.  
 
General outlier detection techniques 
 

Our proposed method smooths out the impact of outliers rather than detecting them. For 
outlier detection and removal, you can use one of these methods: 

 Using traditional centrality measures and eliminating the points farthest away 
from the center, then re-computing the center and proceeding iteratively with 
eliminating newly found outliers until stability is reached. 

 Using the median both for the x- and y-coordinates, rather than the average. 
 The leaving-one-out technique consists of computing the convex hull of your data 

set S, then removing one point at a time, and re-computing the convex hull after 
removing the point in question. The point resulting in the largest loss of volume in 
the convex hull, when removed, corresponds to the strongest outlier. 

 Identifying points of lowest density using density estimation techniques (see 
section 5 in chapter 28.) 

 Nearest neighbor distances: a point far away from its nearest neighbors is 
potentially an outlier. Compute all nearest neighbor distances and look for the 
most extremes.  
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Another way to attenuate the impact of outliers is to use a weighted sum for H, that is (in 
the case of the regression problem) to use the formula 

 
 
where q(k) is the weight attached to point k. In this case, a point with low density is 
assigned a smaller weight. 
 
To read more about outlier detection, click here.  
 
A related physics problem 
 
When p < 0, and especially when p = -2, maximizing or minimizing H becomes an 
interesting physics problem of optimizing a potential H. The centroid problem is now 
equivalent to finding the point of maximum or minimum light, sound, radioactivity, or 
heat intensity, in the presence of an energy field produced by n energy source 
points. Both problems are closely related and use the same algorithm to find solutions. 
 
However, the case p < 0 has no practical value to data scientists or statisticians (as far 
as I know) and it presents the following challenges: 
 

 If (u, v) is a point of S and p < 0, then H((u,v), S; p) is infinite: we have 
singularities. This is dealt with by introducing the very small constant e > 0 in the 
definition of H. This quantity is used to address the fact that in the real world, no 
source of energy is a point with an area of zero and positive (but finite) intensity. 
This artifact of physics models is discussed here.  

 If you want to minimize H, there will be an infinite number of solutions, all located 
far outside the cloud of points S. Think about finding the point in the universe that 
receives the least amount of light from the solar system. So typically one is 
interested in finding a maximum, not a minimum (unless you put constraints on 
the solution, such as being located inside the convex hull of S.)  

 Even if searching for a maximum of H, the convergence may be slow and 
chaotic, as you can end up with several maxima (H is no longer a nice, smooth 
curve when p < 0.) 

 

2. Algorithm to find centroid when p > 1 
 
There are many algorithms available to solve this type of mathematical optimization 
problem. A popular class of algorithms is based on gradient descent and boosting. Here 
however, we use what is possibly the simplest algorithm. First it is easy to understand, 
still leads to some interesting research, is easy to replicate, and keep the focus on the 
concepts and the results associated with the centroids, rather than on a specific 
implementation. Second, with modern computers (even on my 10 years old laptop) the 
computing power is big enough that naive algorithms perform well. If you are OK with 
getting results accurate to two or three digits -- and in real life, many data sets, even 

https://www.datasciencecentral.com/page/search?q=outlier
https://physics.stackexchange.com/questions/275340/according-to-the-inverse-square-law-is-the-intensity-at-the-source-always-infin
https://www.datasciencecentral.com/page/search?q=gradient
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web analytics measured using two different sources, do not have higher accuracy -- 
then a rudimentary algorithm is enough. 
 
So here I used rudimentary Monte-Carlo to find the centroids. However, in higher 
dimensions (d > 3) be careful about the curse of dimensionality. Note that when p < 0, 
Monte Carlo is not that bad, as it allows you to visit and circle around several local 
minima. It is also easy to deploy in a Map-Reduce environment (Hadoop.) The algorithm 
is actually so simple that there is no need to describe it: the short, easy-to-read source 
code below (Perl) speaks for itself.  
 
Source code to generate points and compute centroid, using Monte Carlo 
 

Notes about the source code: 

 The first n points in the output file centroid.txt are the simulated sample points 
(random deviates on [0, 1] x [0, 1]. The last point is the centroid computed on the 
sample points. 

 Note that $seed (first line of code) is used to initiate the random generator and for 

reproducibility purposes. Also, I noticed that a value of $seed lower than 1,000 
causes the first random deviate generated to be biased (unusually small.) 

 The variable $sum stores, at each iteration $iter, the value of the function H that 
we try to minimize. 

 

Below is the source code. 

$seed=1000;  

srand($seed); 

$n=100; 

open(OUT,">centroid.txt"); 

 

for ($k=0; $k<$n; $k++) {  

  $x[$k]=rand();  

  $y[$k]=rand(); 

  print OUT "$x[$k]\t$y[$k]\n"; # one of the n simulated points 

} 

$power = 1.25;  # corresponds to p (the power) in the article 

$niter = 200000;  

$eps = 0.00001; # the "e" in the H function (see article) 

$min=99999999; 

for ($iter=0; $iter<$niter; $iter++) { 

  $u=rand();  

  $v=rand(); 

  $sum=0; 

  for ($k=0; $k<$n; $k++) {  

    $dist=exp($power*log($eps+abs($x[$k]-

$u)))+exp($power*log($eps+abs($y[$k]-$v)));  

    $sum+=$dist; 

  } 

  $sum = $sum/$n; 

  if ($sum < $min) {  

    $min=$sum; 

https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality


218 
 

    $x_centroid=$u; 

    $y_centroid=$v; 

  } 

} 

print OUT "$x_centroid\t$y_centroid\n"; 

close(OUT); 

 
Generating point clouds with simulation 
 
In the few lines of the source code (above), we generated points randomly distributed in 
the unit square [0, 1] x [0, 1] . In order to simulate outliers or more complicated 
distributions that represent real-life problems, one has to use more sophisticated 
techniques. Click here to get the source code to easily generate a cluster structure 
(illustrated in figure 1 below). 

 
Figure 1: example of simulated clustered point cloud 

 
More complex simulations (random clusters evolving over time) can be found here. 
Some simple stochastic processes can be simulated by first simulating random points 
(called centers) uniformly distributed in a rectangle, then, around each center, 
simulating a random number of points radially distributed around each center. Other 
techniques involve thinning, that is, removing some points after over-sampling a large 
number of points.  
 

3. Examples and results 
 
A few examples are provided in the next section to validate the methodology. In this 
section, rather than validation, we focus on showing its usefulness when 0 < p < 2, 
compared to the traditional solution consisting of using p = 2, found in all statistical 
packages. Note that the traditional solution (p = 2) was designed not out of practical 
considerations such as robustness, but because of its ease of computation at a time 
when computers did not exist, and data sets were manually built.  
 
To test the methodology, we created various data sets, introduced outliers, and 
computed the centroid using different values of p. The example shown in Figure 2, 

http://www.analyticbridge.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
http://www.analyticbridge.com/profiles/blogs/shooting-stars
http://storage.ning.com/topology/rest/1.0/file/get/2808323279?profile=original
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consisting of five points (bottom left) plus an outlier (top right) illustrates the 
performance. The six data points are in blue. The centroids, computed for p = 0.75, 
1.00, 1.25, 1.50, 1.75 and 2.00, are in red. The rightmost centroid corresponds to p = 2: 
this is the classic centroid. Due to the outlier, it is located outside the convex hull of the 
five remaining points, which is awkward. The leftmost centroid corresponds to p = 0.75 
and is very close to the traditional centroid obtained after removing the outlier. I also 
tried the values p = 0.25 and p = 0.50, but failed to obtain convergence to a unique 
solution after 200,000 iterations. 

 
Figure 2: the blue dots represent the data points, the red + the centroid  

(computed for 6 values of p) 
 
Note that the scale does not matter. Finally, using p < 2 does not fully get rid of the 
influence of the outlier, but instead, it reduces its impact when computing the centroid. 
To completely get rid of the outliers, a methodology using medians computed for the x- 
and y-axis, is more efficient. 
 
If you are wondering how to produce a scatter plot in Excel with two data sets (points 
and centroids) as in Figure 2, click here for instructions: it is easier than you think.  
 

4. Convergence of the algorithm 
 
Figure 3 shows the speed of convergence of the algorithm, using the same source code 
as in section 2 with p = 1.4. So you can replicate these results. In this case, the data set 
S consists of n = 100 points randomly (uniformly) distributed on [0, 1] x [0, 1]. 
 

About 10,000 iterations in the outer loop are needed to reach two digits of accuracy, 
and this requires a tiny fraction of a second to compute. This “10,000 iterations” is 
actually a rule of thumb for any Monte-Carlo algorithm used to find an optimum with two 
correct digits. Note that in Figure 3, only iterations providing an improvement over the 
current approximation of the centroid -- that is, iterations where the value of H is smaller 

https://superuser.com/questions/770150/plot-multiple-sets-of-x-y-data-on-a-single-chart
http://storage.ning.com/topology/rest/1.0/file/get/2808323584?profile=original
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than those computed in all previous iterations -- are displayed. A potential research 
topic is to investigate the asymptotic behavior of these “records”, in the example below 
occurring at iterations 0, 4, 12, 44, 109, 156, and so on. 

 
Figure 3: convergence of the algorithm (p = 1.4) 

 
Since the n = 100 simulated points were randomly (uniformly) distributed in [0, 1] x [0, 1] 
it is no surprise that the centroid found by the algorithm, after convergence, is very close 
to (0.5, 0.5). 
 
Indeed, we tried values of p equally spaced between 1.25 and 3.50, and in each case, 
the centroid found was also very close to (0.5, 0.5), see Figure 4. That includes the 
special case p = 2 (it is located somewhere on the chart below) corresponding to the 
classic average of the n points. Note that here, no outliers were introduced in the 
simulations. 
 

 
Figure 4: x- and y-coordinates of centroid, obtained with various values of p 

 

http://storage.ning.com/topology/rest/1.0/file/get/2808323746?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808323870?profile=original
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5. Interesting Contour Maps 
 
The following contour maps in Figure 5, produced with the contour function in R, show 
that as p gets closer to 0, the function H becomes more chaotic, exhibiting local minima. 
These charts were produced using a data set S consisting of n = 20 points randomly 
(uniformly) distributed on [0, 1] x [0, 1]. It is interesting to notice that, despite the random 
distribution of the n points, strong patterns emerge when p < 1 (the statistical 
significance of these patterns is weak though.) 
 

 
Figure 5A: Contour map for H, with n = 20 and p =2 

https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/contour.html
http://storage.ning.com/topology/rest/1.0/file/get/2808326436?profile=original
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Figure 5B: Contour map for H, with n = 20 and p = 0.50 

 

 
Figure 5C: Contour map for H, with n = 20 and p = 0.15 

 
You can also plot images of H, using the function image in R with a gray palette with 

300 levels of grey, using the command image(z, col = gray.colors(300)) where z is 

http://stat.ethz.ch/R-manual/R-devel/library/graphics/html/image.html
http://storage.ning.com/topology/rest/1.0/file/get/2808326561?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808336009?profile=original
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an m x m matrix (in R) representing values of H computed at m x m locations (here m = 
100 and n = 20.) 
 

The source code (in R) looks like this: 

 

  data<-read.table("c:/vincentg/math2r.txt",header=TRUE) 

  w<-data$H 

  z <- matrix(w, nrow = 100, ncol = 100, byrow = TRUE) 

  image(z, col = gray.colors(300))  

 

Here the file math2r.txt stores the m x m values of H sequentially in a one-column text 
file, row after row. The first row is the header (equal to H.) Note that in order to produce 

Figure 5, I used contour(z)rather than image(z, col = gray.colors(300)). In Figure 6 

I actually used the function image to display H values for p = 0.5: low values of H 
(corresponding to proximity to centroid) are in a darker color, and unlike the case p = 2, 
you can notice multiple local minima. Figure 6 is based on the same data as Figure 5B. 

The source code to produce the input file math2r.txt can be found here. 
 

 
Figure 6: H values displayed in an image using R (n = 20 and p = 0.5) 

 
As a bonus, below is Figure 7 corresponding to p = -2, which interestingly is very similar 
to p = 0.5 (see Figure 5B.) This value of p has tremendous applications in physics, as it 
corresponds to the inverse-square law. 

http://storage.ning.com/topology/rest/1.0/file/get/2808336123?profile=original
https://en.wikipedia.org/wiki/Inverse-square_law
http://storage.ning.com/topology/rest/1.0/file/get/2808336631?profile=original
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Figure 7: this time with p=-2 

  

  

http://storage.ning.com/topology/rest/1.0/file/get/2808337652?profile=original
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27. Strong Correlation Metric 

The simple strong correlation synthetic metric proposed in this chapter should be used 
whenever you want to check if there is a real association between two variables. 
 
In this chapter, the traditional correlation is referred to as the weak correlation, as it 
captures only a small part of the association between two variables. In short, our strong 
correlation (with a value between 0 and 1) is high (say above 0.80) if not only the weak 
correlation is also high (in absolute value), but when the internal structures (auto-
dependencies) of both variables X and Y that you want to compare, exhibit a similar 
pattern or correlogram.  
 
Yet this metric is simple and involves just one parameter a (with a = 0 corresponding 
to weak correlation, and a =1 being the recommended value for strong correlation). This 
setting is designed to avoid over-fitting.  
 
What makes two variables X and Y seem related is usually based on ordinary (weak) 
correlation. High strong correlation means that the two variables are really associated 
and share similar internal auto-dependencies and structure. To put it differently, two 
variables can be highly weakly correlated yet have no causal relationship (or see my 
Wiley book pages 165-168) with hidden factors explaining the link. An artificial example 
is provided below in figure 3. The strong correlation metric helps alleviate this issue, 
though it does not fix it. 
 

1. Definition of strong correlation 
 
Let's define 

 Weak correlation c(X, Y) as the absolute value of the ordinary correlation, with 
value between 0 and 1. This number is high (close to 1) if X and Y are highly 
correlated. I recommend using my rank-based, L1 correlation to eliminate 
problems caused by outliers. 

 c1(X) as the lag-1 auto-correlation in absolute value for X, that is, if X = (X1 ... Xn) 
then c1(X) = c(X1 ... Xn-1,  X2 ... Xn). 

 c1(Y) as the lag-1 auto-correlation for Y 
 d-correlation d(X, Y) = exp{ -a | log c1(X) - log c1(Y)| }, with possible adjustment if 

the numerator or denominator is zero; the parameter a must be positive or zero. 
Of course, d(X, Y) is in [0, 1], and close to 1 if X and Y have similar lag-1 auto-
correlations. 

 Strong correlation r(X, Y) = min(c(X, Y), d(X, Y)) 
 
Thus r(X, Y) is between 0 and 1, with 1 meaning strong similarity between X and Y, and 
0 meaning either dissimilar lag-1 auto-correlations for X and Y, or lack of old-fashioned 
correlation. 

https://www.datasciencecentral.com/forum/topics/correlation-vs-causation
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
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2. Comparison with traditional (weak) correlation 
 
When a = 0, weak and strong correlations are identical. Also the strong correlation r(X, 
Y) is symmetric and invariant under linear transformations (such as re-scaling) 
regardless of a.  We simulated more than 10,000 uniformly and independently 
distributed random variables Y each with n observations, and computed the correlation 
with an arbitrary variable X with pre-specified values. So you would expect all the 
correlations to be close to zero. In Figures 1 and 2 below, the horizontal axis represents 
c(X, Y) and the vertical axis d(X, Y). Note that r(X, Y) = min(c(X, Y), d(X, Y)). 
 

 
Figure 1: 10,000 (c(X,Y), d(X,Y) values computed on n = 9 observations.  

 

 
Figure 2: Same as figure 1, but here with n = 4.  

 
Many weak correlations are still well above 0.60 if you look at Figure 1.But few strong 
correlations are above 0.20. Figure 2 is more difficult to interpret visually because n is 

http://storage.ning.com/topology/rest/1.0/file/get/2808290831?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808291122?profile=original


227 
 

too small (n = 4), though the conclusion is similar and obvious if you check the results in 
the spreadsheet (see next section). In this example, a = 4. 
 

3. Excel spreadsheet with computations and examples 
 
The spreadsheet shows simulation of a variable X with n observations, stored in first 
row, with thousands of simulated Y's in the subsequent rows. There are two tabs: one 
for n = 4, and one for n = 9. For instance, in the n = 9 tab, column J represents the weak 
correlation c(X, Y), column M represents c1(Y), and column N represents the strong 
correlation r(X, Y). The parameter a is stored in cell P1, and summary stats are found in 
cells Q1:T12. The spreadsheet is a bit unusual in the sense that rows represent 
variables, and columns represent observations. Download the spreadsheet (about 20 
MB in compressed format.) 

 
 

Figure 3: The green series is highly “weakly correlated” but weakly  
“strongly correlated” to the blue and red series (a = 4) 

 
Confidence intervals for these correlations are easy to obtain, by running 10 times these 
simulations and see what min and max you get 
 

4. When to use strong versus weak correlation? 
 
The strong correlation is useful when comparing millions of small, local time series, for 
instance in the context of HFT (High Frequency Trading), when you try to find cross-
correlations with time lags among thousands of stocks. Note that a = 4 (as used in my 
spreadsheet) is too high in most situations, and I recommend a = 1, which has the 
following advantages: 
 

 Simplification of the formula for r(X, Y) 

 The fact that d(X, Y) is a raw un-transformed number, and thus likely to be more 
comparable with c(X, Y).  

 
In the spreadsheet, when n = 4 and a = 4, about 40% of all weak correlations c(X, Y) 
are above 0.60, while only 5% of strong correlations r(X, Y) are above 0.60. All the 
simulated Y's are uniform, random, independent variables, so it is a bit surprising to see 
so many strong but accidental (spurious) “weak correlations”. It happens because n is 
small. Even with n = 9, the contrast between weak and strong correlations are still 

http://datashaping.com/spuriouscorrel2.xlsx.gz
http://storage.ning.com/topology/rest/1.0/file/get/2808291474?profile=original
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significant. The strong correlation metric clearly eliminates a very large chunk of the 
spurious correlations, especially when a > 2. But it can eliminate true correlations as 
well, thus my recommendation to use a = 1, as a compromise. A high value for a has 
effects similar to over-fitting and should be avoided. 
 

5. Generalization 
 
It is possible to take into account and add auto-correlations of lag 1, 2, and so on to 
generalize the concept of strong correlation, but it may cause overfitting, except if we 
put decaying weights on the various lags.  
 
Also, it would be great to do this analysis on actual data, not just simulated random 
noise. Or even on non-random simulated data, using for instance the artificially 
correlated data set described in chapter 2 (section 2.) Finally there are other metrics 
available to measure other forms of correlations (for instance on unusual domains), see 
for instance my article on structuredness coefficient.   
 

6. Other synthetic metrics  
 
The strong correlation is a synthetic metric, and belongs to a family of synthetic metrics 
that I created over the last few years. Synthetic metrics are designed to efficiently solve 
a problem, rather than being crafted for their beauty, elegancy and mathematical 
properties: they are directly derived from data experiments (bottom-up approach) rather 
than the other way around (top-down: from theory to application) as in traditional 
science. Other synthetic metrics include: 
 

 Synthetic variance  
 Predictive power (see chapter 4) related to entropy (that is, information 

quantification), used for feature selection.  
 Robust correlation defined by an algorithm and closely related to the optimum 

variance metric discussed here. 
 Structuredness coefficient 
 Bumpiness coefficient 

http://www.analyticbridge.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
https://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://www.analyticbridge.com/profiles/blogs/correlation-and-r-squared-for-big-data
http://www.analyticbridge.com/profiles/blogs/structuredness-coefficient-to-find-patterns-and-associations
http://www.analyticbridge.com/profiles/blogs/three-classes-of-metrics-centrality-volatility-and-bumpiness
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28. Additional Topics 

In this chapter, we briefly cover a number of machine learning topics ranging from 
stochastic geometry to pattern recognition and extreme events. The first section is non-
technical but provides valuable information about what data science is about. ML stands 
for Machine Learning. 
 

1. Comparing ML, Data Science, AI, Deep Learning, and Statistics 
 
Here, I clarify the various roles of the data scientist, and how data science compares 
and overlaps with related fields such as machine learning, deep learning, AI, statistics, 
IoT, operations research, and applied mathematics. As data science is a broad 
discipline, I start by describing the different types of data scientists that one may 
encounter in any business setting: you might even discover that you are a data scientist 
yourself, without knowing it. As in any scientific discipline, data scientists may borrow 
techniques from related disciplines, though we have developed our own arsenal, 
especially techniques and algorithms to handle very large unstructured data sets in 
automated ways, even without human interactions, to perform transactions in real-time 
or to make predictions.  

 
1.1. Different Types of Data Scientists 
 
To get started and gain some historical perspective, you can read my article about 9 
types of data scientists, published in 2014, or my article where I compare data science 
with 16 analytic disciplines, also published in 2014.  
 

The following articles, published during the same time period, are still useful: 

 Data Scientist versus Data Architect 
 Data Scientist versus Data Engineer 
 Data Scientist versus Statistician 
 Data Scientist versus Business Analyst 

 
More recently (August 2016) Ajit Jaokar discussed Type A (Analytics) versus Type B 
(Builder) data scientist: 
 

 The Type A Data Scientist can code well enough to work with data but is not 
necessarily an expert. The Type A data scientist may be an expert in 
experimental design, forecasting, modelling, statistical inference, or other things 
typically taught in statistics departments. Generally speaking though, the work 
product of a data scientist is not "p-values and confidence intervals" as academic 
statistics sometimes seems to suggest (and as it sometimes is for traditional 
statisticians working in the pharmaceutical industry, for example). At Google, 

https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists
https://www.datasciencecentral.com/profiles/blogs/six-categories-of-data-scientists
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-data-architect
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-data-engineer
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-statistician
https://www.datasciencecentral.com/profiles/blogs/data-scientist-versus-business-analyst
https://www.datasciencecentral.com/profile/ajitjaokar
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Type A Data Scientists are known variously as Statistician, Quantitative Analyst, 
Decision Support Engineering Analyst, or Data Scientist, and probably a few 
more. 

 
 Type B Data Scientist: The B is for Building. Type B Data Scientists share some 

statistical background with Type A, but they are also very strong coders and may 
be trained software engineers. The Type B Data Scientist is mainly interested in 
using data "in production." They build models which interact with users, often 
serving recommendations (products, people you may know, ads, movies, search 
results). Source: click here. 

 
I also wrote about the ABCD's of business processes optimization where D stands for 
data science, C for computer science, B for business science, and A for analytics 
science. Data science may or may not involve coding or mathematical practice, as you 
can read in my article on low-level versus high-level data science. In a startup, data 
scientists generally wear several hats, such as executive, data miner, data engineer or 
architect, researcher, statistician, modeler (as in predictive modeling) or developer. 
While the data scientist is generally portrayed as a coder experienced in R, Python, 
SQL, Hadoop and statistics, this is just the tip of the iceberg, made popular by data 
camps focusing on teaching some elements of data science. But just like a lab 
technician can call herself a physicist, the real physicist is much more than that, and her 
domains of expertise are varied: astronomy, mathematical physics, nuclear physics 
(which is borderline chemistry), mechanics, electrical engineering, signal processing 
(also a sub-field of data science) and many more. The same can be said about data 
scientists: fields are as varied as bioinformatics, information technology, simulations and 
quality control, computational finance, epidemiology, industrial engineering, and even 
number theory. 
 
In my case, over the last 10 years, I specialized in machine-to-machine and device-to-
device communications, developing systems to automatically process large data sets, to 
perform automated transactions: for instance, purchasing Internet traffic or automatically 
generating content. It implies developing algorithms that work with unstructured data, 
and it is at the intersection of AI (artificial intelligence,) IoT (Internet of things,) and data 
science. This is referred to as deep data science. It is relatively math-free, and it 
involves relatively little coding (mostly API's), but it is quite data-intensive (including 
building data systems) and based on brand new statistical technology designed 
specifically for this context.  
 

Prior to that, I worked on credit card fraud detection in real time. Earlier in my career 
(circa 1990) I worked on image remote sensing technology, among other things to 
identify patterns (or shapes or features, for instance lakes) in satellite images and to 
perform image segmentation: at that time my research was labeled as computational 
statistics, but the people doing the exact same thing in the computer science 
department next door in my home university, called their research artificial intelligence. 
Today, it would be called data science or artificial intelligence, the sub-domains being 
signal processing, computer vision or IoT. 

http://www.kdnuggets.com/2016/08/become-type-a-data-scientist.html
https://www.datasciencecentral.com/profiles/blogs/the-abcd-s-of-business-optimization
https://www.datasciencecentral.com/profiles/blogs/high-level-versus-low-level-data-science
https://www.datasciencecentral.com/profiles/blogs/prime-numbers-interesting-distribution-and-density-results
https://www.datasciencecentral.com/profiles/blogs/prime-numbers-interesting-distribution-and-density-results
https://www.datasciencecentral.com/profiles/blogs/8-deep-data-science-articles
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Also, data scientists can be found anywhere in the lifecycle of data science projects 
(see section 13), at the data gathering stage, or the data exploratory stage, all the way 
up to statistical modeling and maintaining existing systems.  
 
1.2. Machine Learning versus Deep Learning 
 
Before digging deeper into the link between data science and machine learning, let's 
briefly discuss machine learning and deep learning. Machine learning is a set of 
algorithms that train on a data set to make predictions or take actions in order to 
optimize some systems. For instance, supervised classification algorithms are used to 
classify potential clients into good or bad prospects, for loan purposes, based on 
historical data. The techniques involved, for a given task (e.g. supervised clustering), 
are varied: naive Bayes, SVM, neural nets, ensembles, association rules, decision 
trees, logistic regression, or a combination of many. For a detailed list of 
algorithms, click here. For a list of machine learning problems, click here. 
 
All of this is a subset of data science. When these algorithms are automated, as in 
automated piloting or driver-less cars, it is called AI, and more specifically, deep 
learning. Click here for another article comparing machine learning with deep learning. If 
the data collected comes from sensors and if it is transmitted via the Internet, then it is 
machine learning or data science or deep learning applied to IoT. 
 
Some people have a different definition for deep learning. They consider deep learning 
as neural networks (a machine learning technique) with a deeper layer. The question 
was asked on Quora recently, and below is a more detailed explanation (source: Quora) 
 

 AI (Artificial intelligence) is a subfield of computer science, that was created in 
the 1960s, and it was (is) concerned with solving tasks that are easy for humans, 
but hard for computers. In particular, a so-called Strong AI would be a system 
that can do anything a human can (perhaps without purely physical things). This 
is fairly generic, and includes all kinds of tasks, such as planning, moving around 
in the world, recognizing objects and sounds, speaking, translating, performing 
social or business transactions, creative work (making art or poetry), etc. 
 

 NLP (Natural language processing) is simply the part of AI that has to do with 
language (usually written). 

 
 Machine learning is concerned with one aspect of this: given some AI problem 

that can be described in discrete terms (e.g. out of a particular set of actions, 
which one is the right one), and given a lot of information about the world, figure 
out what is the “correct” action, without having the programmer program it in. 
Typically some outside process is needed to judge whether the action was 
correct or not. In mathematical terms, it’s a function: you feed in some input, and 
you want it to to produce the right output, so the whole problem is simply to build 
a model of this mathematical function in some automatic way. To draw a 
distinction with AI, if I can write a very clever program that has human-like 

https://www.datasciencecentral.com/profiles/blogs/top-10-machine-learning-algorithms
https://www.datasciencecentral.com/profiles/blogs/top-20-uses-of-statistical-modeling
https://www.datasciencecentral.com/profiles/blogs/deep-learning-definition-resources-comparison-with-machine-learni
https://www.quora.com/What-is-the-difference-between-AI-Machine-Learning-NLP-and-Deep-Learning/answer/Dmitriy-Genzel?ref=t_page
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Machine_learning
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behavior, it can be AI, but unless its parameters are automatically learned from 
data, it’s not machine learning. 

 
 Deep learning is one kind of machine learning that’s very popular now. It involves 

a particular kind of mathematical model that can be thought of as a composition 
of simple blocks (function composition) of a certain type, and where some of 
these blocks can be adjusted to better predict the final outcome. 

 
1.3. What is the difference between machine learning and statistics? 
 
This article tries to answer the question. The author writes that statistics is machine 
learning with confidence intervals for the quantities being predicted or estimated. I tend 
to disagree, as I have built engineer-friendly confidence intervals (see also chapter 16) 
that don't require any mathematical or statistical knowledge.   
 
1.4. Data Science versus Machine Learning 
 
Machine learning and statistics are part of data science. The word learning in machine 
learning means that the algorithms depend on some data, used as a training set, to fine-
tune some model or algorithm parameters. This encompasses many techniques such 
as regression, naive Bayes or supervised clustering. But not all techniques fit in this 
category. For instance, unsupervised clustering - a statistical and data science 
technique - aims at detecting clusters and cluster structures without any a-priori 
knowledge or training set to help the classification algorithm. A human being is needed 
to label the clusters found. Some techniques are hybrid, such as semi-supervised 
classification. Some pattern detection or density estimation techniques fit in this 
category. 
 
Data science is much more than machine learning though. Data, in data science, may 
or may not come from a machine or mechanical process (survey data could be 
manually collected, clinical trials involve a specific type of small data)  and it might have 
nothing to do with learning as I have just discussed. But the main difference is the fact 
that data science covers the whole spectrum of data processing, not just the algorithmic 
or statistical aspects. In particular, data science also covers 
 

 Data integration 
 Distributed architecture 
 Automating machine learning 
 Data visualization 
 Dashboards and BI 
 Data engineering 
 Deployment in production mode 
 Dutomated, data-driven decisions 

 

Of course, in many organizations, data scientists focus on only one part of this process. 

https://en.wikipedia.org/wiki/Deep_learning
http://www.edvancer.in/machine-learning-vs-statistics/
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
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2. Distribution of Arrival Times for Extreme Events 

 

Most of the articles on extreme events are focusing on the extreme values. Very little 

has been written about the arrival times of these events. This chapter fills the gap.  

 

We are interested here in the distribution of arrival times of successive records in a time 
series, with potential applications to global warming assessment, sport analytics, or high 
frequency trading. The purpose here is to discover what the distribution of these arrival 
times is, in absence of any trends or auto-correlations, for instance to check if the global 
warming hypothesis is compatible with temperature data obtained over the last 200 
years. In particular it can be used to detect subtle changes that are barely perceptible 
yet have a strong statistical significance. Examples of questions of interest are: 

 

 How likely is it that 2016 was the warmest year on record, followed by 2015, then 
by 2014, then by 2013? 

 How likely is it, in 200 years’ worth of observations, to observe four successive 
records four years in a row, at any time during the 200 years in question? 

 

The answer to the first question is that it is very unlikely to happen just by chance. 

Despite the relative simplicity of the concepts discussed here, and their great 
usefulness in practice, none of the material below is found in any statistics textbook, as 
far as I know. It would be good material to add to any statistics curriculum.  

 
2.1. Simulations 
 

I run a number of simulations, generating 100 time series each made up of millions of 
random, independent Gaussian deviates, without adding any trend up or down. The first 
few hundred points of one of these time series is pictured in Figure 1. 

 
I computed the median, 25- and 75-percentiles for the first few records, see Figure 1. 
For instance, the median time of occurrence of the first record (after the first 
measurement) is after 2 years, if your time unit is a year. The next bigger record is 
expected 8 years after the first measurement and the next bigger one 21 years after the 
first measurement (see Figure 1.) Even if you look at the 25-percentile, it really takes a 
lot of years to beat the previous 4 or 5 records in a row. In short, it is nearly impossible 
to observe increasing records four years in a row, unless there is a trend that forces the 
observed values to become larger over time. 
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Figure 1: Time of arrivals of successive records (in years if you time unit is a year) 
 

This study of arrival times for these records should allow you to detect even very tiny 
trends, either up or down, better than traditional models of change point detection 
hopefully. However it does not say anything about whether the increase is barely 
perceptible or rather large. 

Note that the values of these records are a subject of much interest in statistics, known 
as extreme value theory. This theory has been criticized for failure to predict the amount 
of damage in modern cataclysms, resulting in big losses for insurance companies. Part 
of the problem is that these models are based on hundreds of years’ worth of data (for 
instance to predict the biggest flood that can occur in 500 years) but over such long 
periods of time, the dynamics of the processes at play have shifted. Note that here, I 
focus on the arrival times or occurrences of these records, not on their intensity or 
value, contrarily to traditional extreme value theory.  
 
Finally, arrival times for these records do not depend on the mean or variance of the 
underlying distribution. Figure 1 provides some good approximations, but more tests 
and simulations are needed to confirm my findings. Are these median arrival times the 
same regardless of the underlying distribution (temperature, stock market prices, and so 
on) just like the central limit theorem provides a same limiting distribution regardless of 
the original, underlying distribution? The theoretical statistician should be able to answer 
this question. I didn't find many articles on the subject in the literature, though this one is 
interesting. In the next section, I try to answer this question. The answer is positive. 
 
2.2. Theoretical Distribution of Records over Time 
 
This is an interesting combinatorial problem, and it bears some resemblance to 
the Analyticbridge Theorem. Let Rn be the value of the nth record (n = 1, 2,...) and Tn  its 
arrival time. 
 
For instance, if the data points (observed values) are X0 = 1.35, X1 = 1.49, X2 = 1.43, X3 
= 1.78, X4 = 1.63, X5 = 1.71, X6 = 1.45, X7 = 1.93, X8 = 1.84, then the records 

https://en.wikipedia.org/wiki/Extreme_value_theory
https://www.jstor.org/stable/1427728
https://www.jstor.org/stable/1427728
http://www.analyticbridge.com/profiles/blogs/the-analyticbridge-theorem-aka
https://api.ning.com/files/2iGC6Dxz*pFYr9Yd7kZ9NJH1iyRdM3ZdIWz5*hLMaBoYACApFfQAwq4HUzve7R60UuX5Ndw25MLIybNxLpUnaFRK4kFCV3Ie/Capturex.PNG
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(highlighted in bold) are R1 = 1.49, R2 = 1.78, R3 = 1.93, and the arrival times for these 
records are T1 = 1, T2 = 3, and T3 = 7. 
 
To compute the probability P(Tn = k) for n > 0 and k = n, n+1, n+2, etc., let's define Tn, m 
as the arrival time of the nth record if we only observe the first m+1 observations X0, X1, 
..., Xm. Then P(Tn = k) is the limit of P(Tn, m = k) as m tends to infinity, assuming the limit 
exists. If the underlying distribution of the values X0, X1, etc. is continuous, then, due to 
the symmetry of the problem, computing P(Tn, m = k) can be done as follows: 
 

1. Create a table of all (m+1)! (factorial m+1) permutations of (0, 1, ... , m). 
2. Compute N(n, m, k), the number of permutations of (0, 1, ..., m) where the nth 

record occurs at position k in the permutation (with 0 <  k ≤ m). For instance, if m = 
2, we have 6 permutations (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1) and (2, 1, 
0). The first record occurs at position k = 1 only for the following three 
permutations: (0, 1, 2), (0, 2, 1), and (1, 2, 0). Thus, N(1, 2, 1) = 3. Note that the 
first element in the permutation is assigned position 0, the second one is assigned 
position 1, and so on. The last one has position m. 

3. Then P(Tn, m = k) = N(n, m, k) / (m+1)!  
 

As a result, the distribution of arrival times, for the records, is universal: it does not 
depend on the underlying distribution of the identically and independently distributed 
observations X0, X1, X2 etc.   

It is easy (with or without using my above combinatorial framework) to find that the 
probability to observe a record (any record) at position k is 1/(k+1) assuming again that 
the first position is position 0 (not 1). Also, it is easy to prove that P(Tn = n) = 1/(n+1)!. 
Now, T1 = k if and only if Xk is a record among X0, ..., Xk and X0 is the largest value 
among X0, ..., Xk-1. Thus: 
 

P(T1 = k)  = 1 / { (k+1)k } 
 

This result is confirmed by my simulations. For the general case, recurrence formulas 
can be derived. 

 
2.3. Useful Results 
 
None of the arrival times Tn for the records has a finite expectation. Figure 2 displays 
the first few values for the probability that the nth record occurs at position Tn = k, the 
first element in the data set being assigned to position 0. The distribution of these arrival 
times does not depend on the underlying distribution of the observations.  
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Figure 2: P(Tn = k) at the bottom, (k+1)! P(Tn = k) at the top 

 
These probabilities were computed using a small script that generates all (k+1)! 
permutations of (0, 1, ..., k) and checks, among these permutations, those having a 
record at position k: for each of these permutations, we computed the total number of 
records. If N(n, k) denotes the number of such permutations having n records, then P(Tn 
= k) = N(n, k) / (k+1)!. 
 

Despite the fact that the above table is tiny, it required hundreds of millions of 
computations for its production.  

 

3. How to Lie with p-Values? 
 
P-values are used in statistics and scientific publications, much less so in machine 
learning applications where re-sampling techniques are favored and easy to implement 
today thanks to modern computing power. In some sense, p-values are a relic from old 
times, when computing power was limited and mathematical / theoretical formulas were 
favored and easier to deal with than lengthy computations. 
 
Recently, p-values have been criticized and even banned by some journals, because 
they are used by researchers, who cherry-pick observations and repeat experiments 

https://api.ning.com/files/*ix1zXEQDKOnz6XApuylcifoyf9s12QZmU1ndw*a-8ApBP8ofSyYt3qqwezd5JYmdb02ZM4OV0nLvL5EYlviWVgRG3tNJPEl/ev4.pl.txt
https://api.ning.com/files/*ix1zXEQDKOuque-oNyjtYTb0uA2a5F-xVFPR1D3iHUolbWKHnNLzfQDuCNk9RZHSEAZuZPq7j3ECYd9bZT3ZsZFRtBjbGa6/Capture.PNG
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until they obtain a p-value worth publishing to obtain grant money, get tenure, or for 
political reasons.  Even the American Statistical Association wrote a long article about 
why to avoid p-values, and what you should do instead: see here.  For data scientists, 
obvious alternatives include re-sampling techniques: see chapters 15 and 16. One 
advantage is that they are model-independent, data-driven, and easy to understand.  
 
Here we explain how the manipulation and treachery works, using a simple simulated 
data set consisting of purely random, non-correlated observations. Using p-values, you 
can tell anything you want about the data, even the fact that the features are highly 
correlated, when they are not. The data set consists of 16 variables and 30 
observations, generated using the RAND function in Excel. You can download the 
spreadsheet here. 
 
There is a total of (16 x 15) / 2 = 120 correlations (one for each pair of variables) and as 
you compute them one by one, you are bound, sooner rather than later, to find one that 
is significant. The most extreme correlation will almost always be above 0.4 in absolute 
value if you have 16 variables and 30 observations that are totally random. This is a 
statistically significant departure from zero. If you pick up that extreme correlation, now 
you can tell that my data set is not random, and that the chance for such a high 
correlation to occur is indeed 1/120. This number (1/120) is also your p-value, which is 
well below 5%, the threshold usually accepted to prove that the effect in question did 
not occur by chance. The truth is that it really did occur by chance: you were just cherry-
picking. 

 
 
The way the scheme works is by picking the least extreme case that meets your agenda 
(circled in red in the above picture), in this case a target p-value below 1%.  
 

If you were to write an article about Excel using this faulty argumentation, you could 
claim, based on this experiment, that the random number generator in Excel is wrong 
and produces correlated numbers. You could do the same experiment in Python and 
come to the same conclusion. Or you could use a genuine hardware-based device that 
truly produces randomness, and still come to the same conclusion. Indeed you could 

https://www.amstat.org/asa/News/ASA-P-Value-Statement-Viewed-150000-Times.aspx
https://storage.ning.com/topology/rest/1.0/file/get/2858759547?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2858757170?profile=original
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write a philosophical article about the fact that randomness does not exist. You could 
also do the same experiment using the Perl programming language and come to the 
same conclusion. In this latter case interestingly, you would be correct: Perl's random 
number generator has a major design flaw (it can produce only 32,767 distinct values) 
but this little experiment would not be able to reveal this fact. You would be correct 
about Perl's faulty random numbers, but you would be correct just by chance, not 
because you used a sound methodology to identify the issue. 

 

4. Off-the-beaten-path Machine Learning Topics 

 
You will find here nine interesting topics that you won't learn in college classes. Most 
have interesting applications in business and elsewhere. They are not especially 
difficult, and I explain them in simple English. Yet they are not part of the traditional 
statistical curriculum, and even many experienced data scientists with a PhD degree 
have not heard about some of these concepts. 

 
4.1. Random walks in one, two and three dimensions 
 
This is a well-known model, used as a base stochastic process to model the logarithm 
of stock prices, yet it has interesting properties (depending on dimension) that few 
people know about. In one dimension, it is described as follows: You start at 0 (on the 
X-axis) and at each iteration, you increase by +1 with probability 0.5, and decrease by 
+1 with probability 0.5. In one or two dimensions, the probability that it will get back to 
any previous state at one point, is one. But this is not the case in three dimensions. 
Yet the most probable number of sign changes (crossing the X-axis) in a walk is 0, 
followed by 1, then 2, etc. The time spent either above or below the X-axis (before a 
crossing) is modeled by the arc-sine law: Crossing the X-axis happens rarely.  For self-
correcting random walks, click here. For videos produced with R, simulating a 2-D 
random walk; follow this link.  
 
 
4.2. Estimation of the convex hull of a set of n points 
 
In one dimension, this is just the estimation of an interval when points are uniformly 
distributed, using the minimum and maximum observations, and multiplying the 
observed length (max - min) by a factor (n+1)/n to remove the bias.  In two dimensions, 
computing the convex hull is easy, and again you need to expand the shape a little to 
correct for bias. Convex hulls are used in clustering problems, where clusters are 
modeled by (possibly) overlapping convex domains: This is a non-parametric alternative 
to clustering algorithms based on the Gaussian distribution. 
 

A potential application is estimating the shape of an oil field when digging a number of 
test wells - some within the (unknown) oil field boundary, some (as few as possible) 
outside the boundary. It is also used to estimate the extent and shape of an 

https://www.quora.com/Why-is-it-that-a-2D-random-walk-is-recurrent-while-a-3D-random-walk-is-transient
https://www.quora.com/Why-is-it-that-a-2D-random-walk-is-recurrent-while-a-3D-random-walk-is-transient
http://mathworld.wolfram.com/RandomWalk1-Dimensional.html
http://www.analyticbridge.datasciencecentral.com/group/computationalfinance/forum/topics/theorems-for-traders
http://www.analyticbridge.datasciencecentral.com/profiles/blogs/interesting-probability-problem-for-serious-geeks
https://www.datasciencecentral.com/profiles/blogs/2-d-random-walks-simulation-video-with-r-source-code-curious-fact
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underground contaminated area: It was used to identify whether the nuclear waste from 
the Hanford nuclear reservation, was spilling in the Columbia river located a few 
hundred yards away, and whether it got worse over time, by measuring chromium levels 
in a number of wells. 

How about designing a fast algorithm to compute the convex hull of a set of points, in 
any dimension? This is a great exercise for a data scientist, but first you need to check 
the literature about existing algorithms. I implemented one when I was working on my 
PhD in computational statistics.  

 
The first step to estimate this complex shape is to start with the convex hull  

(click here for details)  
 
4.3. Constrained linear regression on unusual domains 
 
Lasso and ridge regression are popular examples of constrained linear regression: 
Constraints are put on the regression coefficients to make it more stable, for instance, 
the coefficient between a dependent and independent variable must have the same sign 
as the correlation between the two variables in question. Such constraints are used for 
instance in the HDT algorithm, (see chapter 2) which is an hybrid regression / pseudo 
decision tree procedure.    
 
In some cases, the constraints are dictated by the business problem itself. For instance, 
if a response depends on a mix of chemical ingredients (think about the taste of a 
beverage - how people like it or not) the weight or proportion attached to each 
ingredient is a regression coefficient: All these coefficients must be positive or zero, and 
they must add up to one. This is known as linear regression on the simplex 
domain. Click here for more similar problems (regression on a sphere and so on.)  
 
4. Robust and scale-invariant variances 
 
The traditional variance is impacted by erroneous data and outliers, and thus not very 
robust. I proposed a new variance that is more robust, and always positive, just like the 
standard variance. The positivity is guaranteed by the Jensen inequality, and from a 
mathematical point of view, it is a metric between an L1 and L2 version of the classical 
variance (L^2 yields the classical variance.) Click here for details. 

https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
https://github.com/AndriiHeonia/hull
https://www.datasciencecentral.com/profiles/blogs/10-types-of-regressions-which-one-to-use
http://www.analyticbridge.datasciencecentral.com/forum/topics/linear-regression-on-an-usual-domain-hyperplane-sphere-or-simplex
http://www.hadoop360.datasciencecentral.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://storage.ning.com/topology/rest/1.0/file/get/2220281814?profile=original
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I am currently working on a variance that is scale-invariant (also described in the same 
article) and this is really a bizarre object, though useful when the variance should stay 
the same, whether your metric is measured in miles or kilometers. The next step is to 
design scale-invariant clustering algorithms, as the scale of each variable (the units 
used for measurement) sometimes has a bigger impact on the resulting clusters, than 
the choice of the clustering algorithm itself.  

 
4.5. The Tweedie distributions 
 
In statistics, the Tweedie distributions are a family of probability distributions which 
include the purely continuous normal and gamma distributions, the purely discrete 
scaled Poisson distribution, and the class of mixed compound Poisson–gamma 
distributions which have positive mass at zero, but are otherwise continuous. Just like 
the exponential family of distributions, it includes several popular distributions. These 
distributions are characterized by the following property: The expectation is proportional 
to a power of the variance.  It has many applications, including for modeling errors in 
signal processing, and even to model departure from the asymptotic representation in 
some prime number functions. Click here for details, and to see the various 
applications, including actuarial studies, survival analysis, ecology, medical applications, 
meteorology and climatology, fisheries, cancer metastasis, genomic structure and 
evolution. 
 
Another distribution with several practical applications is the Zipf distribution.  
 
4.6. The arithmetic-geometric mean 
 
This was initially designed to compute the mean of two numbers, and it comes with a 
very fast algorithm that converges to a value between the arithmetic and geometric 
means. It has a number of interesting mathematical properties, and has been used to 

compute the number  very efficiently (other very fast algorithms to compute  can be 
found here and here.)  
 
To compute the arithmetic-geometric mean of two numbers, start with two initial 
estimates a0 and b0 equal respectively to the geometric and arithmetic mean. At each 
iteration k, compute ak as the geometric mean of ak-1 and bk-1, and compute bk as the 
arithmetic mean of ak-1 and bk-1. Both ak and bk converge very fast to the arithmetic-
geometric mean. Click here for details.  
 
It has been generalized to any number of variables, see here. The picture below 
summarizes one of the most interesting generalizations, involving a bunch of interesting 
averaging functions, besides the arithmetic and geometric means. 

https://en.wikipedia.org/wiki/Tweedie_distribution
https://www.datasciencecentral.com/profiles/blogs/zipf-s-distribution-example-of-a-great-application
http://www.analyticbridge.datasciencecentral.com/profiles/blogs/new-state-of-the-art-random-number-generator-simple-strong-and-fa
https://www.datasciencecentral.com/profiles/blogs/data-science-method-to-discover-large-prime-numbers
https://en.wikipedia.org/wiki/Arithmetic%E2%80%93geometric_mean
https://mathoverflow.net/questions/37576/nth-order-generalizations-of-the-arithmetic-geometric-mean
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4.7. Weighted version of the K-NN clustering algorithm 
 
It can be used to estimate the local or global intensity of a stochastic point process, and 
also related to density estimation techniques. How many neighbors should we use, and 
which weights should we put on these neighbors to get robust and accurate estimates? 
It turned out that putting more weight on close neighbors, and increasingly lower weight 
on far away neighbors (with weights slowly decaying to zero based on the distance to 
the neighbor in question) was the solution to the problem. I actually found optimum 
decaying schedules for the weights ak attached to the kth nearest neighbor, as k tends to 
infinity. You can read the details here. Obviously this can also be used when 
implementing clustering techniques based on the well-known K-NN algorithm (k nearest 
neighbors.) 
 
For another generalization of the K-NN classifier, based on graph theory, see section 6. 
This version of K-NN can also be used for variable reduction while preserving the 
dimension of the original data set.  
 
4.8. Multivariate exponential distribution and storm modeling 
 
Intensity and duration of storm cells have been traditionally modeled using Gaussian 
distributions. Bivariate exponential distributions with negative correlation provide more 
flexibility and a better representation of the real world, that is, superior goodness of fit 
with actual data. You can read more about this topic and about how to simulate a 
multivariate exponential distribution with specific covariance matrix and known marginal 
distributions, here (PDF document.) 
 

http://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00071/abstract
https://www.niss.org/sites/default/files/technicalreports/tr47.pdf
http://storage.ning.com/topology/rest/1.0/file/get/2808337356?profile=original
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There is a limit on how negative the coefficient of correlation of a bivariate exponential 
distribution can be, and this is pictured in the theorem below (from the same paper): 

 
 

5. Variance, Clustering, and Density Estimation Revisited 
 
We propose here a simple, robust and scalable technique to perform supervised 
clustering on numerical data. It can also be used for density estimation, and even to 
define a concept of variance that is scale-invariant. This is part of our general statistical 
framework for data science.  
 
5.1. General Principle: Working on the Grid, not on the Original Space 
 
Here we discuss clustering and density estimation on the grid. The grid can be seen as 
an 2-dimensional or 3-dimensional array. We assume that you have selected your best 
predictors (for instance using our feature selection algorithm in chapter 5) so that the 
loss of yield, predictability, or accuracy, due to working in smaller dimensions, is 
minimum (and measurable), and is more than compensated by an increase in stability, 
scalability, simplicity, and robustness.  
 
In addition, all your observations have been linearly transformed and discretized (the 
numerical values have been rounded) so that each observation, after this mapping, 
occupies a cell in the grid. For instance, if the grid associated with the data set in 
question consists of 1,000 columns and 2,000 rows, it can store at least 1,000 x 2,000 
observations. It is OK to have two distinct but very close observations, mapped onto the 
same cell in the grid. Also, the worst outliers (say the top 10 most extreme points) are 
either ignored or put on the border of the grid, to avoid having an almost empty grid 
because of a few extreme outliers. Transforming data (using log of salary rather than 
salary) will also help here, as in any statistical methodology. As rule of thumb #1, I 
suggest that 30% of the cells (in the grid) should have at least one observation attached 
to them. At the end of the day, you can try with different data coverage (above or below 
30% of the grid) until you get optimum results based on cross-validation testing. 
 
Note that in the above example - a 1,000 x 2,000 grid - your rounded values in your 
data set, once mapped onto the grid, have accuracy above 99.9%. Most data collection 
processes have errors far worse than that, so the impact of discretizing your 
observations is almost zero, at least in most applications. Again, compare 
(using confusion matrices on test data from a cross-validation design) your 
full, exact supervised clustering system with this approximate setting, and you should 
not experience any significant prediction loss, in most applications. 
 

http://storage.ning.com/topology/rest/1.0/file/get/2808337443?profile=original
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Finally, this 1,000 x 2,000 grid (used for illustration purposes) fits easily in memory 
(RAM). You can even go to 4 dimensions: (say) 500 x 500 x 500 x 500 grid, and store 
that grid in memory, or slice it into 100 overlapping sub-grids, and do the processing 
with a Map-Reduce mechanism (in Hadoop for instance) on each sub-grid separately 
and in parallel.  

For our purpose, the value of a cell in the grid will be in an integer between 0 and 255. 
In some cases, it could be just 0 or 1, with 1 meaning that there is a training set data 
point close to the location in question in the grid, 0 meaning that you are far enough 
away from any neighbor. 

 
Non parametric density estimation (source: click here) 

 
5.2. Density Estimation 
 
We start with density estimation, as this is the base (first step) for the supervised 
clustering algorithm. We assume that we have g groups or classes: that is, a training set 
consisting of g known groups -- each observation (x, y) having a label representing its 
group. For simplicity, let's consider the 2-dimensional case.  

https://www.byclb.com/TR/Tutorials/neural_networks/ch11_1.htm
http://storage.ning.com/topology/rest/1.0/file/get/2059720939?profile=original
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Figure 1: data points in yellow; 3x3 kernel is too small (left), 5x5 kernel is OK (right) 

 

In figure 1, yellow cells represent locations corresponding to an actual observation (x, y) 
in the training set: that is, bi-variate coordinates of a point, where x could (for instance) 
represent the rounded monthly payment associated with a loan, and y the rounded 
salary, after log transformation of the salary. The groups could represent the risk level 
(risk of default on loan repayment), with three categories: low, medium, high. 

To compute density estimates on each cell of the grid, draw a 3x3 window around each 
yellow cell, and add 1 to all locations (cells) in that 3x3 window. Or better, draw a 5x5 
window around each yellow cell, add 1 at the center, add  2 at each location in the 3x3 
sub-window, and add 1 to all locations at the border (inside) the 5x5 window. See figure 
1 for illustration. 

You can use bigger windows, circular windows and even infinite windows where the 
weight (the value added to each cell) decays exponentially fast with the distance to the 
center. I do not recommend it though, as it would allow you to classify any new 
observation (outside the training set) even if they are far away from the closest 
neighbor: this leads to misclassification; such extreme observations should remain un-
classified. Finally, this methodology works too in higher dimensions (3- or 4-dim). 

The result is (see Figure 1, right picture, for a specific group): after applying this 
procedure to each yellow cell and each class, you have density estimates for each 
class, for each cell. If we define N(z) as the value (density estimate for a specific group) 
computed on a particular cell z in the grid, rule of thumb #2 says that 10% of the cells 
with N(z) > 0 must have an N(z) that is contributed by more than one neighboring data 
point. In figure 1, the percentages are respectively 0% for the left picture (3x3 window), 
and 13/79 = 16% for the right picture (5x5 window).  So clearly, the 5x5 window is OK, 
but the 3x3 is not. If you violate this rule, try with a bigger window, e.g. 7x7 rather than 
5x5, or 5x5 rather than 3x3. 
 
How to handle non-numeric variables? 
 
In our example in the previous section, if one of the variables is gender (M/F) and 
another one is age (young / medium / old), multiply the number of groups accordingly. In 

http://storage.ning.com/topology/rest/1.0/file/get/2808309351?profile=original
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our example, the number of groups (g=3: low risk, medium risk, high risk of default) will 
be multiplied by 2 (M / F) x 3 (young / medium / old), resulting in 18 groups, for instance 
“young females with medium risk of default” being one of these 18 groups.  
 
5.3. Supervised Clustering 
 
Now we have a straightforward classification rule: for a new data point to be classified 
(a point that typically does not belong to the training set), with cell location equal to z in 
the grid, compute the density estimate N(z | c) for each group c, then assign the point to 
the group c maximizing N(z | c). The speed of this algorithm is phenomenal: the 
computational complexity is O(g) where g is the number of groups. If you pre-classify 
your entire (say) 1,000 x 2,000 grid, then it is even faster, equal to O(1). You can't beat 
that. Of course, accessing a cell in the grid (represented by a 2-dim array), while 
extremely fast and not depending on the number of observations, still requires a tiny bit 
of time, but it is entirely dependent only on the size of the array, and its dimension. In 
higher dimensions, where Map-Reduce strategies are used, more time is used to 
access a cell of the grid and return its value, yet it is nothing compared with the time 
required to perform standard supervised clustering. 
 
Optimizing the Computations 
 

In 2 dimensions, we have a little trick to compute the density estimates for each cell in 
the grid much faster, in a systematic way: it is illustrated in Figure 2 below. It also works 
in higher dimensions, though it is most efficient in 2 dimensions.  

 
Figure 2: data points in yellow; trick to compute densities row by row, to reduce 

computing time 
 
5.4. Scale-Invariant Variance  
 
I have designed a scale-invariant variance not so long ago: you can check it out here. 
Interestingly, it relies on convex functions. The proof that it is always positive is based 
on some advanced mathematics, namely, the Jensen inequality.  
 

http://www.hadoop360.com/blog/a-synthetic-variance-designed-for-hadoop-and-big-data
http://storage.ning.com/topology/rest/1.0/file/get/2808309524?profile=original
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Here, the purpose is a bit different. We want to create a new, scale-invariant variance, 
that is minimum when the data points are evenly distributed in some domain, and 
maximum when there are peaks and valleys or oceans of high and low density. This is 
still an area of intense research.  

Let's denote as N(z) the density estimate at a specific location z (cell) on the grid, as in 
our earlier sections. The first definition of variance that comes to mind is related to the 
proportion (denoted as p) of cells z with N(z) > 1, among all cells with N(z) > 0. You can 
now define the new variance v as v = p. It has interesting properties, but unfortunately, it 
is dependent on the window size (3x3 or 5x5 as in our figure 1), though this drawback 
can be mitigated if you abide by our two rules of thumb mentioned above. I invite you to 
come up with a better definition. 
 

Note that this new definition of variance applies to point distributions in any dimension, 
not just to univariate observations. 

 
5.5. Historical Notes 
 
This chapter has its origins in one of my earlier papers published in the Journal of Royal 
Statistical Society, series B, back in 1995: Multivariate Discriminant Analysis and 
Maximum Penalized Likelihood.... At that time, I was working on image analysis 
problems to automatically determine the proportions of various crops cultivated in 
several countries, based on satellite image data. This technology was cheaper than 
sending people in the fields to manually make the measurements via sampling - in 
short, it was (even back in 1995) an attempt at replacing men with robots. The same 
technology was used to identify tanks from enemies in the Iraq war. The images 
consisted of a few channels: infrared, radar, red, green, and blue -- that is, about 5 
dimensions. So the (x, y) coordinates mentioned earlier in this chapter were (in this 
case) color intensities in two of the 5 channels, not physical locations of a particular 
point. 
 
Indeed, what we call the grid here (in this article) actually corresponds to what is 
referred to as the spectral space by practitioners. The actual images were referred to as 
the geometric or spatial space. This image remote sensing problem was very familiar to 
mathematicians and operations research practitioners, and was typically referred to as 
signal processing. And in many ways, this was a precursor to modern AI. 
 
 

6. New K-NN Clustering Algorithm and Data Reduction 
 
I describe here an interesting and intuitive clustering algorithm (that can be used for 
data reduction as well) offering several advantages, over traditional classifiers: 

 

 More robust against outliers and erroneous data 
 Executing much faster 

https://www.jstor.org/stable/2346153?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2346153?seq=1#page_scan_tab_contents
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 Generalizing well known algorithms 

 
You don't need to know K-NN to understand this chapter -- but click here if you want to 
learn more about it. You don't need a background in statistical science either.  
Let's describe this new algorithm and its various components, in simple English  

 
6.1. General Framework 
 
We are dealing here with a supervised learning problem, and more specifically, 
clustering (also called supervised classification.). In particular, we want to assign a class 
label to a new observation that does not belong to the training set. Instead of checking 
out individual points (the nearest neighbors) and using a majority (voting) rule to assign 
the new observation to a cluster based on nearest neighbor counts, we are checking 
out cliques of points, and focus on the nearest cliques rather than on the nearest points. 
 
6.2. Cliques and Clique Density 
 
The cliques considered here are defined by circles (in two dimensions) or spheres (in 
three dimensions.) In the most basic version, we have one clique for each cluster, and 
the clique is defined as the smallest circle containing a pre-specified proportion p of the 
points from the cluster in question. If the clusters are well separated, we can even 
use p = 1. We define the density of a clique as the number of points per unit area. In 
general, we want to build cliques with high density. 
 

Ideally, we want each cluster in the training set to be covered by a small number of 
(possibly slightly overlapping) cliques, each one having a high density.  Also, as a 
general rule, a training set point can only belong to one clique, and (ideally) to only one 
cluster. But the circles associated with two cliques are allowed to overlap. 

 
6.3. Classification Rule, Computational Complexity, Memory Requirements 
 

Once we have built a set of cliques for each cluster, the classification rule is 
straightforward. Building these cliques is the complicated pre-processing step, but as 
discussed in the last section, we only need a rough approximation. The classification 
rule is as follows: 

 1-NC algorithm: Assign the new observation to the cluster attached to the 
nearest clique 

 K-NC algorithm: Assign the new observation to the cluster that has the largest 
number of cliques, among the K cliques closest to the observation in question 
(majority vote).  

 

Note that if cliques consist of a single point, then K-NN and K-NC algorithms are 
identical. Also note that computing the distance between a point and a clique is 

https://www.datasciencecentral.com/page/search?q=k-nn
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straightforward, because cliques are circular. You just need to know the center of the 
circle in question, and its radius. 

Finally, to assign a new observation to a cluster, one only has to check all the cliques, 
rather than all the points. Thus the K-NC algorithm is v times faster than K-NN, 
where v is number of points in the training set, divided by the number of cliques across 
all clusters. In practice, we have far fewer cliques than we have points in the training 
set, so v can be large, when dealing with very big training sets. This is especially true if 
there is not too much overlap among the cliques. 
 

In short, the cliques summarize the training set data: we can discard all the data and 
only keep the cliques (with their center, radius, density, and cluster label), once these 
cliques have been computed. This also saves a lot of memory, and in itself can be used 
as a data reduction technique.  

 
6.4. Cliques Building and Smallest-Circle-Problem  
 
This concept could prove useful when building the clique system. The smallest-circle-
problem (click here for details) consists of computing the smallest circle that contains all 
points in a given region. It is illustrated in Figure 1 below. 

 
Figure 1: Cliques computed based on the Smallest-Circle-Problem 

 

One would think that such cliques have maximum density, a desirable property. Several 
very efficient algorithms are available to solve this problem. Some even allow you to 
attach a weight to each point.  

 
6.5. Gravitational Field Generated by Clusters 
 

You can skip this section. It has been included for those interested in further 
improvements of the K-NC algorithm, as well as improving standard algorithms such as 
K-NN, Also, it highlights the fact that the square of the distance, could be a better metric 
than raw distance (from a modeling point of view) when averaging proximity among 

https://en.wikipedia.org/wiki/Smallest-circle_problem
http://storage.ning.com/topology/rest/1.0/file/get/2220282535?profile=original
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points, just like many physical laws involve the square of the distance between two 
objects, rather than the distance itself. You can look at a classification problem the 
same way that you would at the gravitation law: which cluster is going to “attract” a new 
observation (in the context of classification), versus which celestial body is going to 
attract and adsorb a meteoroid (in the context of celestial physics.) You would think that 
in both cases, similar laws apply. 

For each point x (typically, a new point that we want to classify) and cluster G, the 
potential V(x, G) is defined as follows: 

 
where the sum is over all cliques in G. A better definition might be to take the sum only 
over the k nearest cliques in G, for a pre-specified value of k. A potential classification 
rule consists of assigning a point x to the group G that maximizes V(x, G). 
 
A final improvement consists in attaching a weight to each term in the above sum: the 
weight being the density of the corresponding clique. Note that if cliques (their circles) 
significantly overlap, this should be addressed in the definition of the potential V. As a 
general rule, a training set point can only belong to one clique, and (ideally) to only one 
cluster.  
 
6.6. Building an Efficient Clique System 
 

This data pre-processing step is the more complicated step. However, easy-to-obtain 
approximate solutions work well. It provides good results even if each point is a clique 
(the K-NN particular case. 

Different approaches are possible: 

 

 Start with one clique per training set point, and iteratively  merge the cliques 
 Start with one clique per cluster, based on the smallest-circle-problem described 

earlier. Then shrink it and move the center till it contains a proportion p of the 
training set points, for the cluster in question, and the density of the clique is 
maximal (or close enough to maximum.)  Repeat the operation for the remaining 
points in the cluster in question. Maybe choose p = 30% assuming each cluster 
has a circular core consisting of at least 30% of its points. 

 Start with a pre-specified number of random cliques (random radius, random 
center, possibly corresponding to a point randomly selected in the training set.) in 
each cluster. Adjust the centers and radii one clique at a time to optimize some 
density-related criterion described below. Also, it would be a good idea to use a 
birth and death process to eliminate some cliques and create new ones over 
time. 

 

The aim is to obtain as few cliques as possible, covering the entire training set without 
too much overlapping. Each clique must have a high density, and must contain more 

http://storage.ning.com/topology/rest/1.0/file/get/2808335491?profile=original
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than (say) 1% of the training set points for the cluster in question. We could add another 
constraint: each clique must have at least two points.    

 
6.7. Non-Circular Cliques 
 

It would be interesting to test whether the shape of the clique matters. As long as we 
have sufficiently many cliques, the shape probably does not matter (this should be 
tested), and thus a circle -- because it leads to considerably simplified computations 
when measuring the distance between a clique and a point -- is ideal. Note that if a 
point is inside a clique (inside its circle) then the distance between the clique and the 
point is zero. We should test whether this rule leads to more robustness against outliers 
or erroneous data.   

 
6.8. Potential Enhancements, Data Reduction, and Conclusions 
 

Potential improvements to our methodology include: 

 

 Using density in addition to proximity, putting more emphasis on dense cliques 
when assigning a new observation to a cluster 

 Allowing training set points to belong to multiple cliques within the same cluster 
 Allowing training set points to belong to multiple clusters 
 Testing cliques that are made up of closest neighbors 
 Reducing the overlap among cliques 

 

Also, we need to test this new algorithm, and see when it performs best, depending on 
how cliques are created. Is K-NC almost equivalent to K-NN, provided a different K is 
used in each case? Even if they are equivalent, K-NC has one great benefit: it can be 
used for data reduction, in a way that is different from traditional data reduction 
techniques. Traditional data reduction techniques such as PCA try to project the data 
set onto a space that has a lower dimension. The clique structure produced by K-NC is 
the result of a data reduction technique that does not perform dimension reduction nor 
projections, but instead, performs something akin to data compaction or data 
compression or entropy reduction, in the same original space. 

Another benefit is the fact that K-NC, thanks to its pre-processing step to build the 
clique structure, runs much faster than K-NN. It is also more intuitive, as it is based on 
the intuitive concept that each cluster is made up of sub-clusters: the cliques. It is 
indeed similar to model fitting with stochastic point processes representing cluster 
structures, such as Neyman-Scott cluster processes. 

Finally, in many cases, one way to improve a classifier is by re-scaling or transforming 
the data, for instance using a logarithmic scale. Most classifiers are scale-dependent. 
See section 6 in the first chapter in Part 5 of this book, for scale-invariant clustering.   
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7. Spatial Patterns Found in Random Points 
 
Check the three charts below: only one corresponds to pure randomness. Which one? 
 

 
Chart #1 

 
  

 
Chart #2 

  

http://storage.ning.com/topology/rest/1.0/file/get/2220278468?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2220278570?profile=original
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Chart #3 

  
It is clear that chart #3 exhibits a strong clustering pattern, unless you define your 
problem as points randomly distributed in an unknown domain whose boundary has to 
be estimated. So, the big question is: between chart #1 and #2, which one represents 
randomness? Look at these charts very closely for 60 seconds, then make a guess, 
then read on. Note that all three charts contain the same number of points - so there's 
no scaling issue involved here. 
 
Let's assume that we are dealing with a spatial distribution of points over the entire 2-
dimentional space, and that observations are seen through a small square window. For 
instance, points (observations) could be stars as seen on a picture taken from a 
telescope.  
 
The first issue is the fact that the data is censored: if you look at the distribution of 
nearest neighbor distances to draw conclusions, you must take into account the fact 
that points near the boundary have fewer neighbors because some neighbors are 
outside the boundary. You can eliminate the bias by  
 

 Tiling the observation window to produce a mathematical tessellation 
 Mapping the square observation window onto the surface of a torus 
 Apply statistical bias-correction techniques 
 Use Monte-Carlo simulations to estimate what the true distribution is (with 

confidence intervals) if the data was truly random 
 
Second issue: you need to use better visualization tools to see the patterns. The fact 
that I use a + rather than a dot symbol to represents the points, helps: some points are 
so close to each other that if you represent points with dots, you won't visually see the 
double points (in our example, double points could correspond to double star systems - 
and these very small-scale point interactions are part of what makes the distribution 
non-random in two of our charts). But you can do much better: you could measure a 

http://storage.ning.com/topology/rest/1.0/file/get/2220278691?profile=original
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number of metric (averages, standard deviations, correlation between x and y, number 
of points in each sub-square, density estimates, etc.) and identify metrics proving that 
we are not dealing with pure randomness. 
 
In these 3 charts, the standard deviation for either x or y - in case of pure randomness - 
should be 0.290 plus or minus 0.005. Only one of the 3 charts succeeds with this 
randomness test. 
 
Third issue: even if multiple statistical tests suggest that the data is truly random, it 
does not mean it really is. For instance, all three charts show zero correlation between x 
and y, and have mean x and y close to 0.50 (a requirement to qualify as random 
distribution in this case). However, only one chart exhibits randomness. 
 
Fourth issue: we need a mathematical framework to define and check randomness. 
True randomness is the realization of a Poisson stochastic process, and we need to use 
metrics that uniquely characterizes a Poisson process to check whether a point 
distribution is truly random or not. Such metrics could be e.g.  
 

 The inter-point distance distributions 
 Number of observations in sub-squares (these counts should be uniformly 

distributed over the sub-squares, and a Chi-square test could provide the 
answer; however in our charts, we don't have enough points in each sub-square 
to provide a valid test result) 

 
Fifth issue: some of the great metrics (distances to kth neighbors) might not have a 
simple mathematical formula. But we can use Monte-Carlo simulations to address this 
issue: simulate a random process, compute the distribution of distances (with 
confidence intervals) based on thousands of simulations, and compare with distances 
computed on your data. If the distance distribution computed on the data set matches 
results from simulations, it means our data is probably random. However, we would 
have to make sure that the distance distribution uniquely characterizes a Poisson 
process, and that no non-random processes could yield the same distance distribution. 
This exercise is known as goodness-of-fit testing: you try to see if your data support a 
specific hypothesis of randomness. 
 
Sixth issue: if you have a million points (and in high dimensions, you need much more 
than a million points due to the curse of dimension), then you have a trillion distances to 
compute. No computer, not even in the cloud, will be able to make all these 
computations in less than a thousand year. So you need to pick up 10,000 points 
randomly, compute distances, and compare with equivalent computations based on 
simulated data. You need to make 1,000 simulations to get confidence intervals, but this 
is feasible. 
 
Here's how the data (charts 1-3) was created:  
 

 Produce 158 random points [an, bn], n=1, ...,158 
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 Produce 158 random deviates (un, vn), n=1, ...,158 
 Define xn as follows for n > 1: if un < r, then xn = an, else xn = svnan + (1 - svn)xn-1, 

with x1 = a1  
 Define yn as follows for n > 1: if un < r, then yn = bn, else yn = svnbn + (1 - svn)yn-1, 

with y1 = b1  
 Chart 1: xn = an, yn = bn 
 Chart 2: r = 0.5, s = 0.5 
 Chart 3: r = 0.4, s = 0.1 

 
Notes:  
 

 The only chart exhibiting randomness is chart #1. Chart #2 has significantly too 
low standard deviations for x and y, too few points near boundaries, and too 
many points that are very close to each other 

 Note that chart #1 (the random distribution) exhibits a little bit of clustering, as 
well as some point alignments: this is however perfectly expected from a random 
distribution. If the number of points in each sub-square was identical, the 
distribution would not be random, but would correspond to a situation where 
antagonist forces make points to stay as far away as possible from each other. 

 How would you test randomness if you had only two points (impossible to test), 
three points, or just 10 points? 

 Finally, once a pattern is detected (e.g. abnormal close proximity between 
neighboring points), it should be interpreted and/or leveraged, that is, it should 
lead to (say) ROI-positive trading rules if the framework is about stock trading, or 
the conclusion that double stars do exist (based on chart #2, more on this here) if 
the framework is astronomy 

 

8. Stochastic Geometry: Spatial Coverage Problem 
 
This should remind you of your probability classes during college years. Can you solve 
this problem in 30 minutes? This could make for an interesting job interview question. 

Problem 
 
Points are randomly distributed on the plane, with an average of m points per unit area. 
A circle of radius R is drawn around each point. What is the proportion of the plane 
covered by these (possibly overlapping) circles?  
 
What if circles can have two different radii, either R = r, or R = s, with same probability? 
What if R is a random variable, so that we are dealing with random circles? Before 
reading further, try to solve the problem yourself. 

https://www.analyticbridge.datasciencecentral.com/profiles/blogs/a-counter-intuitive-finding-twin-data-points-is-the-norm-not-the-
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Solution 
 
The points are distributed according to a Poisson point process of intensity m. The 
chance that an arbitrary point x in the plane is not covered by any circle, is the chance 
that there is zero point from the process, in a circle of radius R centered at x. This is 

equal to exp(-mR2). Thus the proportion of the plane covered by the circles is 

 
If circles have radii equal to r or s, it is like having two independent (superimposed) 
Poisson processes, each with intensity m/2: one for each type of circle. The chance 
that x is not covered by any circle is thus a product of two probabilities, 

 
If R is a positive random variable and E denotes its expectation, then the general 
solution is 

 
You can easily simulate a large number of these circles over a broad area, and then, 
pick up 1,000 random points and see how many of them are covered by at least one 
circle, to check whether your solution is correct or not. You can also use these 

simulations to get an approximation for exp(-). 
 
Application 
 
The formula for p(m, R) and confidence intervals obtained for its value via simulations 
under the assumption of pure randomness (Poisson process), can be used to check if a 
process is really random. For instance, are Moon's craters spread randomly? They 
might not, if large meteorites break up in small pieces before impact, resulting in 
clustered craters. In that case, the area covered by the (overlapping) craters might be 
smaller than theoretically expected.   
 

 
 

https://en.wikipedia.org/wiki/Poisson_point_process
http://storage.ning.com/topology/rest/1.0/file/get/2808337803?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338356?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338390?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808338699?profile=original
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9. Markov Chains and the Collatz Conjecture 
 
Take any positive integer n. If n is even, divide it by 2 to get n/2. If n is odd, multiply it by 
3 and add 1 to obtain 3n + 1. Repeat the process indefinitely.  Does the sequence 
eventually reach 1, regardless of the initial value? For instance, if you start with the 
number 75,128,138,247, you eventually reach 1 after 1,228 steps. If you start with the 
number 27, you climb as high as 9,232, but eventually reach 1 after 41 steps. 
 

This is supposed to be a very difficult problem. Note that if a sequence reaches any 
power of 2 (say, 64) or any intermediate number found in the trillions of trillions of such 
sequences that are known to reach 1, then the sequence in question will obviously 
reach 1 too. For a sequence not to reach 1, the first element (as well as any subsequent 
element) would have to be different from any initial or intermediate number found in any 
series identified as reaching 1 so far. This makes it highly unlikely, yet the conjecture 
has not been proved yet. For more on this problem, click here.  

It is interesting to note that if you replace the deterministic algorithm by a probabilistic 
one, for instance n becomes n/2 with probability 0.5 and 3n + 1 with probability 0.5, then 
instead of reaching 1, you reach infinity. Also with the deterministic algorithm, if you 
replace 3n + 1 by 2n + 1, you would think that you would reach 1 even faster, but this is 
not the case: you reach 1 only if the initial value is a power of 2, and in all cases you 
eventually reach infinity.  
 
Possible proof 
 
If you want to prove (or disprove) this conjecture, a possible methodology is as follows. 
Let's recursively define f(k+1, n) = f(f(k, n)) for k = 0, 1, 2 and so on, with f(0, n) = n, and 
f(x) = x/2 if x is even, 3x + 1 otherwise. The conjecture states that no matter the initial 
value n, there is always a number k (function of n) such that f(k, n) = 1: in short, you 
reach 1 after k steps. 
 
Consider the following four cases, each occurring with a probability 0.25 (Mod stands 
for the modulo operator): 
 

 Mod(n, 4) = 0. Then f(2, n) = n/4. 
 Mod(n, 4) = 1. Then f(3, n) = (3n + 1)/4 
 Mod(n, 4) = 2. Then f(1, n) = n/2. 
 Mod(n, 4) = 3. This case is broken down into two sub-cases, see below. 

 
The case Mod(n, 4) = 3 is broken down into the following two sub-cases, each occurring 
with probability 0.125: 
 

 If Mod(n, 8) = 3 then f(2, n) = (3n + 1)/2 and in this case we are back to case #2 
above after 2 steps.   

 If Mod(n, 8) = 7 then f(2, n) = (3n + 1)/2 and in this case we are back to case #4 
above after 2 steps. 

https://en.wikipedia.org/wiki/3x_%2B_1_problem
https://en.wikipedia.org/wiki/Modulo_operation
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In both sub-cases, the sequence has been increasing, though we know that if Mod(n, 8) 
= 3, it will go down a bit (but still stay a little above n, more specifically around 9n/8) 
after 3 additional steps. 
 
So it looks like on average, we are decreasing over time (thus the fact that we would 
eventually reach 1 seems likely), but the challenging case if when Mod(n, 4) = 3, and 
even more challenging when Mod(n, 8) = 7. Can we get stuck in a sequence where 
every two steps, the residual modulo 8 is equal to 7 (the worst case that makes the 
sequence grows at its fastest pace?) And for how many cycles can we get stuck in such 
a configuration? These are difficult issues to address if you want to prove this 
conjecture.   
 
The problem might also be approximately modeled as some kind of Markov chain, with 
5 different states corresponding to the first 3 cases and the 2 sub-cases discussed 
earlier. One single iteration in the Markov chain corresponds respectively to 2, 3, 1, 5, 
and 2 steps of the above algorithm, to reach the next local dip in value (if any).  
 
For n large enough, one iteration of the Markov chain is thus approximately as follows: 
 

 we reduce n by 75% with probability 0.25  
 we reduce n by 25% with probability 0.25  
 we reduce n by 50% with probability 0.25 
 we  increase n by 12.5% with probability 0.125 
 we increase n by 50% with probability 0.125 

 
It is easy to compute the probability p(N) that the initial value n will not be reduced 
after N iterations of the Markov chain, for any positive N. However, even for very 
large N, this probability is still strictly positive, albeit very close to zero. Also, it is not 
clear if the memory-less property of Markov chains is violated here, which would either 
invalidate this approach, or possibly make it more difficult to handle this problem. Most 
likely, if it results in a proof, it would be an heuristic one.   
 

10. Special Integral Solved Using Statistical Concepts 
 
Below are a few integrals that you won't find in textbooks. Solving them is a good 
exercise for college students with some advanced calculus training. We provide the 
solution, as well as a general framework to compute many similar integrals. Maybe this 
material should be part of the standard math curriculum. Here, p, q, r are positive real 
numbers, with q larger than p.  
 

 

https://storage.ning.com/topology/rest/1.0/file/get/294104671?profile=original
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The Gamma symbol represents the gamma function. It is possible that these results are 
published here for the first time. These are known as Frullani integrals, although the 
ones mentioned here are not covered by Frullani's theorem, nor by any recent 
generalization that I am aware of (see here and here for recent contributions to this 
topic.) Indeed, AI-based automated integration platforms such as WolframAlpha cannot 
find the exact value (only an approximation) while they are able to compute standard 
Frullani integrals exactly. My approach to derive the exact values is different from the 
classical approaches, as it relies on the statistical concept of expectation, possibly 
leading to interesting areas of research. 
 
How to compute such integrals? 
 

These integrals are a particular case of the following main result, proved in the next 
section: 

 
 
where g(x)/x tends to 1 as x tends to infinity, and f is a bounded function with a finite 
expectation. Some additional conditions may be required, for instance the fact that the 
integral of f(x)/g(x), between 0 and 1, is finite. The expectation of f, also called average 
value, is defined as 

 
For instance, if f(x) = |SIN(x1/2)|, then the expectation exists, and it is equal to E(f) = 2/.  
 
The main result introduced at the beginning of this section, is rather intuitive but needs 
great care to prove it rigorously, including correctly stating the required assumptions 
on f and g to make it valid. Some cases might require working with non-Riemann 
integrals. Here we only provide the intuitive explanation. 
 
Proof of the main result (sketch) 
 
Here p, q and n are integers, with q greater than p. We are interested in the case 
where n tends to infinity. We approximate integrals using the Euler-Maclaurin 
summation formula. The approximations below become equalities as n tends to infinity. 

 
The first approximation is related to the Abelian theorem. We also used the classic 
approximation of the harmonic series to make the logarithm terms appear. Note that for 

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Frullani_integral
https://math.stackexchange.com/questions/61828/proof-of-frullanis-theorem
https://www.ams.org/journals/proc/1990-109-01/S0002-9939-1990-1007485-4/S0002-9939-1990-1007485-4.pdf
https://www.wolframalpha.com/
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Abelian_and_tauberian_theorems
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://storage.ning.com/topology/rest/1.0/file/get/323866903?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/294458112?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/295092023?profile=original
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large values of k, g(k) is asymptotically equal to k. This was one of the requirements for 
the formula to be valid.  
We also have: 

 
Using the change of variable y = x / q in the first integral, and y = x / p in the second 
integral, we obtain: 

 
This concludes the proof. 

Note that for all the examples in the introduction, I used g(x) = x. I also tested it with 
different functions such as g(x) = x + 1, and it also worked.  The results are not posted 
here.  
 
Generalization 
 
So far, we assumed that g(x)/x tends to 1 as x tends to infinity. What if instead, we 
make the more general assumption that g(x) / x, is equal to 1 on average? Using the 
notation E(f) or E(f(x)) interchangeably to denote the expectation of a function f,  the 
main results becomes: 

 
This formula works even if f or g is not Riemann-integrable, as long as the expectations 
are finite and different from zero. In this case, the integrals can be replaced by infinite 
sums or averages over equally-spaced points.  
 
An example of function g not covered by the main theorem, but covered by its 
generalization, is  

 
In this case, E(x/g(x)) = 1/21/2.  
 

11. From A/B Testing to Discrete Choice Analysis 
 
Let’s say you  want to test the optimum price for some items sold online. One way to do 
it is to set two different prices and do some A/B testing to see which price generates the 
most revenue, or comparing user-customized versus flat prices, using Thompson 
sampling, the Taguchi method  or multi-armed A/B testing. 
 

https://www.quora.com/How-is-Thompson-Sampling-used-in-A-B-testing
https://www.quora.com/How-is-Thompson-Sampling-used-in-A-B-testing
https://en.wikipedia.org/wiki/Fractional_factorial_design
https://splitmetrics.com/blog/multi-armed-bandit-in-a-b-testing/
https://storage.ning.com/topology/rest/1.0/file/get/295314042?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/323548617?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/326684701?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/326867323?profile=original


260 
 

How to proceed if you want to test a continuous set of prices, not just two or three prices 
A/B/C? Is testing (say) 10,000 different prices any better than standard A/B testing, or 
does it lead to over-fitting and thus a non-robust solution? Likewise, if you want to test 
which background color works best for a website, is testing one million different colors 
more efficient than standard testing, and how to do it? 

 
Also, let's say you want to modify 20 features on your website, each one having 4 
potential values (color, font size, font face and so on). In short, instead of A/B testing 
with 2 potential outcomes (A or B), you perform a multivariate test with 420 outcomes. Of 
course you will be able to test only a tiny fraction of all the possibilities, but is it more 
efficient than sequentially doing an A/B test for one feature, then another A/B test for 
another feature, and so on? The latter approach would take a lot of time and would 
result in a very local optimum. For instance, for the first feature, maybe A works best, for 
the second one (after choosing A for the first one) C works best, but for both featured 
combined, maybe (D, B) works best. How to do such a test when the number of 
potential combinations is 420? 

Finally, how do you determine the sample size for these types of experiments? Or in 
other words, what is the stopping criterion?  
 
The technique used by leading market research professionals to solve the problems 
described here is called conjoint or discrete choice analysis. Here is a brief example 
of the type of problem conjoint analysis helps solve. Conjoint analysis helps you 
develop the preferred product or service based on almost an unlimited number of 
attributes (price, color, font size, etc.) and levels (different prices, different colors, 
different font sizes, etc.). The ultimate output of the conjoint model is a simulator that 
lets you test for the best product (based on market share, sales, other objectives) and 
can provide you a price elasticity of demand curve for a price. Sawtooth Software uses 
Hierarchical Bayesian Regression to drive their models. 
 

12. Deep Dive into Polynomial Regression and Overfitting 
 
Here, we show that the issue with polynomial regression is not over-fitting, but 
numerical precision. Even if done right, numerical precision still remains an 
insurmountable challenge. We focus here on step-wise polynomial regression, which is 
supposed to be more stable than the traditional model. In step-wise regression, we 
estimate one coefficient at a time, using the classic least square technique.  
 
Even if the function to be estimated is very smooth, due to machine precision, only the 
first three or four coefficients can be accurately computed. With infinite precision, all 
coefficients would be correctly computed without over-fitting. We first explore this 
problem from a mathematical point of view in the next section, then provide 
recommendations for practical model implementations in the last section.  

This is also a good read for professionals with a math background interested in learning 
more about data science, as we start with some simple math, then discuss how it 
relates to data science. Also, this is an original article, not something you will learn in 

https://www.sawtoothsoftware.com/download/techpap/undca15.pdf
https://www.sawtoothsoftware.com/
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college classes or data camps, and it even features the solution to a regression problem 
involving an infinite number of variables. 

 
12.1. Polynomial regression for Taylor series 
 

Here we show how the mathematical machinery behind polynomial regression creates 
big challenges, even in a perfect environment where the response is well behaved and 
the exact theoretical model is known. In the next section, we shall show how these 
findings apply in the context of statistical polynomial regression, to design a better 
modeling tool for data scientists and statisticians. 

Let us consider a function f(x) that can be represented by a Taylor series: 

 
Here we assume that the coefficients are bounded, though the theory also works with a 
less restrictive assumption, provided that the coefficients do not increase too fast. In 
most cases, for instance the exponential function, the successive coefficients actually 
get closer and closer to 0, guaranteeing convergence at least when |x| < 1. The 
function f(x) does not need to be differentiable; it could even be differentiable nowhere, 
such as for the Weierstrass function. So the context here is more general than the 
standard Taylor series framework.  
 
Stepwise polynomial regression: algorithm 
 
We introduce here an iterative algorithm to estimate the coefficients bk one at a time, in 
the above Taylor series. Note that we are dealing with a regression problem with an 
infinite number of variables. It is still solved using classic least square approximations. 
We focus on values of x that are located in a small symmetrical interval centered at 0. 
This interval is denoted as S. The estimated coefficients are denoted as ak. We 
introduce the following notations: 

 
Here, E(n) is called the mean squared error after estimating n coefficients. It measures 
how well we are approaching the target function f(x) after n steps. The coefficient an (the 
estimated value of bn) is chosen to minimize the mean squared error E(n) in the above 
formula. Note that the mean squared error is a decreasing function of n. We proceed 
iteratively starting with n = 0.  As in the standard least square framework, take the 
derivative of E(n) with respect to an, and find its root, to determine an. The result is  
 

 

https://en.wikipedia.org/wiki/Weierstrass_function
http://storage.ning.com/topology/rest/1.0/file/get/2808357908?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808357933?profile=original
http://storage.ning.com/topology/rest/1.0/file/get/2808358390?profile=original
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Convergence theorem 
 

We have the following remarkable result: 

As the interval S, centered at 0, gets smaller and smaller and tends to S = {0}, the 
estimated coefficients ak tend to the true value bk. 
 
For instance, if f(x) = exp(x), that is, if bk = 1/k!, then the estimates ak also tend to 1/k!. 
Thus this framework provides an alternate way to compute the coefficients of a Taylor 
series, even when derivatives of f(x) do not exist. It also means that step-wise 
regression, in this context, works just as well as a full-fledged regression, yet involves 
far fewer computations. A full-fledged regression would involve inverting an infinite 
matrix.  
 
The proof of this theorem is quite simple, and proceeds by induction. First, check that a0 
= b0. Then, if ak = bk for all k less than or equal to n, we must also have an+1 = bn+1. In 
order to prove this, note that under this assumption, we have: 

 
As S tends to {0}, all terms except the first one (corresponding to k = 0) in the above 
series, vanish. Thus an+1 = bn+1, at the limit. Thus, all estimated coefficients match the 
true ones. 
 
12.2. Application to Real Life Regression Models 
 

The convergence theorem in the previous section seems to solve everything, even 
dealing with an infinite number of variables in a regression problem, and yet delivering a 
smooth, robust theoretical solution to a problem notoriously known for its over-fitting 
issues. It has to be too good to be true. While the theoretical result is correct, we 
explore in this section how it translates to applications such as fitting actual data with a 
polynomial model. It is not pretty, but also not as bad as you would think. 

In real life applications, S is your set observations (the independent variable) rather than 
an interval, after re-scaling these observations so that they are centered at 0, and all 
very close to 0. You then replace the integral by a sum over all your re-scaled data 
points. Everything else stays the same.   
 
I tested this using the same perfectly exponential response f(x) = exp(x), using m = 
1,000,000 random deviates distributed on [-1/m, -1/m] to simulate a real data set. I then 
computed the estimates ak. By design, according to the convergence theorem, they 
should all be close to ak = 1/k!. This did not happen. Indeed it only worked for k = 0 
and k = 1. By tweaking the parameters (the set S and m) I was able to get up to four 
correct coefficients. This is the best that I could get, due to machine precision. Now the 
good news: Even though higher order coefficients were all very wrong, the impact on 
interpolation / predictive power was minimal for four reasons: 

http://storage.ning.com/topology/rest/1.0/file/get/2808358883?profile=original
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 S was extremely concentrated around 0, 
 As a result, higher terms (k = 3, 4, etc.) had almost no impact on the response, 
 As a result, getting higher order estimates ak, even if totally wrong, had no impact 

on the error E(n) discussed in the first section, 
 It was obvious that beyond k = 3 or k = 4, the error, very small, so small that it 

was smaller than machine precision, stabilized and did not go up, as expected.  
 

The most surprising result is as follows, and I noticed this behavior in all my tests: 

 Typical values: a0 = 0.999999995416665, a1 = 0.999999965249988, a2 = 
3.55555598019368. The correct ones are respectively 1, 1, and 1/2. 

 Replace a(0) = 0.999999995416665 by a(0) = 1 in the regression model, now you 
get a1 = 1, and a2 =   0.50000086709697, very close to the theoretical value 1/2. 
How can such a small difference have such a big impact?  

 
The answer is because machine precision in standard arithmetic is typically about 15 
decimals, and the error E(n) quickly drops to 1/1025, largely because the independent 
observations are highly concentrated so close to 0. One way to get around this is to 
use high precision computing. It allows you to work with thousands of correct decimals 
(or billions if you wanted to, but expect it to be very slow), rather than just 15.   
 
Recommendations for practical model implementation 
 

Here are some takeaways from my experiments: 

 Polynomial regression, in general, should be avoided. If you want to do it, use 
step-wise polynomial regression as described in this article: it is more stable, and 
it leads to easier interpretation. 

 Rescale your independent variable so that data points for this variable fit in [-1, 
1], maybe even in [-0.01, 0.01], to get more robust results. Use for interpolation, 
not extrapolation. 

 Avoid making predictions outside any for x outside [-1, 1]. 
 Start with a standard linear regression to get your first two estimated 

coefficients a0 and a1 as accurate as possible. Then do a stepwise polynomial 
regression to get the third and fourth coefficients in your polynomial model, with 
the first two coefficient estimates set to the value obtained in the linear 
regression.   

 When the error E(n) does not improve when adding new coefficients and 
increasing n, stop adding them. This should be your stopping point in your 
iterative step-wise polynomial regression algorithm, usually occurring at n = 3 or 
4 unless you use the techniques (high precision computing and so on) described 
in this article. 

 
Also, it is easy to compute confidence intervals for the coefficients in the step-wise 
linear regression, using Monte-Carlo simulations. Add random noise to your data, do it a 
thousand times with a different noise, and see how the estimated ak's fluctuate based 
on the added noise: this will help you build confidence bands for your estimates.  

https://www.datasciencecentral.com/profiles/blogs/high-precision-computing-benchmark-examples-and-tutorial
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The author of the article Step-wise Polynomial Regression: Royal Road or Detour? 
(here) comes to the same conclusion: it is an ill-conditioned n  problem. The solution is 
to replace xk in the Taylor series by a more general but smoother term gk(x) called a 
spline. The convergence theorem can easily be generalized. 
 

13. Lifecycle of Data Science Projects 
 
Data science projects can be broken down into 7 main phases. It is sometimes 
necessary to move back to a previous stage to fix previous business mistakes, and start 
over from there. Also, respect the 80/20 rule. Here are the 7 phases: 
 

Identify the problem 

 Identify baseline (doing nothing) and metrics used to measure success over 
baseline 

 Identify type of problem: prototyping, proof of concept, root cause analysis, 
predictive analytics, prescriptive analytics, machine-to-machine implementation 

 Identify key people within your organization and outside 
 Get specifications, requirements, priorities, budgets 
 How accurate the solution needs to be? 
 Do we need all the data? 
 Built internally versus using a vendor solution 
 Vendor comparison, benchmarking 

 

Identify available data sources 

 Extract (or obtain) and check sample data (use sound sampling techniques); 
discuss fields to make sure data is understood by all stakeholders 

 Perform EDA (exploratory analysis, data dictionary) 
 Assess quality of data, and value available in data 
 Identify data glitches, find workarounds 
 Is data quality and fields populated consistent over time? 
 Are some fields a blend of different stuff (example: keyword field, sometimes 

equal to user query, sometimes to advertiser keyword, with no way to know 
except via statistical analyses or by talking to business people) 

 How to improve data quality moving forward? 
 Do I need to create mini summary tables  / database to store external data or 

perform local analyses more efficiently? 
 Which tool do I need (R, Excel, Tableau, Python, Tableau, SAS and so on) 

 

 

Identify if additional data sources are needed 

 What fields should be captured? 
 How granular? 
 How much historical data do we need? 

https://www.jstor.org/stable/40241102
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 Do we need real time data? 
 How to store or access the data (NoSQL? Cloud?) 
 Do we need experimental design? 

 

Statistical Analyses 

 Use imputation methods as needed 
 Detect / remove / interpret outliers 
 Selecting variables (also, variables reduction) 
 Is the data censored (hidden data, as in survival analysis or time-to-crime 

statistics) 
 Cross-correlation analysis 
 Model selection (as needed, favor simple models) 
 Sensitivity analysis 
 Cross-validation, model fitting 
 Measure accuracy, provide confidence intervals 

 

Implementation, development 

 FSSRR: Fast, simple, scalable, robust, re-usable 
 How frequently do I need to update lookup tables, white lists, data uploads, and 

so on 
 Debugging 
 Need to create an API to communicate with other apps? 

 

Communicate results 

 Need to integrate results in dashboard? Need to create an email alert system? 
 Decide on dashboard architecture, with business people 
 Visualization 
 Discuss potential improvements (with cost estimates) 
 Provide training 
 Commenting code, writing a technical report, explaining how your solution should 

be used, parameters fine-tuned, and results interpreted 

 

Maintenance 

 Test the model or implementation; stress tests 
 Regular updates 
 Final outsourcing to engineering and business people in your company, once 

solutions is stable 
 Help move solution to new platform or vendor 
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Appendix A. Linear Algebra Revisited 

This simple introduction to matrix theory offers a refreshing perspective on the subject. 
Using a basic concept that leads to a simple formula for the power of a matrix, we see 
how it can solve time series, Markov chains, linear regression, data reduction, principal 
components analysis (PCA) and other machine learning problems. These problems are 
usually solved with more advanced matrix calculus, including eigenvalues, 
diagonalization, generalized inverse matrices, and other types of matrix normalization. 
Our approach is more intuitive and thus appealing to professionals who do not have a 
strong mathematical background, or who have forgotten what they learned in math 
textbooks. It will also appeal to physicists and engineers. Finally, it leads to simple 
algorithms, for instance for matrix inversion. The classical statistician or data scientist 
will find our approach somewhat intriguing.  

 

1. Power of a Matrix 
 
For simplicity, we illustrate the methodology for a 2 x 2 matrix denoted as A. The 
generalization is straightforward. We provide a simple formula for the n-th power of A, 
where n is a positive integer. We then extend the formula to n = -1 (the most useful 
case) and to non-integer values of n.  
Using the notation 

 
we obtain 

 
 

Using elementary substitutions, this leads to the following system: 

 
 
We are dealing with identical linear homogeneous recurrence relations. Only the initial 
conditions corresponding to n = 0 and n = 1, are different for these four equations. The 
solution to such equations is obtained as follows (see here for details.) First, solve the 
quadratic equation 

 
The two solutions r1, r2 are 

https://math.berkeley.edu/~arash/55/8_2.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2667074766?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667090771?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667113811?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667129993?profile=original
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If the quantity under the square root is negative, then the roots are complex numbers. 
The final solution depends on whether the roots are distinct or not: 

 
with 

 
 
Here the symbol I represents the 2 x 2 identity matrix. The last four relationships were 
obtained by applying the above formula for An, with n = 0 and n = 1. It is easy to prove 
(by recursion on n) that this is the correct solution. 
 
If none of the roots is zero, then the formula is still valid for n = -1, and thus it can be 
used to compute the inverse of A. 
 

2. Examples, Generalization, and Matrix Inversion 
 
For a p x p matrix, the methodology generalizes as follows. The quadratic polynomial 
becomes a polynomial of degree p, known as the characteristic polynomial. If its roots 
are distinct, we have 

 
The matrix V is a Vandermonde matrix, so there is an explicit formula to compute its 
inverse, see here and here.  A fast algorithm for the computation of its inverse is 
available here.  The determinants of A and V are respectively equal to 
 

 
Note that the roots can be real or complex numbers, simple or multiple, or equal to zero. 
Usually the roots are ordered by decreasing modulus, that is 

 

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
https://en.wikipedia.org/wiki/Vandermonde_matrix
https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660023042.pdf
https://ieeexplore.ieee.org/document/5413083
https://storage.ning.com/topology/rest/1.0/file/get/2667149450?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2667289630?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2673525095?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674945087?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674995043?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2674956619?profile=original
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That way, a good approximation for An is obtained by using the first three or four roots 
if n > 0, and the last three or four roots if n < 0. In the context of linear regression (where 
the core of the problem consists of inverting a matrix, that is, using n = -1 in our general 
formula) this approximation is equivalent to performing a principal component 
analysis (PCA) as well as PCA-induced data reduction.   
 
If some roots have a multiplicity higher than one, the formulas must be adjusted. The 
solution can be found by looking at how to solve an homogeneous linear recurrence 
equation, see theorem 4 in this document.  
 
2.1. Example with a non-invertible matrix 
 
Even if A is non-invertible, some useful quantities can still be computed when n = -1, not 
unlike using a pseudo-inverse matrix in the general linear model in regression analysis. 
Let's look at this example, using our own methodology: 
 

 
The rightmost matrix attached to the second root 0 is of particular interest, and plays the 
role of a pseudo-inverse matrix for A. If that second root was very close to zero rather 
than exactly zero, then the term involving the rightmost matrix would largely dominate in 
the value of An, when n = -1. At the limit, some ratios involving the (non-existent!) 
inverse of A still make sense. For instance: 
 

 The sum of the elements of the inverse of A, divided by its trace, is (4 - 2 - 2 + 1) / 
(4 + 1) = 1 / 5. 

 The arithmetic mean divided by the geometric mean of its elements, is 1 / 2. 

 
2.2. Fast computations 
 
If n is large, one way to efficiently compute An is as follows. Let's say that n = 100. Do 
the following computations: 
 

 
 
This can be useful to quickly get an approximation of the largest root of the 
characteristic polynomial, by eliminating all but the first root in the formula for An, and 
using n = 100. Once the first root has been found, it is easy to also get an approximation 
for the second one, and then for the third one. 
 
If instead, you are interested in approximating the smallest roots, you can proceed the 
other way around, by using the formula for An, with n = -100 this time.  
 
 

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://math.berkeley.edu/~arash/55/8_2.pdf
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Generalized_linear_model
https://storage.ning.com/topology/rest/1.0/file/get/2676775158?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2676086869?profile=original
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3. Application to Machine Learning Problems 
 

We have discussed principal component analysis, data reduction, and pseudo-inverse 
matrices in section 2. Here we focus on applications to time series, Markov chains, and 
linear regression. 

 
3.1. Markov chains 
 
A Markov chain is a particular type of  time series or stochastic process. At iteration or 
time n, a system is in a particular state s with probability P(s | n). The probability to 
move from state s at time n, to state t at time n + 1 is called a transition probability, and 
does not depend on n, but only on s and t. The Markov chain is governed by its initial 
conditions (at n = 0) and the transition probability matrix denoted as A. The size of the 
transition matrix is p x p, where p is the number of potential states that the system can 
evolve to. As n tends to infinity An and the whole system reaches an equilibrium 
distribution. This is because 
 

 The characteristic polynomial attached to A has a root equal to 1.  
 The absolute value of any root is less than or equal to 1. 

 
3.2. AR processes 
 
Auto-regressive (AR) processes represent another basic type of time series. Unlike 
Markov chains, the number of potential states is infinite and forms a continuum. Yet the 
time is still discrete. Time-continuous AR processes such as Gaussian processes, are 
not included in this discussion. An AR(p) process is defined as follows: 
 

 
 
Its characteristic polynomial is 

 

 
 
Here { en } is a white noise process (typically uncorrelated Gaussian variables with 
same variance) and we can assume that all expectations are zero. We are dealing here 
with a non-homogeneous linear (stochastic) recurrence relation. The most interesting 
case is when all the roots of the characteristic polynomial have absolute value less than 
1. Processes satisfying this condition are called stationary. In that case, the auto-
correlations are decaying exponentially fast. 
 
The lag-k covariances satisfy the relation  
 

 

https://www.datasciencecentral.com/page/search?q=markov+chain
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/White_noise
https://storage.ning.com/topology/rest/1.0/file/get/2681289621?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2681372862?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2682761959?profile=original
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with 

 
 
Thus the auto-correlations can be explicitly computed, and are also related to the 
characteristic polynomial. This fact can be used for model fitting, as the auto-correlation 
structure uniquely characterizes the (stationary) time series. Note that if the white noise 
is Gaussian, then the Xn's are also Gaussian.  
 
The results about the auto-correlation structure can be found in this document, pages 
98 and 106, originally posted here.  See also this this document (pages 112 and 113) 
originally posted here, or the whole book (especially chapter 6) available here. See also 
section 4 (Appendix.) 
 
3.3. Linear regression 
 
Linear regression problems can be solved using the OLS (ordinary least squares) 
method, see here. The framework involves a response y, a data set X consisting 
of p features or variables and m observations, and p regression coefficients (to be 
determined) stored in a vector b. In matrix notation, the problem consists of 
finding b that minimizes the distance ||y - Xb|| between y and Xb. The solution is  
 

 
 
The techniques discussed in this appendix can be used to compute the inverse of A, 
either exactly using all the roots of its characteristic polynomial, or approximately using 
the last few roots with the lowest moduli, as if performing a principal component 
analysis. If A is not invertible, the methodology described in section  2.1 can be useful: it 
amounts to working with a pseudo inverse of A. Note that A is a p x p matrix as in 
section 2. 
 
Questions regarding confidence intervals (for instance, for the coefficients) can be 
addressed using the model-free re-sampling techniques discussed in chapter 16.   
 

4. Appendix 
 
Here we connect the dots between the auto-regressive time series described in section 
3.2., and the material in section 2. For the AR(p) process in section 3.2., we have 

 

https://storage.ning.com/topology/rest/1.0/file/get/2682985975?profile=original
http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2014/model_analysis1/08.pdf
https://storage.ning.com/topology/rest/1.0/file/get/2704799935?profile=original
http://www.maths.qmul.ac.uk/~bb/TimeSeries/TS_Chapter6_2_1.pdf
http://www.maths.qmul.ac.uk/~bb/TimeSeries/
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://storage.ning.com/topology/rest/1.0/file/get/2682892115?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2683849728?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2737303528?profile=original
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where V is the same matrix as in section 2, the rk's are the roots of the characteristic 
polynomial (assumed distinct here), and g is a linear function of ep, ep+1, ..., en. For 
instance, if p = 1, we have 

 
This allows you to compute Var[Xn] and Cov[Xn, Xn-k], conditionally to  X0, ..., Xp-1. The 
limit, when n tends to infinity, allows you to compute the unconditional variance and 
auto-correlations attached to the process, in the stationary case. For instance, if p = 1, 
we have 
 

 
where 2 is the variance of the white noise, and |a1| < 1 because we assumed 
stationarity.   
 
For the general case (any p) the formula, if n is larger than or equal to p, is  
 

 
 
The initial conditions for the coefficients Ak correspond to k = 0, -1, -2, ..., -(p -1), as 
listed above. The recurrence relation for Ak, besides the initial conditions, is identical to 
the previous one and thus can be solved with the same p x p matrix V and the same 
roots. If two time series models, say an ARMA and an AR models, have the same 
variance and covariance structure, they are actually identical.  
 

 

  

https://storage.ning.com/topology/rest/1.0/file/get/2737325403?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2739449849?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/2740399927?profile=original


272 
 

Appendix B. Organized Chaos 

I decided to add this appendix as it is a nice introduction to stochastic processes, time 
series and dynamical systems, with applications in experimental mathematics, Fintech, 
cryptography and Blockchain. Also it discusses new statistical tests (the Brownian test) 
and especially, several examples discussed in this book are based on the processes 
investigated in this appendix.  

I present here some innovative results from my most recent research on stochastic 
processes. chaos modeling, and dynamical systems, with applications to Fintech, 
cryptography, number theory, and random number generators. While covering 
advanced topics, this appendix is accessible to professionals with limited knowledge in 
statistical or mathematical theory. It introduces new material not covered in my recent 
book (available here) on applied stochastic processes. You don't need to read my book 
to understand this article, but the book is a nice complement and introduction to the 
concepts discussed here. 
 

None of the material presented here is covered in standard textbooks on stochastic 
processes or dynamical systems. In particular, it has nothing to do with the classical 
logistic map or Brownian motions, though the systems investigated here exhibit very 
similar behaviors and are related to the classical models. This cross-disciplinary 
appendix is targeted to professionals with interests in statistics, probability, 
mathematics, machine learning, simulations, signal processing, operations research, 
computer science, pattern recognition, and physics. Because of its tutorial style, it 
should also appeal to beginners learning about Markov processes, time series, and data 
science techniques in general, offering fresh, off-the-beaten-path content not found 
anywhere else, contrasting with the material covered again and again in countless, 
identical books, websites, and classes catering to students and researchers alike.  

 
Some problems discussed here could be used by college professors in the classroom, 
or as original exam questions, while others are extremely challenging questions that 
could be the subject of a PhD thesis or even well beyond that level. This appendix 
constitutes (along with my book) a stepping stone in my endeavor to solve one of the 
biggest mysteries in the universe: are the digits of mathematical constants such as Pi, 
evenly distributed? To this day, no one knows if these digits even have a distribution to 
start with, let alone whether that distribution is uniform or not. Part of the discussion is 
about statistical properties of numeration systems in a non-integer base (such as the 
golden ratio base) and its applications. All systems investigated here, whether 
deterministic or not, are treated as stochastic processes, including the digits in question. 
They all exhibit strong chaos, albeit easily manageable due to their ergodicity.   
 

Interesting connections to the golden ratio, Fibonacci numbers, Pisano periods, special 
polynomials, Brownian motions, and other special mathematical constants, are 
discussed throughout the article. All the analyses were done in Excel. You can 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://en.wikipedia.org/wiki/Ergodicity
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download my spreadsheets from this appendix; all the results are replicable. Also, 
numerous illustrations are provided.  

Content  
 

 General framework, notations and terminology 
o Finding the equilibrium distribution 
o Auto-correlation and spectral analysis 
o Ergodicity, convergence, and attractors 
o Space state, time state, and Markov chain approximations 
o Examples 

 Case study 
o First fundamental theorem 
o Second fundamental theorem 
o Convergence to equilibrium: illustration 

 Applications 
o Potential application domains 
o Example: the golden ratio process 
o Finding other useful b-processes 

 Additional research topics 
o Perfect stochastic processes and Brownian motions 
o Characterization of equilibrium distributions (the attractors) 
o Probabilistic calculus and number theory, special integrals 

 Appendix 
o Computing the auto-correlation at equilibrium 
o Proof of the first fundamental theorem 
o How to find the exact equilibrium distribution 
o Perfect process with no auto-correlation 

 Additional Resources 
 

1. General framework, notations and terminology 
 
We are dealing here with sequences { xn }, sometimes denoted as { x(n) }, starting 
with n = 1, recursively defined by an iterative formula xn+1 = g(xn). We will explore 
various functions g in the next sections. Typically, xn is a real number in [0, 1], and g is a 
mapping such that xn+1 = g(xn) is also in [0, 1]. The first, value, x1, is called the seed. In 
short, { xn } is a time series or stochastic process, and the index n denotes the (discrete) 
time or iteration.  
 
Typically, the values xn appear to be distributed somewhat randomly, according to some 
statistical distribution called the equilibrium distribution, and generally, the xn's are auto-
correlated.  So xn can be seen as a realization or observation of a random variable X, 
whose distribution is the equilibrium distribution. That is, the empirical distribution of 
the xn's, when computed on a large number of terms, tends to the theoretical equilibrium 
distribution in question.  Also, in practice, the vast majority of seeds yield the same 
exact equilibrium distribution. Such seeds are known as good seeds, the other ones are 
called bad seeds.  
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1.1. Finding the equilibrium distribution 
 
The equilibrium distribution can be obtained by solving the equation P(X < y) = P(g(X) < 
y) with y in [0, 1]. This is actually a stochastic integral equation: the probability 
distribution P is the solution, and corresponds to the distribution of X. This distribution is 
sometimes denoted as F. Whether the equilibrium distribution exists or not, and whether 
it is unique or not (for good seeds), is not discussed here. However, we will provide 
several examples with unique equilibrium distribution, throughout this article, including 
how to solve the stochastic integral equation. The density attached to the equilibrium 
distribution is called the equilibrium density and is denoted as f. 
 
1.2. Auto-correlation and spectral analysis 
 
The theoretical auto-correlation between successive values of x(n) can be computed as 
follows: 

 
Once computed, it is interesting to compare its value to the observed auto-correlation 
measured on the first few thousand terms of the sequence { xn }. Longer-term auto-
correlations (lag-2, lag-3 and so on) can be computed using the same principle, either 
theoretically or empirically (on data). The entire auto-correlation structure, given the 
equilibrium distribution, uniquely characterizes the stochastic process. The study of 
these auto-correlations is called spectral analysis. 
 
1.3. Ergodicity, convergence, and attractors 
 
So far we have looked at one instance or realization { xn } of the underlying process, 
characterized by a mapping g and a seed x1. This provides enough information to 
determine the auto-correlation structure and equilibrium distribution, which do not 
depend on the good seed.  
 
There is another way to look at things. You can simulate m deviates of a random 
variable Z1 with any pre-specified distribution, say uniform on [0, 1]. Then apply the 
mapping g to each of these deviates, to obtain another set of m values. These new 
values are m deviates of a random variable denoted as Z2, also with known statistical 
distribution. Repeat this step over and over, to obtain Z3, Z4, and so on. For large n, Zn 
converges in distribution to the equilibrium distribution, regardless of the initial 
distribution chosen for Z1. We illustrate how it works on an example, later in this article. 
Because convergence to the same equilibrium distribution occurs regardless of the 
initial distribution, the equilibrium distribution, in the language of dynamical systems, is 
called an attractor distribution. The method described here can be used to identify these 
attractors.  
 

https://storage.ning.com/topology/rest/1.0/file/get/1473713810?profile=original
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A stochastic process where the equilibrium distribution does not depend on Z1 nor on 
the good seed, is called ergodic. All the processes studied here are ergodic. An 
example of non-ergodic process can be found here.  
 
1.4. Space state, time state, and Markov chain approximations 
 
The space state is the space where { xn } takes its values; here it is [0, 1] and is thus 
continuous. The time space is attached to the index n, and it is discrete here. However, 
in some of our examples, xn can be written explicitly as a function of n, thus it can easily 
be extended to real values of n, making it a time-continuous process.  
 
We can also divide the continuous space state [0, 1] into a finite number of disjoint 
intervals S(1), S(2), ..., S(k). Rather than studying the full equilibrium distribution, we 
could compute the probabilities 
 

 
 
Then we are dealing with a state-discrete Markov chain with k states, and p(i, j) 
represents the transition probability for moving from state i to state j, estimated 
on n observations x1, ..., xn. One can compute the steady state probability vector, by 
solving a linear system of k equations; it represents the stable state of the system. 
As k and n tend to infinity and the intervals S(1), ..., S(k) become infinitesimal, the 
steady state probability vector converges to the equilibrium density. This is another way 
to approximate the equilibrium distribution.   
 
1.5. Examples 
 
The most well-known examples of { xn } are random walks (n discrete) and Brownian 
motions (n continuous). However, since the space state considered in this appendix is 
[0, 1], a better suited example would be a random walk constrained to stay within [0, 1]. 
Such processes are discussed in my previous book, in chapter 3. Other less well known 
examples, but more relevant to this article, are also discussed in my previous book 
(chapters 7 to 12), and here, including the logistic map xn+1 = 4 xn(1 - xn). Also:  
 

 xn+1 = (sin(xn)
b, where b is a parameter between 0 and 1 

 xn+1 = | log xn |, known as the logarithmic map, see here 
 xn+1 = 1 / |1 - xn |

b, where b is a parameter between 0 and 1 (typically b = 0.5) 
 

Let us now introduce the example that we will discuss in detail throughout the remaining 
of this article. It is defined with the following mapping:  

 
Here the curly brackets represent the fractional part function, also denoted as FRAC. 
The straight brackets on the right-hand side represent the integer part or floor function, 
also denoted as INT. Since the seed is between 0 and 1, we also have this interesting 

https://www.datasciencecentral.com/profiles/blogs/difficult-probably-problem-distribution-of-digits
http://www.sosmath.com/matrix/markov/markov.html
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/pattern-recognition-techniques-application-to-new-decimal-systems
https://math.stackexchange.com/questions/3244544/which-positive-continuous-functions-satisfy-fx-fex-fe-x-for-x-geq
https://storage.ning.com/topology/rest/1.0/file/get/1475118402?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1475503614?profile=original
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property: INT(bxn) is the nth digit of the seed x1, in base b. Thus the parameter b is 
called the base, and it can be any real number greater than 1. In the next section, we 
consider the case where b is in ]1, 2]. Non-integer bases are also discussed 
here and here, and also extensively in my previous book. While this process looks very 
peculiar, there is a mapping between the base-2 system, and the very popular logistic 
map system: see chapter 10 in my previous book for details, or here for a summary.   
 
It makes sense to call this process the base-b process. If b is an integer, its equilibrium 
distribution is uniform on [0, 1] assuming you use a good seed. Also, if b is an integer, 
the auto-correlation between successive values of xn is 1/b. This fact was probably 
mentioned for the first time in my previous book. It was never proved, but assumed 
based on simulations and a lot of data crunching. The proof is actually quite simple and 
worth reading; it shows how to compute such auto-correlations, and constitutes an 
interesting classroom problem or exam question. You will find it in this appendix. 
 
Pretty much all numbers in [0, 1] are good seeds for the b-process. However, there are 
infinitely many exceptions: in particular, none of the rational numbers is a good seed. 
Identifying the class of good seeds is an incredibly complicated problem, still unsolved 
today. If we knew which numbers are good seeds, we would know whether or not the 

digits of  or any popular mathematical constant, are evenly distributed. Another 
question is whether or not a good seed is just a normal number, and conversely. The 
two concepts are closely related, and possibly identical. Later in this appendix, we will 
discuss a stochastic process where all seeds are good seeds.  
 
Finally, the most interesting values of b are those that are less than two. In some ways, 
the associated stochastic processes are also much easier to study. But most 
interestingly, the similarities between these b-processes and stochastic dynamical 
systems are easier to grasp, for instance regarding branching behavior, and attractors. 
This is the subject of the next section. The second fundamental theorem in the next 
section is one of the fascinating results published here for the first time, and still a work 
in progress.  
 
Note that if b is an integer, it is easy to turn the time-discrete b-process into a time-
continuous one. We have 

 
Thus the formula can be extended to values of n that are not integers.  
 

2. Case study 
 
In this section, we consider the b-process introduced as an example in section 1.5, 
with b in ]1, 2]. Thus, xn+1 = g(xn), with g(x) = bx - INT(bx), and x1 is the seed. We now 
jump right away to the two fundamental theorems, and cool applications will follow 
afterwards.    
 
 
 

https://en.wikipedia.org/wiki/Non-integer_representation
https://en.wikipedia.org/wiki/Golden_ratio_base
https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://www.datasciencecentral.com/profiles/blogs/logistic-map-chaos-randomness-and-quantum-algorithms
https://www.datasciencecentral.com/profiles/blogs/number-representation-systems-explained-in-one-picture
https://en.wikipedia.org/wiki/Normal_number
https://storage.ning.com/topology/rest/1.0/file/get/1476359426?profile=original
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2.1. First fundamental theorem 
 
Let Z be a random variable with an arbitrary distribution F, admitting a density 
function f on [0, 1]. Let Y = g(Z) be the fractional part of bZ, and b in ]1, 2]. Then we 
have: 

 
This result is easy to obtain and constitutes an interesting classroom problem, or exam 
question. The proof is in the appendix. This theorem allows you to design a simple 
iterative algorithm to approximate the equilibrium distribution, and to assess how fast it 
converges to the solution. The result is valid even if the density function of Z has an 
infinite but countable number of discontinuities. This will be the case in the examples 
discussed here, in which a uniform distribution on [0, 1] is chosen for Z.  
 
The algorithm, already discussed in the first section (see the ergodicity, convergence 
and attractors subsection), consists in iteratively computing the distribution of g(Z), 
g(g(Z)), g(g(g(Z))), and so on, until the difference between two successive iterates is 
small enough. Here, the difference is measured as the distance between two 
distributions, using one of the many distance metrics discussed in the literature 
(see here.) 
 
The next theorem tells you in more details what happens if you choose a uniform 
distribution on [0, 1], for Z. This was our favorite choice in most of our simulations.    
 
2.2. Second fundamental theorem 
 
We use the same assumptions as in the first theorem, but here Z has a uniform 
distribution on [0, 1]. The following theorem can be used to find the equilibrium density, 
as illustrated in the appendix, using the supergolden ratio constant for b: 
 
Let Z1 = Z, and Zn+1 = g(Zn). Then Zn+1 has a piece-wise uniform distribution, more 
precisely, a mixture (see chapter 11) of n+1 uniform distributions on n+1 intervals. 
These intervals are denoted as  

[0, c1[,   [c1, c2[,   [c2, c3[, ..., [cn, 1], 
 
and the constant value of the density of Zn+1 on the kth interval (k = 1, ..., n+1) is denoted 
as dk. The distribution of Zn+1 has the following features:  
 

 Sometimes ck-1 = ck depending on b, k, and n  
 bndk is an integer and { dk } is a decreasing sequence 
 ck is a polynomial of degree n in b, with coefficients equal to 0, 1, or -1  
 Only the dominant coefficient of this polynomial is equal to 1 

 

https://en.wikipedia.org/wiki/Statistical_distance
https://en.wikipedia.org/wiki/Supergolden_ratio
https://storage.ning.com/topology/rest/1.0/file/get/1476992326?profile=original
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It is convenient to use the notation c0 = 0 and cn+1 = 1. The ck's, for k = 1, ..., n are called 
the change points. A change point is thus a discontinuity in the density function. One of 
these change points is always equal to b - 1. 
 
I haven't completed the proof of the second theorem yet, and the theorem itself can 
probably be further refined. However, using the first fundamental theorem, it is easy to 
see that when moving from iteration n to n+1, we observe the following: 
 

 Because b is smaller than 2 and Zn+1 takes on value between 0 and 1, it is clear 
that Zn+1, the fractional part of bZn, takes more frequently on smaller values 
(closer to 0) than on larger ones (closer to 1.) Thus the interval densities dk are 
highest next to zero, and lowest next to 1, and decreasing in between. This 
explains why { dk } is a decreasing sequence. 

 The densities are also constant on each interval, as we are only dealing with 
uniform densities, throughout the iterations. Also bkdk must be an integer, as the 
formula in the first fundamental theorem only involves adding integers (divided by 
b). This is easy to prove by recursion.  

 Finally, at iteration n = 2, we have a single change point c1 = b - 1, and two 
intervals. Any new iteration, because of the formula in the first fundamental 
theorem, creates a whole new set of new change points, each one either equal 
to cb or c(b - 1), where c is any change point from the current iteration. This 
explains the special polynomial expression for ck.  

 
For any value of n, the exact distribution of Zn+1 can be computed explicitly. The 
computation is elementary, but becomes incredibly tedious (and should be automated 
using some software) as soon as n is larger than 5: this is a combinatorial problem. But 
particular results are easier to obtain. The simplest case is as follows: 
 

 
 
Exercise: prove that this is actually a density, that is, 

 
Other easy cases include the full solution (for any value of b between 1 and 2) when n = 
2 or n =3. This is left as an exercise. Note that if for some finite value of n, Zn has the 
equilibrium density, then Zn+1, Zn+2 and so on also have that exact same density. This is 
why the equilibrium distribution is called an attractor.  
 
2.3. Convergence to equilibrium: illustration 
 
The first picture below illustrates the convergence of the empirical equilibrium densities 
to the theoretical solution, starting with a simulated uniform density on [0, 1] for Z1, and 
computing the empirical densities for Z2, Z3, and so on, up to Z7. You can check out the 
computations in this spreadsheet. The parameter b used here is the supergolden ratio 

https://storage.ning.com/topology/rest/1.0/file/get/1506742460?profile=original
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constant (see next section) and we used 100,000 observations to estimate each 
density.  

 
 
Below are a few equilibrium densities (approximated using the empirical density) for 
various values of b.  
 

 
 
The spreadsheet used to produce the 4 above charts, with detailed computations, is 
available here. Some exact solutions (where the theoretical equilibrium density is easy 
to compute) are provided in the next section and in the appendix, with a short tutorial on 

https://storage.ning.com/topology/rest/1.0/file/get/1501309462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1506573789?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1502066949?profile=original
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how to discover these solutions and to apply the methodology to the general case (see 
appendix.).  

 
3. Applications 
 
In this section, we discuss applications, still focusing for the most part on b-processes 
with b smaller than 2. But we also discuss other stochastic processes. 
 
3.1. Potential application domains 
 
Stochastic processes or time series models are routinely used in Fintech to model the 
price of some commodities. Thus, b-processes offer a new tool for quants, behaving 
quite differently than traditional processes and time series. The variety in these b-
processes is such, and the behavior so unique depending on b, that it allows the data 
scientist to attach a unique number to an observed time series: its estimated 
parameter b. Two different values of b provide two wildly different types of patterns, as 
is usually the case with all chaotic dynamical systems, for instance, with the logistic 
map. Whether in finance or other fields, these processes model situations in which an 
auto-correlated system evolves chaotically over time, with sharp drops every now and 
then in the equilibrium density, occurring at what we defined earlier as change points. 
Depending on b, the number of change points in [0, 1] can be 2, 3, 4, and so on, up to 
values so large that the equilibrium density looks perfectly smooth (this is the case, for 
instance if b is very close to 1.) Thus the parameter b can be chosen to fit with a wide 
array of change point locations, as well as various downward trends and gaps, in the 
equilibrium density. As discussed in section 2, the b-process can be seen as an infinite 
mixture of uniform distributions on infinitesimal intervals, or finite mixture on larger 
intervals, depending on b.     
 

Other specific applications include: 

 

 Generation of non-periodic, continuous, replicable pseudo-random numbers. 
By far, the largest class of pseudo random number generators currently in use is 
made of periodic, discrete generators, though the period is extremely large in 
modern generators. And random numbers produced using physical devices are 
typically not replicable. To get a good generator, one would have to use a value 
of b resulting in a known equilibrium distribution, start with a good seed, and map 
the sequence { xn } so that the distribution of the mapped xn's (each one 
representing a random number) becomes uniform, with no auto-correlation. How 
to do this is described in the next sub-section about the golden ratio process. 

 
 Thus, with a careful choice of b and proper mapping, b-processes can be used 

in cryptographic systems and Blockchain. Digits produced by b-processes, and 
defined as an = INT(bxn), have the following particular property. The digits are 
binary (equal to 0 or 1), so each digit can be called a bit, using the language of 
information theory. Indeed, when b = 2, this is just the standard base-2 
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numeration system that we are all familiar with. However, when b is smaller than 
2, each digit carries an amount of information smaller than the standard bit. 
Indeed, that amount is equal to the logarithm of b in base 2 (and of course, equal 
to 0 if b = 1.) So not only we invented a unit of information that is smaller than the 
smallest unit currently in use, but it allows you to create encryption systems filled 
with some amount of natural blurring, which may or may not be useful depending 
on the purpose.  

 
 Another application is to benchmark computer systems, testing for accuracy 

when performing heavy computations that require a large number of decimals. If 
you compute the successive values of x1, x2 and so on up to xn, all your numbers 
will be completely wrong once n is larger than 45. You may not notice it initially, 
but try in Excel with a base b that is an even integer: it will become very obvious! 
Sometimes it does not matter (for instance when studying asymptotic properties 
such as auto-correlations or the equilibrium distribution) because b-processes 
are ergodic, and sometimes it matters. This is discussed in detail in my previous 
book, available here: see the chapters about high precision computing, or 
read this article.  

 
 Also, b-process can be used to benchmark and test the power of statistical 

tests, the sample size needed, and other statistical procedures. Since the 
“observations” { xn } have a known statistical distribution (depending on b, see 
next subsection about the golden ratio process)  -- a property never found in 
actual, real life data sets -- you can test a number of hypotheses (for instance 
about the value of some auto-correlation), and check when your statistical tests 
provide the right or wrong answer. Here, the right answer is known in advance! 

 
 Another application is to design a lottery, where the winning number is a 

sequence of digits generated after re-mapping a b-process so that its associated 
digits are uniformly distributed, and with no auto-correlation. See the golden ratio 
process below about how to do this re-mapping. Use digits in positions n = 1,001 
to 1,020 the first week, 1,021 to 1,040 the second week, and so on. The 
advantage of such a lottery is that the winning numbers are known in advance 
yet unpredictable unless you know the secret base b, the secret seed x1, and the 
secret starting point n = 1,001. So it can be labeled as a game of skills rather 
than a game of chance, and not subject to lottery laws. Another example of such 
a “lottery” (number guessing) played with real money and cryptocurrency is 
described in chapter 18.  

 
3.2. Example: the golden ratio process 
 
The golden ratio process, as its name indicates, corresponds to b = (1 + 51/2)/2. Its 
associated numeration system, with INT(bxn) representing the nth digit of the seed x(1) 
in base b, has been studied in some details, see here. This b-process is the best 
behaved one, and the easiest to study, besides b = 2. It is probably the only b-process 
with exactly one change point, and its equilibrium distribution is known (probably 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://www.datasciencecentral.com/profiles/blogs/high-precision-computing-benchmark-examples-and-tutorial
https://en.wikipedia.org/wiki/Golden_ratio_base


282 
 

published here for the first time.) Thus, it is a good candidate for applications such as 
encryption, random number generation, model fitting, testing statistical tests, or 
Blockchain.  
 
(a) Properties and use in cryptography 
 

Using the notations introduced in section 2, this process has the following features: 

 The unique change point is c1 = b - 1 
 The equilibrium distribution is a mixture of two uniform distributions: one on 

[0, c1[, and one on [c1, 1[ 
 At equilibrium, the two respective densities are d1 = (5 + 3*51/2)/10 and d2 = (5 + 

51/2)/10.  
 

Below is a picture of the equilibrium density associated with this process: 

 
 
In order to make this process suitable for use in cryptography, one has to map { xn } 
onto a new sequence { yn }, so that the new equilibrium density becomes uniform on [0, 
1]. This is achieved as follows: 
 

If xn < b -1, then yn = xn/(b - 1) else yn = (xn - (b - 1))/(2 - b).  
 
Now the { yn } sequence has a uniform equilibrium distribution on [0, 1]. However, this 
new sequence has a major problem: high auto-correlations, and frequently, two or three 
successive values that are identical (this would not happen with a random b, but 
here b is the golden ratio -- a very special value -- and this is what is causing the 
problem.) 
 

https://storage.ning.com/topology/rest/1.0/file/get/1492686452?profile=original
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A workaround is to ignore all values of xn that are larger than b - 1, that is, discarding yn 
if xn is larger than b -1. This is really a magic trick. Now, not only the lag-1 auto-
correlation in the remaining { yn } sequence is equal to 1/2, the same value as for the full 
{ xn } sequence with b = 2, but the lag-1 auto-correlation in the remaining sequence of 
binary digits (digits are defined as INT(byn) is also equal to zero, just like for ordinary 
digits in base 2! The proof of these facts is left as an exercise.  
 
(b) Bad seeds and connection to Fibonacci numbers 
 
Fibonacci numbers are defined by the recursion Fn+1 = Fn + Fn-1, with F1 = F2 = 1. 
Also, Fn = INT(xbn) +1 if n is odd, and Fn = INT(xbn) otherwise, with x = 5-1/2. Thus they 
are related to the golden ratio process with b = (1 + 51/2)/2 and the seed x = x1 = 5-1/2. 
That seed is actually a bad seed, resulting in periodicity: xn+4 = xn.  
 
But the link to bad seeds of the golden ratio process does not stop here. All fractions 
1/k, with k a positive integer, are also bad seeds, resulting in periodicity in { xn }. Here 
we compare these periods with those (well-known) of Fibonacci numbers modulo k, 
known as Pisano periods. If you are not familiar with elementary modulo arithmetic, you 
can check the Wikipedia page on the subject, here.  
 

 
 
I only tested a few values of k, but in all cases, both periods were identical. 
 
3.3. Finding other useful b-processes  
 
There are different ways to compute the equilibrium distribution of a b-process when 
you have 3 change points or less. Finding the change points is easy: one of them is 
always b-1, and the other ones can be any of these: 
 

 
 
You can identify them by visual inspection of the empirical equilibrium density. And 
among the 8 potential change points listed above, you must ignore those below 0 or 
above 1. Note that the golden ratio process actually has two change points:  b2 - 
1 and b - 1. But b2 - b = 1 in this case, thus the first one is not a real change point. If you 
try with b = 1.61 (very close to the golden ratio) this ghost change point is now visible, 
and it is very close to 1. If you try b = 1.60, you now have 3 change points. And with b = 
1.59, the empirical equilibrium density looks entirely different, possibly with a lot of 
change points and no visible drop (just a linear, bumpy downward trend), though it is 
hard to tell. In some cases, a change point can be double (or triple) for instance if b3 - b2 

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Pisano_period
https://en.wikipedia.org/wiki/Modulo_operation
https://storage.ning.com/topology/rest/1.0/file/get/1585262369?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1493055673?profile=original
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- b = b - 1. It typically results in an equilibrium density with very few change points. Once 
the change points are known, the densities can be computed using the first fundamental 
theorem (see section 2 in this article) and solving a linear system of equations. This is 
illustrated in the appendix.    
 
Interestingly, the b-processes most likely to have a simple equilibrium density with very 
few change points correspond to b's for which two of the above polynomials have the 
exact same value, or one is equal to 0 or 1, when evaluated for the b in question. This 
was the case for the golden ratio process. Below are other examples:  
 

 b3 - b2 = 1 yields b = 1.4655712318767... (3 change points, b is the supergolden 
ratio) 

 b3 - b2 - b = b - 1 yields b = 1.8019377358048... (3 change points) 
 b5 - b4 = 1 or b3 - b = 1 yields b = 1.32471795724475... (4 change points, b is 

the plastic number) 
 
You can find more about these three special constants, in this article. The exact values, 
respectively for the supergolden ratio and the plastic number, are  
 

 
 
To get an approximation of the equilibrium distribution and see the change points, start 

with a good seed x1. For whatever reasons x1 = 21/2/2 works better than /4. Then 
compute xn up to N = 1,000,000, then plot the empirical equilibrium density computed 
on the xn's. This is illustrated in my spreadsheet, available here. See also the picture 
below based on values of xn for n =1, ..., 300,000,  with b being the plastic number. 
 

 

https://en.wikipedia.org/wiki/Supergolden_ratio
https://en.wikipedia.org/wiki/Supergolden_ratio
https://en.wikipedia.org/wiki/Plastic_number
http://archive.bridgesmathart.org/2000/bridges2000-87.pdf
https://storage.ning.com/topology/rest/1.0/file/get/1501309462?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1500420469?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1501204382?profile=original
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As a general rule, the lower the value of b, the more change points, on average. Also, 
most values of b (whether special or not) always produce a few major change points 
(and frequently a large number of minor ones), with big drops in the density function 
occurring at the major change points. Analyzing the polynomials discussed in the 
second fundamental theorem, can help you identify these major change points.  
In the appendix, we completely solve the case where b is the supergolden ratio.  
 

4. Additional research topics 
 
Here we discuss three potential topics for future research: stochastic processes free of 
bad seeds, the asymptotic properties of attractors and the construction of a table of 
attractors summarizing their features, and finally, some applications of b-processes to 
probabilistic and experimental number theory, including the discussion of some special 
integrals.  
 
4.1. Perfect stochastic processes and Brownian motion 
 
The b-process, defined by g(x) = bx - INT(bx), has bad seeds, as discussed earlier. For 
a b-process, the vast majority of seeds are good seeds (the set of bad seeds actually 

has Lebesgue measure zero), but nobody knows if mathematical constants such as  or 
21/2 are good or bad seeds. Are there any stochastic processes free of bad seeds? 
Such processes can have some benefits (but mostly drawbacks!) and are called perfect 
processes, until someone comes up with a better word. The term universally good 
averaging sequence is sometimes used. One example is the following. 
 
The process defined by g(x) = x + b - INT(x + b), where b is a positive irrational number, 
fits the bill. Since by definition, xn+1 = g(xn), it is easy to see that 
 

xn = (n - 1)b + x1 - INT((n - 1)b + x1). 
 
The fact that there is no bad seed is guaranteed by the equidistribution theorem. 
Even x1 = 0 is a good seed.  
 
(a) Properties of perfect processes 
 
This process is investigated in chapter 11 in my previous book, available here (see 
page 70.) The nth binary digit is defined as INT(2xn), and these digits carry even less 
information than those generated by b-processes with b between 1 and 2. If b = log 2, 
the first few digits of the seed x1 = 0 are as follows: 
 

0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0 

In contrast to b-processes, all seeds (regardless of b) have 50% of digits equal to 0, and 
50% equal to 1. This process is related to integral C defined later in this appendix, in the 
sub-section Probabilistic calculus and number theory, special integrals. 
 

https://en.wikipedia.org/wiki/Equidistribution_theorem
https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
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The equilibrium distribution is always uniform if b is irrational, thus it is possible to 
compute the theoretical lag-1 auto-correlation of the sequence { xn } (using the first 
formula in section 1) and search for the b's that minimize, in absolute value, that auto-
correlation. See appendix for a detailed solution. The empirical equilibrium distribution 
converges much faster to the theoretical one, than with b-processes. However, I've 

found a striking, unusual pattern for b =  and b = exp(). 
 
The empirical density, computed on x1, ..., xn and binned into N intervals, shows strong 

periodic bumps that other irrational b do not produce, not even b =  - 0.00001. It occurs 
even with the seed x1 = 0, with specific values of n and N, for instance n = 10,000 
and N = 100, or n =1,000,000 and n = 100, but not with N = 100,000 and N = 100. 
These bumps decrease as n increases, and convergence to uniform [0, 1] still occurs 

for b =  and b = exp(). Initially, I thought it was an issue with my internal machine 
arithmetic, but both my Perl and Excel implementations reproduce the same patterns. 
The Perl code is available here. The pattern is illustrated in the figure below.   
 

 
 

The above picture shows the empirical density, with n = 56,000 observations and N = 
100 bins, for four values of b. It is extremely close to the theoretical uniform equilibrium 

https://storage.ning.com/topology/rest/1.0/file/get/1522145767?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1522403555?profile=original
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on [0, 1]. I truncated the Y-axis to visually amplify the pattern. The spreadsheet is 
available here. 
 
 
(b) Comparison with b-processes 
 
Below we contrast some of the properties of b-processes, with those of perfect 
processes.  
 

 
 
Below is a chart comparing the auto-correlation of b-processes with that of perfect 
processes. The red curve was computed empirically (based on simulations) while the 
blue curve represents the exact values. The small bumps in the red curve are real; they 
are not caused by a small sample size. Note that b is in [1, 4] here. While in this 
appendix we focused on b between 1 and 2 for b-processes, it can easily be extended 
to any b larger than 2.  

https://storage.ning.com/topology/rest/1.0/file/get/1522599713?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1719044888?profile=original
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Auto-correlations and cross-correlations in multivariate processes are studied in chapter 
13. For b-processes, the lag-k auto-correlation in base b is equal to the lag-1 auto-
correlation in base bk. For perfect processes, the lag-k auto-correlation in base b is 
equal to the lag-1 auto-correlation in base bk. These results are valid for any good seed. 
 
(c) Connection with Brownian motions 
 
Now, let us investigate the connection with Brownian motions. It seems that few of the 
perfect processes investigated here can emulate Brownian motions, because they are 
usually too strongly auto-correlated. But there are a few exceptions. The opposite is true 
for b-processes.  
 

Let us define 

 
 
where E is the expected value of { xn }, and un, vn and wn are functions chosen to 
stabilize the variances of { yn } and { zn } respectively, as n becomes large. For details 
about stabilizing the variance to turn time-discrete processes such as { yn } or { zn } into 
time-continuous processes such as Brownian motions (the time is the index n), see 
chapter 1 and 2 in my previous book, here. In short, it consists of re-scaling both the Y-
axis (values) and X-axis (time, or n) to make sure that variances stay finite and non-zero 
as n tends to infinity. As time increments become infinitesimal and n tends to infinity, 
convergence to a continuous process is obtained. The textbook example is the 
transformation of a random walk into a Brownian motion. Here we only provide two 
examples, and technical details are omitted.   
 
The first example is the b-process with b an integer larger than 1. In this case, with x1 a 
good seed thus E = 1/2,with un = n1/2, vn = n3/2, and wn =0, after re-scaling the time axis, 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1576483916?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1580535745?profile=original
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{ yn } becomes a Brownian motion, while { zn } becomes an integrated Brownian motion. 
There is nothing new here. What is new though, is the fact that this works too even 
if b is not an integer.  
 
The second example involves a perfect process, with the seed x1 = 1, b = 21/2 - 1, E = 
1/2, un = 1, vn = n1/2, and wn = n/2. After re-scaling, this time { zn }, not { yn }, looks like a 
Brownian motion, see picture below. 
 

 
 
If you try the perfect process with a different parameter b and a different seed, the result 
will usually be very different, sometimes unexpectedly beautiful with many smooth 
bumps, if your sample is large enough, but it won't look at all like a Brownian motion. All 
the computations are in my spreadsheet, available here. You can play with it to see the 
variety of patterns that it can produce. Here only the first 500 values of zn have been 
used. If you try with the first 50,000 values instead, it still looks Brownian, and indeed, 
strikingly similar due to the fractal nature of Brownian motions (when you zoom in or 
out, the randomness patterns stay the same.) A statistical test to assess the Brownian 
character of this time series would probably conclude that it is likely to be Brownian. 
One such test was designed by Grzegorz Sikora, see here; his article was submitted for 
publication in 2018.  
 
One of the issues with very large n is machine precision. As a test, replicate this 
example with a large sample, using only 8 correct decimals in your computation, rather 
than the 15 that Excel offers by default. Is the resulting chart still the same? If you want 
to replicate the example with the b-process and b an integer, avoid b = 2, try b = 3 
instead, because programming languages and Excel rely on base-32 or base-64 
arithmetic, and assign the value 0 to xn when n > 55 or so. A workaround is to use high 
precision computing, or use b = 1.9999999 (1.999 won't work, and indeed theoretically, 
it is not supposed to work.) 
 
The connection to Brownian motions (including the smoothness of b-processes versus 
perfect processes) is further studied in chapter 12. 

https://storage.ning.com/topology/rest/1.0/file/get/1581134813?profile=original
https://arxiv.org/abs/1803.08553
https://storage.ning.com/topology/rest/1.0/file/get/1580969849?profile=original
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4.2. Characterization of equilibrium distributions (the attractors) 
 
Here, we focus again on b-processes with b in ]1, 2]. Another interesting research topic 
is about characterizing the class of attractors. That is, what kind of distribution is an 
equilibrium distribution? What makes them peculiar compared to other distributions? 
Another question is about how the number of attractors grows as the number of change 
points increases. Is there an asymptotic relationship between the number of change 
points (say N), and the number of attractors that have N change points? 
 

 
 

It is not even known if the number of attractors with a finite number of change points, is 
finite or infinite. Surely, there are more than two attractors with two change points, and 
much more than one attractor with three change points. The ones listed in the above 
table are only those that I have studied. So this table is a work in progress.  

 
4.3. Probabilistic calculus and number theory, special integrals 
 
When I first started this research project a while back, the initial purpose was to study 

the behavior of the digits of numbers such as . In fact, in this article, INT(bxn) 
represents the nth digit of the seed x1 in base b, whether b is an integer, a real number 
between 1 and 2, or any real number above 1. My previous book Applied Stochastic 
Processes, Chaos Modeling, and Probabilistic Properties of Numeration Systems 
published in June 2018 (see here) was the first milestone: developing a general 
framework to study this kind of problems. Since then, I have had new ideas. Here, I 
present some of them that I am still pursuing today. 
 
In this subsection, the notation { x } represents the fractional part of the number x, in 
contrast to the remaining of this appendix, where { xn } represents the entire 
sequence x1, x2, and so on. Here we will only consider the case b = 2.  Also, the seed x1 
is denoted as x. 
 
If b is an integer and if the seed x = x1 is in [0, 1], we have, for k larger or equal to 0: 
 

 
 
 

https://www.datasciencecentral.com/profiles/blogs/fee-book-applied-stochastic-processes
https://storage.ning.com/topology/rest/1.0/file/get/1507498762?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1518913789?profile=original
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(a) Interesting series, limits, and integrals 
 
One of the promising starting points is the following result. The proportion of digits 
of x equal to 0 in base 2 is 50% if and only if the series below, with b = 2, converges: 

 
In particular, it always converges if x is a good seed in base 2. It would be interesting to 
study the wildly erratic behavior of this function, which is not only discontinuous 
everywhere, but admits a dense set of singularities (where it does not converge.) Note 
that if we replace bk by k in the above series, it always converges whenever x is an 
irrational number, a consequence of the equidistribution theorem. What happens if we 
replace bk by k2 or kb? 
 
A related quantity is the following: 

 
If b is an integer, M(b) = (log 2)/2 and does not depend on x, assuming x is a good 
seed. If b is not an integer, M(b) is smaller than (log 2)/2. More precisely, M(b) = E(b) 
log(2), where E(b) is the expected value of the equilibrium distribution of a b-process. 
If b is between 1 and 2, then E(b) is approximately equal to the proportion of binary 
digits in base b, that are equal to 1, for a good seed x; it does not depend on x. For 
instance, based on results established in section 3.2.(a), we have:  
 

 
 

Finally, let us consider the following integrals: 

 

 
 
It seems that A is related to M(b). After a change of variable that makes the 
parameter b disappear, A = B, so A does not depend on b. One can prove that B = (log 
2)/2, see here for details. What about C? That one is also equal to (log 2)/2, as one 
would expect, so A = B = C = (log 2)/2. Other similar integrals, known as Frullani 
integrals, can be found in section 10 in chapter 28.  
 
Integral A is associated with b-processes, which have bad seeds, and are sometimes 
called universally bad averaging sequences for that reason. Integral C is associated 
with a process with no bad seed, defined at the beginning of section 4, see Perfect 
stochastic processes in this appendix. The integrals A and C are associated with time-

https://en.wikipedia.org/wiki/Equidistribution_theorem
https://math.stackexchange.com/questions/3148818/what-is-the-value-of-int-0-infty-frac-ax2-ax-x-log-xdx
https://storage.ning.com/topology/rest/1.0/file/get/1517889687?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1519657073?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1520065544?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1518447112?profile=original


292 
 

continuous versions of these processes, respectively for b-processes and perfect 
processes. 
 
(b) Some expected values, distribution of binary digits 
 
Let E(b) be the expected value of the equilibrium distribution of a b-process. What is the 
average value of E(b) between 1 and 2? That is, 

 
The value is around 0.38. See references at the end of this section, for a tentative 
solution. Interestingly, the exact value of E(b) is not even known for most b's. The figure 
below shows E(b), as well as the proportion P(b) of digits equal to 1 for a b-process. 
The largest peak takes place at b = (1 + 51/2)/2, the golden ratio. The case b = 2 
corresponds to the standard base-2 numeration system. The n-th digit of the seed x = x1 
is INT(2xn), and it is equal to either 0 or 1 depending on x. It is assumed that x is a good 
seed in base b, thus P(b) and E(b) do not depend on x. Also, b is in ]1, 2].  
 

 
(c) References  
 

 StackExhange: Computation of B 
 StackExhange: Average value of M(b) on [1, 2] 
 Research paper: Arithmetics on number systems with irrational bases, by P. 

Ambroz, et al. 
 Wikipedia: Golden ration numeration system 

 

 
 
 

https://math.stackexchange.com/questions/3148818/what-is-the-value-of-int-0-infty-frac-ax2-ax-x-log-xdx
https://math.stackexchange.com/questions/3161362/let-mb-lim-n-rightarrow-infty-sum-k-n12n-bk-x-k-do-we-have
http://people.fjfi.cvut.cz/pelanedi/Publications/AmbrozArithmetics.pdf
https://en.wikipedia.org/wiki/Golden_ratio_base
https://storage.ning.com/topology/rest/1.0/file/get/1617712773?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1650526490?profile=original
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5. Appendix 
 

Here we dive into more technical details, regarding four problems discussed in the 
article. 

 
5.1. Computing the auto-correlation at equilibrium 
 
We consider a b-process where b is an integer, so the equilibrium distribution is 
"known" to be uniform on [0, 1]. This fact has been taken for granted probably for more 

than a thousand years (and that's why people believe that the digits of  and other 
mathematical constants, are uniformly distributed), but it would be nice (and easy) to 
prove it, if the seed is a good seed. This is left as an exercise. It is not true usually if the 

seed is a bad seed.  is believed to be a good seed, but no one has ever managed to 
prove it: it is one of the biggest mathematical challenges of all times. 
 
Note that at equilibrium, both X and g(X) have the same distribution, so their mean and 
variance are identical. So if b is an integer and the seed x1 is a good seed, the only 
challenge in the auto-correlation formula mentioned in the first section, is the 
computation of E[Xg(X)]. 
 

We have: 

 
 
By definition, g(X) = bX - INT(bX). Thus, 
 

 
 
Combined with the fact that E(X) = E(g(X)) = 1/2 and Var(X) = Var(g(X)) = 1/12, as the 
equilibrium distribution is uniform on [0, 1], we obtain the final result: the correlation 
between X and g(X), that is, the theoretical auto-correlation between two successive 
values of xn, is equal to 1/b. It is easy to check this result by computing the estimated 
value of the lag-1 auto-correlation on x1, ..., xn, with n = 1,000,000: this test provides a 
very good approximation. 
 
5.2. Proof of the first fundamental theorem 
 
Here b is in ]1, 2]. If Y = g(X), we have, for y in [0, 1]: 
 

https://storage.ning.com/topology/rest/1.0/file/get/1516007486?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1516096980?profile=original
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Thus, using the notation F for the probability distribution function (and f for the density) 
we have: 

 
Taking the derivative with respect to y on both sides of the equation, we obtain the final 
result: 

 
 
5.3. How to find the exact equilibrium distribution 
 
We focus on b-processes with b in ]1, 2]. Finding the equilibrium distribution (actually, 
its density) is accomplished in two steps. 
 
First, compute P(b) for all the polynomials P mentioned in the second fundamental 
theorem. Any value of P(b) between 0 and 1 corresponds to a potential change point. 
By looking at the empirical equilibrium density, computed on 100,000 values of { xn }, 
you can find the approximate value of the major change points: they correspond to 
points of discontinuity in the density function. For instance, if b = 1.4656... (the 
supergolden ratio), there is clearly a change point around 0.46, see the first picture in 
section 2. There is another one around 0.68. The exact values c1 and c2 of the two 
change points are derived from two of these polynomials: 
 

c1 = b - 1, and c2 = b2 - b,  
 
because no other polynomial (in the small list that you have to check) gets so close to 
0.46 and 0.68 respectively, when evaluated at b.  
 

Then, once the change points are identified, take three different values -- one in each 
interval -- for instance  

0.25 in S(1) = [0, c1[, 0.50 in S(2) = [c1, c2[, and 0.75 in S(3) = [c2, 1]. 
 
This assumes that you have three intervals, but you can easily generalize if you have 
more. Now apply the first fundamental theorem with y = 0.25, y = 0.50, and y = 0.75 
respectively. You get: 
 

https://storage.ning.com/topology/rest/1.0/file/get/1575462140?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1517284048?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1517399484?profile=original
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Note that 

 0.853... = (1 + 0.25)/b, and it is in S(3), and 0.171... = 0.25/b, and it is in S(1) 
 0.341... = 0.50/b, and it is in S(1) 
 0.512... = 0.75/b, and it is in S(2) 

 
At equilibrium, the density functions of X and Y are identical. Thus, if d1, d2 and d3 
denote the density values in each of the 3 intervals, we end up with the following linear 
system, where d1, d2 and d3 are the unknowns: 
 

d1 = (d3 + d1)/b 
d2 = d1/b 
d3 = d2/b  

 

It has an infinite number of solutions, and you need to add one constraint, the fact that 
the total density sums to 1, to be able to solve it. That constraint is 

d1c1 + d2(c2 - c1) + d3(1 - c2) = 1, 
that is,  

d1(b - 1) + d2(b
2 - 2b + 1) + d3(1 - b2 + b) = 1.  

 

Finally, the solution, in this case, is 

d1 = b2/(2b3 - 4b2 + 2b + 1), d2 = d1/b, and d3 = d1/b
2. 

 
If you cannot easily determine which polynomials yield the change points or you want to 
automate the method, you may as well try any two combinations of the potential 
polynomials (assuming you have two change points), and for each pair of polynomials 
(that that is, for each pair of change point candidates) solve a similar linear system. You 
then plug the tentative equilibrium densities obtained for each pair of polynomials, into 
the formula in the first fundamental theorem. Only one of them will satisfy the fact that X 
and Y have the same density everywhere on [0, 1], and that is the solution.  
 
5.4. Perfect process with no auto-correlation 
 
We compute the covariance E(X, g(X)) between successive observations xn in a perfect 
process. These processes were introduced  in subsection 4.1 and are defined by g(x) 
= x + b - INT(x + b). We show that the covariance between X and g(X), and thus the lag-
1 auto-correlation, is zero if and only if the fractional part of b is equal to (3 + 31/2)/6 or (3 
- 31/2)/6. Also, the lag-1 auto-correlation is minimum, and equal to -1/2, when the 
fractional part of b tends to 1/2. 

https://storage.ning.com/topology/rest/1.0/file/get/1511103026?profile=original
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Here, b is any positive irrational number. The seed x1 can be any real number in [0, 1], 
even x1 = 0, since perfect processes don't have bad seeds.  Also, as usual and by 
definition, xn+1 = g(xn). 
 
To prove the result, we start with the fact that since X is in [0, 1], we have: 

 
INT(X + b) = INT(b) if X  < INT(b + 1) - b, otherwise INT(X + b) = INT(b + 1). 

 

The equilibrium distribution being uniform on [0, 1], and using the brackets to represent 
the INT function, we thus have: 

 
At equilibrium, we have E(X) = E(g(X)) = 1/2, and E(X2) = 1/3 since the distribution is 
uniform. Thus, 

 
 
With the notation k = INT(b),  A = 1, B = 1 - 2(k + 1), and C = (k + 1)2 - (k + 1) + 1/6, 
finding the values of b that yield Cov(X, g(X)) = 0, consists in solving the quadratic 
equation Ab2 + Bb + C =0. There may be a solution for each k = 0, 1, 2, and so on. Note 
that the discriminant of the quadratic equation does not depend on k:  

 
Thus the solutions are b = k + (3 + 31/2)/6 and b = k + (3 - 31/2)/6, for k = 0, 1, and so on. 
Note that b must be irrational, otherwise the equilibrium distribution may not exist or 
may not be uniform.  
  

https://storage.ning.com/topology/rest/1.0/file/get/1571909013?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1571744833?profile=original
https://storage.ning.com/topology/rest/1.0/file/get/1572056346?profile=original
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Appendix C. Cheat Sheet 

Here is all you need to get started from scratch, including sample projects, data sets, 

and references. 

1. Hardware 
 
A laptop is the ideal device. I've been using Windows laptops for years, and I always 
installed a Linux layer (acting as an operating system on top of Windows), known as 
Cygwin. This way, you get the benefits of having Windows (Excel, Word, compatibility 
with clients and employers, many apps such as FileZilla) together with the flexibility and 
pleasure of working with Linux. Note that Linux is a particular version of UNIX. So the 
first recommended step (to start your data science journey) is to get a modern Windows 
laptop and install Cygwin. 
 

Even if you work heavily on the cloud (AWS, or in my case, access to a few remote 
servers mostly to store data, receive data from clients and backups), your laptop is you 
core device to connect to all external services (via the Internet). Don't forget to do 
regular backups of important files, using services such as DropBox. 

 

2. Linux environment on Windows laptop 
 

Once you installed Cygwin, you can type commands or execute programs in the Cygwin 
console. Here's how the console looks like on my laptop: 

 

 

 Figure 1: Cygwin (Linux) console on Windows laptop 
 

https://www.cygwin.com/
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You can open multiple Cygwin windows on your screen(s). 

To connect to an external server for file transfers, I use the Windows FileZilla freeware 
rather than the command-line ftp offered by Cygwin. If you need full privileges on the 
remote machine, use Putty instead (for Telnet/SSH sessions). 
You can run commands in the background using the & operator. For instance, 

$ notepad VR3.txt & 

 
will launch Notepad (the standard Windows text editor) from the Cygwin console, into 

another window, and open the file VR3.txt located in your local directory (if this file 

exists in that directory). Note the $ symbol preceding any command (see Figure 1). In 

addition, the console also displays the username (Vincent@Inspiron-Switch in my 

case) as well as the directory I'm in (/cygdrive/c/vincentg/ in Linux, corresponding to 

the c://vincentg/ pathname under windows).  
 
Basic operations: 
 

 Changing directory is performed with the command cd (examples: cd 

subfolder/sub-subfolder, cd .. to go one level above, cd . to go to your home 
directory)  

 Listing content of directory is done with command ls -l (note that -l is a 
command argument used to specify that want a full, detailed listing; without this 
option, the listing shown in Figure 1 would be far less detailed). 

 If you don't know your local directory, type in the command pwd, it will tell you 
your location (path) 

 

So far you've learned the following Linux concepts: command line and symbol $ 

(sometimes replaced by > depending on the Linux version), operator & (for background 

processing), paths, commands cd, pwd, and ls, command options (-l for ls) 

and shortcuts (. and .. for the cd command). 
 
A few more things about files 
 

Files have an extension that indicates what kind of file it is (text, image,spreadsheet) 

and what software can open and process them. In Figure 1, VR3.txt has the .txt 
extension, meaning it's a text file - the most widespread type of data file. There are two 
types of files: binary (used by various programs; compressed/encrypted format) and text 
(can be processed easily by any program or editor). It is important to know the 
distinction when doing FTP file transfers (FTP clients allow you to specify the type of 
file, though it's automated and transparent to the user with FileZilla). 

Other extensions include 

 .csv (comma-separated text file that you can open with Excel or Notepad; it can 
have more than 1 million rows), 

 .xlsx (Excel files limited to 1 million rows, this is a binary file),  

 .gz (compressed files, thus binary files), 

https://filezilla-project.org/
http://www.putty.org/
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 .png (best image format, other image formats include .gif, .jpg, .jpeg, and 

.bmp; these are binary files), 

 .docx (Word documents; binary), 

 .html (text files representing source code of a web page), 

 .sql (text file used to store an SQL query, used as input for some database 
clients such as Brio), 

 .php (PHP code, text format), 

 .pl (Perl code, text format), 

 .js (Javascript code, text format), 

 .r (R code, text format), 

 .py (Python code, text format), 

 .c (C code, text format), 

 .exe (Windows executable), 

 .xml (XML, text format for name-value pairs)  

 

Files are not stored exactly the same way in Windows and UNIX. Also, some systems 
use UNICODE for file encoding, which takes much more space but allow you e.g. to 
work with Chinese characters (stored using two bytes per character). When processing 
such a file (they are rather rare fortunately), you'll first need to clean it and standardize it 
to traditional ASCII (one byte = one character).  

Finally, the best text format that you can use is tab separated: each column or field is 

separated by a TAB, an invisible char represented by \t in some programming 
languages. The reason is that some fields contain commas, and thus using csv 
(comma-separated text files) results in broken fields and data that looks like garbage, 
and is hard to process (requiring a laborious cleaning step first, or talking to your client 
to receive tab-separated format instead). 
 
When processing data, the first step is to produce a data dictionary (see section 8 in 
chapter 25). It is easily done using a scripting language. 
 
File management 
 
Filenames should be designed carefully (no space or special char in a filename), 
especially when you have thousands or millions of files across thousands of directories 
and sub-directories, and across dozens of servers (the cloud). One of the two core 
components of Hadoop is actually its file management system, known as HDFS (the 
other component being the distributed Map-Reduce architecture to process tasks). 
It's always a good idea to always have a time stamp embedded into the file name, 
representing the creation date. Note that in Figure 1, the files all start with VR, an 
abbreviation for Vertical Response, as these files are coming or related to our email 
service provider, called Vertical Response. File names should be very detailed: keep in 
mind that sooner rather than later, you might run scripts to process millions of them. 
Without proper naming conventions, this task will be impossible.  
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A final word, if you look at Figure 1, the first column indicates who can read (r), re-write 

(w) or execute (x) these files, besides me. It's never been an issue on Windows for me, 
but on a true UNIX operating system (not Cygwin), you might want to set the right 
protections: for example Perl scripts (despite being text) must be set to Executable, with 

the UNIX command chmod 755 filename.pl, where filename.pl is your Perl script. File 
protections (and locks) are important for organizations where files can be shared by 
many users, sometimes simultaneously. 
 

3. Basic UNIX commands 
 

You don't need to spend hours learning UNIX and buy 800-page books on the subject. 
The following commands will get you started, once you have your Cygwin console: 

 cd, pwd, ls (see section 2) 

 tail -100, head -150 to extract the last 100 or first 150 rows of a file 

 cp, mv, mkdir, rmdir respectively copy a file to another location, rename a file, 
create a new directory or delete a directory (you need to erase all files first) 

 sort, uniq respectively sort a file and remove duplicate entries (you can sort 
alphabetically or numerically depending on the option; default is alphabetical 
order) 

 gzip: compress/un-compress files 

 wc: count number of rows and words in a text file 

 grep: identify all rows containing a specific string in a text file (it helps to be 
familiar with regular expression) 

 cat: display content of text file on your screen 

 chmod: change file protections, see section 2 

 history: lists the last commands you used, as it is very common to re-use the 
same commands all the time. 

 cron, crontab: to automatically schedule tasks (running an executable once a 
day) 

 

Operators include > (to save output to a new file), >> to append output to an existing 

file, | (the pipe operator, see examples), & (see section 2, used for background or batch 

mode when executing a command), * (see examples) and !(see examples.)  
 
Examples 
  

 sort filename.txt | uni -c > results.txt (sort filename.txt alphabetically - 
not numerically - then remove duplicates, and for each final entry count number 

of duplicates with option -c; store results in results.txt) 

 rm -i test*.txt (remove all files starting with test and with extension .txt; the 

extension -i is to request manual confirmation before each file gets deleted) 

 grep 'abc' test.txt | wc (extract all rows containing ‘abc’ in test.txt, then 

count these rows with wc) 

 !545 (run command #545, after you run the command history to get the lists of 
previously entered commands) 
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Check out this reference for more details (exact syntax and options). 
 
Miscellaneous 
 
Shell scripts (or batch files) are small programs that execute a list of commands, and 
can be run in batch mode. For regular expressions, see section 4. 
 

4. Scripting languages 
 
You can get started in data science wth just a few Unix commands, a tool for statistical 
analyses such as R (unless you write your own algorithms to get more robust and 
simple tools) and a scripting programming language such as Perl or Python. Python 
(together with Pandas libraries) is the most popular language for data science. Python 
and machine learning resources are provided later in this article. This article is a good 
introduction on Python for data science. This reference has tons of resources about 
Python for data science. 
 
Here I describe fundamental features of Perl, but they apply to all scripting languages. 
You can download Perl from ActiveState. Numerous short programs (Perl, but also R), 

easy to read and understand, can be found here. Perl scripts are text files with a .pl 

extension (say myprogram.pl) that you can execute in the Cygwin console with the 

command line perl myprogram.pl once you have installed Perl on your laptop. 
 
Core elements of scripting languages 
 

Some basic stuff that is used in pretty much any programs include 

 

 Hash tables are lists of name-value pairs, where insertion or deletion of an 
element is very fast. They can be descibed as arrays indexed by strings, and 
constitute a powerful, fundamental data structure. They can be used to 
produce efficient joins.  See data dictionary (section 8 in chapter 25) for a simple 

illustration. Hash tables store data using a syntax such as $myhash{"Vincent 

Granville|Data Scientist"} = "yes"; In this case the index is bi-dimensional 
and is made up of the name and job title; the value is "yes" or "no". If the name or 
job title is not in your data, no entry is created (that's why this data structure 
produces efficient joins). See also chapter 5 on feature selection, for a more 

sophisticated application. 
 

 Associative arrays are just hash tables: arrays indexed by strings rather than 

integers. In Perl, they are declared using %myhash=() while regular arrays are 

declared using @myarray=(). Memory allocation for hash tables is automated in 

Perl. However, you should create a variable $myhashsize that is incremented by 

1 each time an entry is added to %myhash (or decremented by 1 in case of 
deletion). This way, you know how big your hash tables grow. If your program 

http://mally.stanford.edu/~sr/computing/basic-unix.html
http://www.freeos.com/guides/lsst/
http://www.zytrax.com/tech/web/regex.htm
https://nbviewer.jupyter.org/github/gumption/Python_for_Data_Science/blob/master/Python_for_Data_Science_all.%20ipynb
https://www.datasciencecentral.com/group/resources/forum/topics/comprehensive-list-of-data-science-resources
https://www.activestate.com/activeperl
http://www.analyticbridge.com/group/codesnippets
http://www.analyticbridge.com/forum/topics/why-is-vlookup-in-excel-1-000-times-slower-than-hash-tables-in-py
http://www.analyticbridge.com/profiles/blogs/why-and-how-you-should-build-a-data-dictionary-for-big-data-sets
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displays (on the screen) the exact time every 300,000 newly created hash 
entries, you'll have an idea when you run out of memory: at that moment, your 
Perl script suddenly starts running 20 times slower. When this happens, it's time 
to think about optimization using Hadoop or Map-Reduce (distributed 
architecture.) 

 
 String processing and regular expressions: the sample code below contains 

basic strings substitution including special characters (\n, \:).  Many 

substitutions can be performed in just one tiny bit of code using regular 
expressions, click here or here for details. One of the most widespread 

operations is to split a text $text into elements stored in an array @myarray; the 

syntax is @myarray = split(/\t/,$text). Here we assume that text elements 

are separated by TABs (the special character \t). The number of text elements is 

stored in the variable $#myarray. 
 
The easiest way to learn how to code is to look at simple, well written sample programs 
of increasing complexity, and become an expert in Google search to find solutions to 
coding questions - many answers can be found on StackOverflow. I have learned R, 
SQL C, C++ and Perl that way, without attending any training. If you need training, 
check out this list of courses. The following are good examples of code to get you 
started. 
 
Sample scripts to get you started 
 

Here is some sample code. 

 Code to run SQL queries 10 times faster than Brio, Toad etc.  
 Source code for our Big Data keyword correlation API  (Perl API) 
 Source code to compute N-grams (NLP)  
 Simulation of stochastic processes  
 Simple source code to simulate nice cluster structures  
 Ridge regression with bootstrap  
 Basic web crawler  
 Model-free confidence intervals  (see section 2, subsection "Perl code") 

 
Below is a simple script that performs automated dns lookups to extract domain names 

associated with IP addresses. The input file is a list of IP addresses (ips.txt) and the 

output file is a text file outip.txt with two fields, tab-separated: IP address and domain 

name. A temporary file titi.txt is created each time we call the external Cygwin 

command 'nslookup'. Note that $ is used for variables. There's some basic string 

processing here, for instance:  $ip=~s/\n//g substitutes each carriage return / line feed 

(special character \n) by nothing (empty) in the variable $ip. Note that the 

symbol # means that what follows (in the line in question) is a comment, not code. 
 

`rm titi.txt`; 

# $ip="107.2.111.109"; 

https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.techrepublic.com/article/regular-expresssion-substitutions-in-perl/
http://www.comp.leeds.ac.uk/Perl/sandtr.html
https://www.stackoverflow.com/
https://www.datasciencecentral.com/page/search?q=courses
http://www.analyticbridge.com/group/codesnippets/forum/topics/code-to-help-business-analysts
http://www.analyticbridge.com/group/codesnippets/forum/topics/source-code-for-our-big-data-keyword-correlation-api
http://www.analyticbridge.com/group/codesnippets/forum/topics/source-code-to-compute-all-permutations-of-n-elements
http://www.analyticbridge.com/group/codesnippets/forum/topics/from-chaos-to-clusters-simulation-of-stochastic-processes
http://www.analyticbridge.com/group/codesnippets/forum/topics/simple-source-code-to-simulate-nice-cluster-structures
http://www.analyticbridge.com/group/codesnippets/forum/topics/2004291:Topic:15893
https://www.analyticbridge.datasciencecentral.com/group/codesnippets/forum/topics/web-crawler-for-clustering-of-2-500-data-science-websites
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
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open(IN,"<ips.txt"); 

open (OUT,">outip.txt"); 

while ($lu=<IN>) { 

  $ip=$lu; 

  $n++; 

  $ip=~s/\n//g; 

  if ($ip eq "") { $ip="na"; } 

  `nslookup $ip | grep Name > titi.txt`; 

  open(TMP,"<titi.txt"); 

  $x="n/a"; 

  while ($i=<TMP>) { 

    $n++;  

    $i=~s/\n//g; 

    $i=~s/Name\://g; 

    $x=$i; 

  } 

  close(TMP); 

  print OUT "$ip\t$x\n"; 

  print "$n> $ip | $x\n"; 

  sleep(0); 

} 

close(OUT); 

close(IN); 

 
Now, you can download logfiles (see free data sets in section 6), extract IP addresses 
and traffic statistics per IP address, and run the above script (using a distributed 
architecture, with 20 copies of your script running on your laptop) to extract domain 
names attached to IP addresses. Then you can write a program to map each IP 
address to an IP category using the technique described in my article Internet Topology 
Mapping. And finally, sell or license the final data to clients. 
 

A few more useful concepts: 

 Functions in Perl are declared using the subroutine reserved keyword. A few 
examples are found in the sample scripts. Learn how to pass an argument that is 
a variable, an array or an hash table. Subroutines can return more than one 
value. Use of global variables is discouraged, but with proper care (naming 
conventions), you can do it without risks. 

 You can write programs that accept command-line arguments. Google 
'command-line arguments' for details. 

 Libraries (home-made or external) require an inclusion directive, such as require 

LWP::UserAgent; in the web robot sample code (see link above) that uses the 
LWP library. If a library is not available in your Perl distribution, you can 
download and add it using the ppm command, or even manually (see my Wiley 

book page 138, where I discuss how to manually install the library Permutor.pl). 
 Scripts can be automatically run according to a pre-established schedule, say 

once a day. Google 'cron jobs' for details, and check this article for running cron 
jobs on Cygwin. 

 
 
 

https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
https://www.datasciencecentral.com/group/research/forum/topics/internet-topology-mapping
http://docs.activestate.com/activeperl/5.10/faq/ActivePerl-faq2.html
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://www.datasciencecentral.com/profiles/blogs/my-data-science-book
https://stackoverflow.com/questions/707184/how-do-you-run-a-crontab-in-cygwin-on-windows
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Exercise  
 
Write a script that accesses all the text files on your laptop using two steps: 
 

 recursively using the ls-l > dir.txt Cygwin command from within Perl to create 
directory listings (one for each folder / subfolder) saved as text files and named 
dir.txt 

 accessing each text file from each of these automatically created directory 
listings dir.txt in each directory 

 

Then count the number of occurrences for each word (broken down per file creation 
year) across these files, using a hash table. Purpose: identify keyword trends in your 
data. 

 

5. Python, R, Hadoop, SQL, DataViz 
 
R is a popular language to perform statistical analyses or nice graphics. I would not use 
it for black-box applications. Large applications such as text clustering involving 20 
million keywords are performed in Python or Perl, known as scripting languages. Python 
libraries for data analysis and machine learning are widely available and discussed in a 
few O'Reilly books: they offer an alternative to R, for big data processing. Note that R 
does have an extensive collection of sophisticated statistical functions, too many in my 
opinion. Finally, R is currently used for exploratory data analysis rather than production-
mode development. For more info, read R versus SAS versus Python or R versus 
Python. 
 
R programming 
 
You can download the open-source R package from The R Project. Installation and 
running R programs via the GUI, on a Windows laptop, is straightforward. Memory 
limitations can be bypassed using multiple copies of R on multiples machines, some R 

packages, or using RHadoop (R + Hadoop). R programs are text files with an .r 
extension. Useful links: 
 

 Producing videos with R  
 R libraries 
 R cheat sheets 
 Sample R code 

 
Also, see here for more references. 
 
 
 
 
 

http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.datasciencecentral.com/forum/topics/which-one-is-best-r-sas-or-python-for-data-science
https://www.datasciencecentral.com/profiles/blogs/data-science-wars-r-versus-python
https://www.datasciencecentral.com/profiles/blogs/data-science-wars-r-versus-python
https://www.r-project.org/
https://github.com/RevolutionAnalytics/RHadoop/wiki
http://www.analyticbridge.com/group/codesnippets/forum/topics/from-chaos-to-clusters-simulation-of-stochastic-processes
https://www.datasciencecentral.com/page/search?q=r+libraries
https://www.datasciencecentral.com/page/search?q=r+cheat+sheets
https://www.datasciencecentral.com/page/search?q=r+code
https://www.datasciencecentral.com/page/search?q=R
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Python programming 
 
Check out these articles about Python for data science, the preferred full-fledged 
programming language for data scientists. Sample code, cheat sheets, and machine 
learning libraries for Python, can be found on GitHub.com and in the following articles: 
 

 Python cheat sheets 
 Python libraries 
 Sample Python code 

 
Hadoop 
 

Hadoop is a file management system used to perform tasks in a distributed 
environment, across multiple servers if necessary, by spitting files into sub-files, 
performing the analysis on each sub-file separately, and summarizing the results (by 
collecting the various outputs associated with each file, and putting it together). This 
environment uses redundancy to easily and transparently recover from server crashes. 
It works well for web crawling projects, even for sorting, but not so much for graph 
databases or real time data (except as a back-end platform). For an example, read this 
article. For an example of what Map-Reduce (the distributed architecture supporting 
Hadoop) can’t do, follow this link.  

 
SQL 
 

Finally, don't forget that SQL is still a widely used language. Learn at least the basics, 
including to joining multiple tables efficiently, and playing with indexes and keys. The 
book SQL Essentials is a good starting point. Also, search this PDF document for the 
keyword fuzzy joins. NoSQL databases also exist, in particular graph databases.  

 
Excel 
 

Excel has advanced functions such as Linest (linear regression), Vlookup, percentiles, 
rank statistics, random numbers, or index (indirect cell referencing.) A large collection of 
Excel spreadsheets featuring advanced machine learning techniques can be found as 
attachments in the articles posted here or within this book (search for the keyword Excel 
or spreadsheet in this PDF document.) In particular:  

 Advanced Machine Learning with Basic Excel (chapter 3) 
 Black box confidence intervals - See section 2, Source Code  
 Model-free confidence intervals 

 
Also, a list of articles about data science with Excel can be found here. 
 
 
 

https://www.datasciencecentral.com/page/search?q=python
https://www.datasciencecentral.com/page/search?q=python+cheat+sheet
https://www.datasciencecentral.com/page/search?q=python+libraries
https://www.datasciencecentral.com/page/search?q=python+code
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.datasciencecentral.com/profiles/blogs/practical-illustration-of-map-reduce-hadoop-style-on-real-data
https://www.analyticbridge.datasciencecentral.com/profiles/blogs/what-mapreduce-can-t-do
https://www.datasciencecentral.com/profiles/blogs/free-book-sql-essentials
http://www.vincentgranville.com/
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/profiles/blogs/black-box-confidence-intervals-excel-and-perl-implementations-det
https://www.datasciencecentral.com/forum/topics/100-articles-about-data-science-with-excel
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Visualization 
 

Many visualizations can be performed with R (see section on R in this article), Excel, or 
Python libraries. Specific types of charts (graphs or decision trees) require special 
functions. The most popular software is Tableau. Birt (by Accenture) is popular for 
dashboards and Visio for diagrams. Most tools allow you to produce maps, scatterplots 
and various types of visualizations. For a reference, follow this link or search for 
visualization cheat sheet. See also here (dataviz with R.) Also, search the web to learn 
how to avoid creating bad charts. 

 

6. Machine Learning 
 
To understand the difference between machine learning and data science, read this 
article. A large list of machine learning references can be found here. It covers the 
following domains: 
 

 Support Vector Machines 
 Clustering 
 Dimensionality Reduction 
 Anomaly Detection 
 Recommender Systems 
 Collaborative Filtering 
 Large Scale Machine Learning 

 Deep Learning 

 Sparse Coding 

 
Also check out our resources section. Some of these resources include:  
 

 34 Great Articles and Tutorials on Clustering  
 22 Great Articles and Tutorials on Classification Methods 
 13 Great Articles and Tutorials about Correlation  
 26 Great Articles and Tutorials about Regression Analysis  
 15 Great Articles About Decision Trees  
 27 Great Resources About Logistic Regression  
 Four Great Pictures Illustrating Machine Learning Concepts  
 11 Great Hadoop, Spark and Map-Reduce Articles 
 20 Cheat Sheets: Python, ML, Data Science, R, and More  
 25 Great Articles About SQL and NoSQL 
 15 Great Articles about Bayesian Methods and Networks 
 22 Great Articles About Neural Networks 
 21 Great Articles and Tutorials on Time Series  
 15 Deep Learning Tutorials  
 11 Great Articles About Natural Language Processing (NLP)  
 Statistical Concepts Explained in Simple English 

 Machine Learning Concepts Explained in One Picture 

 

https://www.datasciencecentral.com/page/search?q=visualization
https://www.datasciencecentral.com/group/tutorials/forum/topics/cheat-sheet-data-visualization-with-r
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/profiles/blogs/17-analytic-disciplines-compared
https://www.datasciencecentral.com/group/resources/forum/topics/a-large-set-of-machine-learning-resources-for-beginners-to-mavens
https://www.datasciencecentral.com/profiles/blogs/comprehensive-repository-of-data-science-and-ml-resources
https://www.datasciencecentral.com/profiles/blogs/14-great-articles-and-tutorials-on-clustering
https://www.datasciencecentral.com/profiles/blogs/22-great-articles-and-tutorials-on-classification-methods
https://www.datasciencecentral.com/profiles/blogs/13-great-articles-and-tutorials-about-correlation
https://www.datasciencecentral.com/profiles/blogs/26-great-articles-and-tutorials-about-regression-analysis
https://www.datasciencecentral.com/profiles/blogs/15-great-articles-about-decision-trees
https://www.datasciencecentral.com/profiles/blogs/27-great-resources-about-decision-trees
https://www.datasciencecentral.com/profiles/blogs/four-great-pictures-illustrating-machine-learning-concepts
https://www.datasciencecentral.com/profiles/blogs/11-great-hadoop-spark-and-map-reduce-articles
https://www.datasciencecentral.com/profiles/blogs/20-cheat-sheets-python-ml-data-science
https://www.datasciencecentral.com/profiles/blogs/25-great-articles-about-sql-and-nosql
https://www.datasciencecentral.com/profiles/blogs/15-great-articles-about-bayesian-methods-and-networks
https://www.datasciencecentral.com/profiles/blogs/22-great-articles-about-neural-networks
https://www.datasciencecentral.com/profiles/blogs/21-great-articles-and-tutorials-on-time-series
https://www.datasciencecentral.com/profiles/blogs/15-deep-learning-tutorials
https://www.datasciencecentral.com/profiles/blogs/11-great-articles-about-natural-language-processing-nlp
https://www.datasciencecentral.com/page/search?q=statistical+concepts
https://www.datasciencecentral.com/page/search?q=in+one+pictures
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Algorithms 
 
The picture below summarizes the main types of algorithms used in machine learning 
(ML). Source: MathWorks. See also this list and for more details, follow this link.  Deep 
learning (neural networks with several intermediate layers) is getting more and more 
popular: click here for a starting point.  
 

 
 
Getting started 
 
A great ML cheat sheet can be found here. For a search engine focusing exclusively on 
ML and related topics, click here. For competitions, visit Kaggle.com. For job interview 
questions and answers, follow this link or download this document. Glossaries can be 
found here. For a great, interactive tutorial, check out Ajit Jaokar’s book series, here. 
Many ML projects (and hopefully yours in the future) are hosted on Github.com. To ask 
questions, one of the best platforms is Stackexchange:  see here. For more articles 
from the author of this book, visit this web page.  
 
ML Applications 
 
The following articles illustrate how ML is used in business. 

 
 Unusual ML application: gaming technology 
 22 tips for better data science 

https://www.mathworks.com/
https://www.datasciencecentral.com/profiles/blogs/machine-learning-and-its-algorithms-to-know-mlalgos
https://www.bigdatanews.datasciencecentral.com/profiles/blogs/10-machine-learning-algorithms-you-should-know-in-2018
https://www.datasciencecentral.com/page/search?q=deep+learning
https://www.datasciencecentral.com/profiles/blogs/new-data-science-cheat-sheet
https://www.datasciencecentral.com/page/search?q=machine+learning
https://www.datasciencecentral.com/profiles/blogs/100-commonly-asked-data-science-interview-questions
http://datashaping.com/Addendum5.pdf
https://www.datasciencecentral.com/page/search?q=glossary
https://www.datasciencecentral.com/profiles/blogs/new-books-and-resources-for-dsc-members
https://www.datasciencecentral.com/profiles/blogs/10-python-machine-learning-projects-on-github
https://stats.stackexchange.com/
https://www.datasciencecentral.com/profiles/blogs/my-data-science-machine-learning-and-related-articles
https://www.datasciencecentral.com/profiles/blogs/data-science-foundations-for-a-new-stock-market
https://www.datasciencecentral.com/profiles/blogs/22-tips-for-better-data-science
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 21 data science systems used by Amazon to operate its business 
 40 Techniques Used by Data Scientists 
 Designing better algorithms: 5 case studies 
 33 unusual applications of machine learning 
 Architecture of Data Science Projects 
 24 Uses of Statistical Modeling (Part II)  | (Part I) 

 
Data sets and sample projects 
 
Open source data sets can be found here and here. Here is another list featuring 100 
data sets. KDNuggets.com also maintains a fairly comprehensive list of data sets. The 
following articles also feature interesting data sets: 
 

 Source code for our Big Data keyword correlation API 
 Great statistical analysis: forecasting meteorite hits 
 Fast clustering algorithms for massive datasets 
 53.5 billion clicks dataset available for benchmarking and testing 
 Over 5,000,000 financial, economic and social datasets 
 New pattern to predict stock prices, multiplies return by factor 5 
 3.5 billion web pages 
 Another large data set - 250 million data points - available for do... 
 125 Years of Public Health Data Available for Download 
 From the trenches: real data science project (Google Analytics) 

 
You can also start working on the following projects: 
 

 Analyzing 40,000 web pages to optimize content: see here. Work on the data to 
identify the types of articles and other metrics associated with success (and how 
do you measure success in the first place?), such as identifying great content for 
our audience, forecasting articles' lifetime and page views based on subject line 
or category, assessing impact of re-tweets, likes, and sharing on traffic, and 
detecting factors impacting Google organic traffic. Also, designing a tool to 
identify new trends and hot keywords. See also chapter 3 for a related NLP 
project. Chapters 19 to 23 are also good starting points. 

 
 Categorization of data scientists. Also, create a list of top 500 data scientists 

using public data such as Twitter, and rate them based on number of followers or 
better criteria. Also identify new stars and trends - note that new stars have fewer 
followers even though they might be more popular, as it takes time to build a list 
of followers. Classify top practitioners into a number of categories (unsupervised 
clustering) based on their expertise (identified by keywords or hashtags in their 
postings or LinkedIn profile). Filter out automated from real tweets. Finally, create 
a taxonomy of data scientists: see here for a starting point.  

 
 Spurious correlations in big data, how to detect and fix it. You have n = 5,000 

variables uniformly distributed on [0,1]. What is the expected number m of 
correlations that are above p = 0.95? Perform simulations or find theoretical 

https://www.datasciencecentral.com/profiles/blogs/20-data-science-systems-used-by-amazon-to-operate-its-business
https://www.datasciencecentral.com/profiles/blogs/40-techniques-used-by-data-scientists
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http://www.bigdatanews.com/profiles/blogs/fast-clustering-algorithms-for-massive-datasets
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http://www.analyticbridge.com/profiles/blogs/new-pattern-to-predict-stock-prices-multiplies-return-by-factor-5
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http://www.bigdatanews.com/profiles/blogs/another-large-data-set-250-million-data-points-available-for-down
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https://www.datasciencecentral.com/profiles/blogs/sample-data-science-project-optimizing-all-business-levers-simult
https://www.datasciencecentral.com/profiles/blogs/types-of-data-scientists
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solution. Try with various values of n (from 5,000 to 100,000) and p (from 0.80 to 
0.99) and obtain confidence intervals for m (m is a function of n and p). Identify 
better indicators than correlation to measure whether two time series are really 
related. The purpose here is twofold: (1) to show that with big data, your 
strongest correlations are likely to be spurious, and (2) to identify better metrics 
than correlation in this context. A starting point is my article about the curse of big 
data, also in my Wiley book pages 41-45. Or read chapter 27 in this book. 
  

 Perform simulations to assess the probability of some extreme events (useful in 
fraud detection problems, to detect fake or shared profiles or fake reviews). See 
here, also here (are there too many twin points in this dataset?) and here. 
Simulations are useful in pattern detection problems. For number theory 
applications (experimental mathematics involving chaotic sequences) - with 
several statistical tests being used to assess departure from randomness - check 
out Appendix B in this book, or in my book on stochastic processes, here. 

http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data
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